
Three-Dimensional Manifolds

Michaelmas Term 1999

Prerequisites

Basic general topology (eg. compactness, quotient topology)

Basic algebraic topology (homotopy, fundamental group, homology)

Relevant books

Armstrong, Basic Topology (background material on algebraic topology)

Hempel, Three-manifolds (main book on the course)

Stillwell, Classical topology and combinatorial group theory (background

material, and some 3-manifold theory)

§1. Introduction

Definition. A (topological) n-manifold M is a Hausdorff topological space with

a countable basis of open sets, such that each point of M lies in an open set

homeomorphic to R
n or R

n
+ = {(x1, . . . , xn) ∈ R

n : xn ≥ 0}. The boundary ∂M

of M is the set of points not having neighbourhoods homeomorphic to R
n. The

set M − ∂M is the interior of M , denoted int(M). If M is compact and ∂M = ∅,

then M is closed.

In this course, we will be focusing on 3-manifolds. Why this dimension?

Because 1-manifolds and 2-manifolds are largely understood, and a full ‘classifica-

tion’ of n-manifolds is generally believed to be impossible for n ≥ 4. The theory

of 3-manifolds is heavily dependent on understanding 2-manifolds (surfaces). We

first give an infinite list of closed surfaces.

Construction. Start with a 2-sphere S2. Remove the interiors of g disjoint closed

discs. The result is a compact 2-manifold with non-empty boundary. Attach to

each boundary component a ‘handle’ (which is defined to be a copy of the 2-torus

T 2 with the interior of a closed disc removed) via a homeomorphism between the

boundary circles. The result is a closed 2-manifold Fg of genus g. The surface F0

is defined to be the 2-sphere S2.
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Figure 1.

Construction. Start with a 2-sphere S2. Remove the interiors of h disjoint

closed discs (h ≥ 1). Attach to each boundary component a Möbius band via

homeomorphisms of the boundary circles. The result is a closed 2-manifold Nh.

Figure 2.

Exercise. N1 is homeomorphic to the real projective plane P 2.

Theorem 1.1. (Classification of closed 2-manifolds) Each closed 2-manifold is

homeomorphic to precisely one Fg for some g ≥ 0, or one Nh for some h ≥ 1.

This is an impressive result. There is a similar result for compact 2-manifolds

with boundary.

Theorem 1.2. (Classification of compact 2-manifolds) Each compact 2-manifold

is homeomorphic to precisely one of Fg,b or Nh,b, where g ≥ 0, b ≥ 0 and h ≥ 1,

and Fg,b (resp. Nh,b) is homeomorphic to Fg (resp. Nh) with the interiors of b

disjoint closed discs removed.

The surface F0,1 is a disc D2, F0,2 is an annulus and F0,3 is a pair of pants;
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the surfaces F0,i (i ≥ 1) are the compact planar surfaces.

There is in fact a classification of non-compact 2-manifolds, but the situation

is significantly more complicated than in the compact case. In dimensions more

than two, it is usual to concentrate on compact manifolds (which are usually

hard enough). Below are some examples of non-compact 2-manifolds (without

boundary) that exhibit a wide range of behaviour.

Examples. (i) R
2.

(ii) The complement of a finite set of points in a closed 2-manifold.

(iii) R
2 − (Z × {0}).

(iv) Glue a countable collection of copies of F1,2 ‘end-to-end’.

(v) Start with an annulus. Glue to each boundary component a pair of pants.

The resulting 2-manifold has four boundary components. Glue to each of

these another pair of pants. Repeat indefinitely.

(i) (ii) (iii)

(iv)

(v)

Figure 3.

It is quite possible that there is some sort of classification of compact 3-

manifolds similar to the 2-dimensional case, but inevitably much more compli-

cated. The simplest closed 3-manifold is the 3-sphere, which is most easily visu-

alised as R
3 ‘with a point at infinity’.

Exercise. Prove that, for any point x ∈ S3, S3 − {x} is homeomorphic to R
3.

Construction. Let X be a subset of S3 homeomorphic to the solid torus S1×D2.

Then S3−int(X) is a compact 3-manifold, with boundary a torus. Note that there
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are many possible such X in S3 (one is given in Figure 4), and hence there are

many such 3-manifolds.

Figure 4.

Despite the large number of different 3-manifolds, they have a well-developed

theory.

Definition. Let M1 and M2 be two oriented 3-manifolds. (The definition of

an oriented manifold will be given in the next section.) Pick subsets B1 and B2

homeomorphic to closed 3-balls in the interiors of M1 and M2. Let M1#M2 be

the manifold obtained from M1 − int(B1) and M2 − int(B2) by gluing ∂B1 and

∂B2 via an orientation-reversing homeomorphism. Then M1#M2 is the connected

sum of M1 and M2.

