
§4. Basic pl topology

We have already had to state without proof of a number of results of the form

‘a certain submanifold has a certain neighbourhood’. It is clear that if we are to

argue rigourously, we need to develop a greater understanding of pl topology. The

results that we state here without proof can be found in Rourke and Sanderson’s

book ‘Introduction to piecewise-linear topology’.

Regular neighbourhoods

Definition. The barycentric subdivision K(1) of the simplicial complex K is

constructed as follows. It has precisely one vertex in the interior of each simplex

of K (including having a vertex at each vertex of K). A collection of vertices of

K(1), in the interior of simplices σ1, . . . , σr of K, span a simplex of K(1) if and

only if σ1 is a face of σ2, which is a face of σ3, etc (possibly after re-ordering

σ1, . . . , σr).

An example is given in Figure 14. It is also possible to define K(1) inductively

on the dimensions of the simplices of K, as follows. Start with all the vertices of

K. Then add a vertex in each 1-simplex of K. Join it to the relevant 0-simplices

of K. Then add a vertex in each 2-simplex σ of K. Add 1-simplices and 2-

simplices inside σ by ‘coning’ the subdivision of ∂σ. Continue analogously with

the higher-dimensional simplices.

Definition. The rth barycentric subdivision of a simplicial complex K for each

r ∈ N is defined recursively to be (K(r−1))(1), where K(0) = K.

Definition. If L is a subcomplex of the simplicial complex K, then the regular

neighbourhood N (L) of K is the closure of the set of simplices in K(2) that

intersect L. It is a subcomplex of K(2).

The following result asserts that regular neighbourhoods are essentially inde-

pendent of the choice of triangulation for K.

Theorem 4.1. (Regular neighbourhoods are ambient isotopic) Suppose that K ′

is a subdivision of a simplicial complex K. Let L be a subcomplex of K, and let L′

be the subdivision K ′ ∩L. Then the regular neighbourhood of L in K is ambient

isotopic to the regular neighbourhood of L′ in K ′.
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Thus, we may speak of regular neighbourhoods without specifying an initial

triangulation.

K K (1)

K (2)

of 1-simplices of K
Regular neighbourhood

Figure 14.

Handle structures

Definition. A handle structure of an n-manifold M is a decomposition of M into

n + 1 sets H0, . . . ,Hn having disjoint interiors, such that

• Hi is a collection of disjoint n-balls, known as i-handles, each having a product

structure Di × Dn−i,

• for each i-handle (Di × Dn−i) ∩ (
⋃i−1

j=0 Hj) = ∂Di × Dn−i,

• if Hi = Di×Dn−i (respectively, Hj = Dj×Dn−j) is an i-handle (respectively,

j-handle) with j < i, then Hi ∩ Hj = Dj × E = F × Dn−i for some (n −

j − 1)-manifold E (respectively, (i − 1)-manifold F ) embedded in ∂Dn−j

(respectively, ∂Di).

Here we adopt the convention that D0 is a single point and ∂D0 = ∅.

In words, the third of the above conditions requires that the attaching map of

each handle respects the product structures of the handles to which it is attached.

For a 3-manifold, this is relevant only for j = 1 and i = 2.
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One should view a handle decomposition as like a CW complex, but with each

i-cell thickened to a n-ball.

Theorem 4.2. Every pl manifold has a handle structure.

Proof. Pick a triangulation K for the manifold. Let V i be the vertices of K(1)

in the interior of the i-simplices of K. Let Hi be the closure of the union of the

simplices in K(2) touching V i. These form a handle structure.

General position

In Rn it is well-known that two subspaces, of dimensions p and q, intersect

in a subspace of dimension at least p + q − n, and that if the dimension of their

intersection is more than p + q − n, then only a small shift of one of them is

required to achieve this minimum. Analogous results hold for subcomplexes of

a pl manifold. The dimension dim(P ) of a simplicial complex P is the maximal

dimension of its simplices.

Proposition 4.3. Suppose that P and Q are subcomplexes of a closed manifold

M , with dim(P ) = p, dim(Q) = q and dim(M) = M . Then there is a homeo-

morphism h: M → M isotopic to the identity such that h(P ) and Q intersect in a

simplicial complex of dimension of at most p + q −m.

Q
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h(P)

Figure 15.

Then, h(P ) and Q are said to be in general position. This is one of a number

of similar results. They are fairly straightforward, but rather than giving detailed

definitions and theorems, we will simply appeal to ‘general position’ and leave it

at that.
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Spheres and discs

Lemma 4.4. Any pl homeomorphism ∂Dn → ∂Dn extends to a pl homeomor-

phism Dn → Dn.

Proof. See the figure.

given

homeo

map origin
to origin

extend



`conewise'

Figure 16.

Remark. The above proof does not extend to the smooth category, and indeed

the smooth version is false.

A similar proof gives the following.

Lemma 4.5. Two homeomorphisms Dn → Dn which agree on ∂Dn are isotopic.

Let r: Dn → Dn be the map which changes the sign of the xn co-ordinate.

Proposition 4.6. A homeomorphism Dn → Dn is isotopic either to the identity

or to r.

Proof. By induction on n. First note that there are clearly only two homeomor-

phisms ∂D1 → ∂D1. By Lemma 4.4, these extend to homeomorphisms D1 → D1.

Now apply Lemma 4.5 to show that any homeomorphism D1 → D1 is isotopic

to one of these. Now consider a homeomorphism h: ∂D2 → ∂D2. It takes a 1-

simplex σ in ∂D2 to a 1-simplex in ∂D2. There are two possibilities up to isotopy

for h|σ , since σ is a copy of D1. Note that cl(∂D2 − σ) is clearly a copy of a

1-ball. (An explicit homeomorphism is obtained by retracting cl(∂D2 − σ) onto

one hemisphere of ∂D2). Hence, each homeomorphism of σ extends to ∂D2 − σ,

in a way that is unique up to isotopy by Lemmas 4.4 and 4.5. Hence, h is isotopic

to r|∂D2 or id|∂D2 . Therefore, by Lemma 4.4, any homeomorphism D2 → D2 is

isotopic to r or id. The inductive step proceeds in all dimensions in this way.
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We end with a couple of further results above spheres and discs that we will

use (often implicitly) at a number of points. Their proofs are less trivial than the

above results, and are omitted.

Proposition 4.7. Let h1: D
n → M and h2: D

n → M be embeddings of the n-ball

into an n-manifold. Then there is a homeomorphism h: M → M isotopic to the

identity such that h ◦ h1 is either h2 or h2 ◦ r.

Proposition 4.8. The space obtained by gluing two n-balls along two closed

(n − 1)-balls in their boundaries is homeomorphic to an n-ball.

§5. Constructing 3-manifolds

The aim now is to give some concrete constructions of 3