The resulting 3-manifold M1#M2 is in fact independent of the choice of B1,

B2 and orientation-reversing homeomorphism ∂B1 → ∂B2. The 3-sphere is the

union of two 3-balls glued along their boundaries. When one is forming M#S3

for any 3-manifold M , we may assume that one of these 3-balls is used in the

definition of connected sum. Hence, M#S3 is obtained from M by removing a

3-ball and then gluing another back in. Hence, M#S3 is homeomorphic to M . A

3-manifold M is composite if it is homeomorphic to M1#M2, for neither M1 nor

M2 homeomorphic to S3; otherwise it is prime.

Here is an example of a theorem in this course.

Theorem 1.3. (Topological rigidity) Let M1 and M2 be closed orientable prime

3-manifolds which are homotopy equivalent. Suppose that H1(M1) and H1(M2)

are infinite. Then M1 and M2 are homeomorphic.

The theorem can be false:
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• if M1 and M2 are not prime,

• if H1(M1) and H1(M2) are finite,

• if M1 and M2 have non-empty boundary, or

• if M1 and M2 are non-compact.

Example. The following is a construction of two compact orientable prime 3-

manifolds M1 and M2, with non-empty boundary, that are homotopy equivalent

but not homeomorphic. Pick two disjoint simple closed curves in a torus T 2,

bounding disjoint discs in T 2. Attach to each curve a copy of F1,1 along the

boundary curve of F1,1. The resulting space X will be homotopy equivalent to

both M1 and M2.

Figure 5.

We construct M1 and M2 by ‘thickening’ T 2 and the two copies of F1,1 to T 2×[0, 1]

and two copies of F1,1×[0, 1]. We build M1 by gluing the two copies of ∂F1,1×[0, 1]

to disjoint annuli in T 2×{0} (the annuli separating off disjoint discs in T 2 ×{0}).

Note that M1 is a 3-manifold with ∂M1 being three tori and a copy of F3. We

construct M2 similarly, except we attach one of the two copies of ∂F1,1 × [0, 1] to

T 2 × {0} and one to T 2 × {1}. The resulting manifold M2 has ∂M2 being two

tori and two copies of F2. Hence, M1 and M2 are not homeomorphic, but they

are both homotopy equivalent to X . (We cannot at this stage prove that they are

prime, but this is in fact true.)

However, it is widely believed that (in a sense that can be made precise)

‘almost all’ homotopy equivalent closed 3-manifolds are in fact homeomorphic. A

special case of this is the following, which is one of the most famous unsolved

conjectures in topology.

Poincaré Conjecture. A 3-manifold homotopy equivalent to S3 is homeomor-

phic to S3.
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§2. Which category?

In manifold theory, it is very important to specify precisely which ‘category’

one is working in. For example, one can deal not only with topological manifolds,

but also smooth manifolds (which we will not define) and piecewise-linear (pl)

manifolds, which are defined below. It turns out that 3-manifold theory often

takes place in the pl setting.

Definition. The n-simplex is the set

∆n = {(x1, . . . , xn+1) ∈ R
n+1 : x1 + . . . + xn+1 = 1 and xi ≥ 0 for all i}.

The dimension of ∆n is n. A face of an n-simplex ∆n is a subset of ∆n in which

some co-ordinates are set to zero. A face of dimension zero is a vertex.

Definition. A simplicial complex is the space K obtained from a collection of

simplices by gluing their faces together via linear homeomorphisms, such that any

point of K has a neighbourhood intersecting only finitely many simplices.

Remark. This definition is more general than the usual definition of a simplicial

complex, where one insists that each collection of points forms the vertices of at

most one simplex.

Note. The underlying space of a simplicial complex is compact if and only if it

has finitely many simplices.

Definition. A triangulation of a space M is a homeomorphism from M to some

simplicial complex.

Example. The space obtained from two copies of ∆n by identifying their bound-

aries using the identity map is a simplicial complex. It forms a triangulation of

the n-sphere.

Definition. A subdivision of a simplicial complex K is another simplicial complex

L with the same (i.e. homeomorphic) underlying space as K, where each simplex

of L lies in some simplex of K in such a way that the inclusion map is affine.

Definition. A map f : K → L between simplicial complexes is pl if there exists

subdivisions K ′ and L′ of K and L so that f sends vertices of K ′ to vertices of

L′, and sends each simplex of K ′ linearly (but not necessarily homeomorphically)

onto a simplex of L′.
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Thus, by definition, there exists a pl homeomorphism between two simplicial

complexes if and only if they have a common subdivision.

Exercise. The composition of two pl maps is again pl. Hence, simplicial com-

plexes and pl maps form a category.

Definition. A pl n-manifold is a simplicial complex in which each point has a

neighbourhood pl homeomorphic to the n-ball

Dn = {(x1, . . . , xn) ∈ R
n : |xi| ≤ 1 for each i}

(with a standard triangulation).

An important fact that simplifies much of 3-manifold theory is the following

theorem, due to Moise.

Theorem 2.1. A topological 3-manifold possesses precisely one smooth structure

(up to diffeomorphism) and precisely one pl structure (up to pl homeomorphism).

This theorem is false in dimensions greater than three. When studying 3-

manifold theory, however, it does not matter which category one pursues it from.

For simplicity, we will now work entirely in the pl category without explicitly

stating this. Thus, all manifolds will be pl, and all maps will be pl.

We now introduce a couple of concepts that are probably familiar, in a pl

setting.

Orientability

Definition. An orientation on an n-simplex is an equivalence class of orderings on

its vertices, where we treat distinct orderings as specifying the same orientation

if and only if the orderings differ by an even permutation. If the vertices are

ordered as v0, . . . , vn (say), then we write [v0, . . . , vn] for this orientation. We

write −[v0, . . . , vn] for the other orientation. The orientation [v0, . . . , vn] induces

the orientation (−1)i[v0, v1, . . . , vi−1, vi+1, . . . , vn] on the face opposite vi.

Definition. An orientation on an n-manifold M is a choice of orientation on each

n-simplex of M , such that, if σ is any (n−1)-simplex adjacent to two n-simplices,

then the orientations that σ inherits from these simplices disagree. The manifold

is then oriented. If a triangulation of a manifold does not admit an orientation,
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then the manifold is non-orientable.

Note. A compact n-manifold M is orientable if and only if Hn(M, ∂M) = Z.

In this case, an orientation is a choice of generator for Hn(M, ∂M). Hence, ori-

entability is independent of the choice of triangulation for compact manifolds (and

in fact for all manifolds).

Figure 6.

Examples. The Möbius band M is non-orientable, whereas the annulus A is

orientable. See Figure 6, where the arrows on each 2-simplex specify an orientation

on that 2-simplex in the obvious way. Note that M and A are homotopy equivalent.

Submanifolds

Note that Dk sits inside Dn for k ≤ n, by setting the co-ordinates xk+1, . . . , xn

to zero.

Definition. A submanifold X of a pl manifold M is a subset which is simplicial

in some subdivision of M , such that each point of X has a neighbourhood N

and a pl homeomorphism (N, N ∩ X) → (Dn, Dk). Note that this implies that

∂X = X ∩ ∂M .

Definition. A map X → M between simplicial complexes is an embedding if it is

a pl homeomorphism onto its image. It is a proper embedding if M is a manifold

and the image of X is a submanifold of M .

Example. A 1-dimensional submanifold of S3 is a link. If it is connected, it is

a knot. If K is a knot in S3 that does not bound a disc and we ‘cone’ the pair
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(S3, K), the result is a 2-disc embedded in the 4-ball, but not properly embedded.

Exercise. Show that if S is a surface embedded in a 3-manifold M such that

S ∩ ∂M = ∂S, then S is properly embedded. (You will need to know that any

circle embedded in S2 is ‘standard’.)

We will see that studying submanifolds of M will shed considerable light on

the properties of M .

We will prove the following result in §6.

Proposition 2.2. Let X be an orientable codimension one submanifold of an

orientable manifold. Then X has a neighbourhood homeomorphic to X × [−1, 1],

where X×{0} is identified with X , and where (X× [−1, 1])∩∂M) = ∂X× [−1, 1].

Isotopies

Let M be a simplicial complex.

Definition. Two homeomorphisms h0: M → M and h1: M → M are isotopic if

there is a homeomorphism H : M × [0, 1] → M × [0, 1] such that, for all i, H |M×{i}

is a homeomorphism onto M ×{i}, and so that H |M×{0} = h0 and H |M×{1} = h1.

Remark. It is possible to impose a topology on the set Homeo(M, M) of all (pl)

homeomorphisms M → M , such that the path-components of Homeo(M, M) are

precisely the isotopy classes.

Definition. Let K0 and K1 be subsets of M . They are ambient isotopic if there

is a homeomorphism h: M → M that is isotopic to the identity and that takes K0

to K1.

Subsets of M that are ambient isotopic are, for almost all topological purposes,

‘the same’ and we will feel free to perform ambient isotopies as necessary.
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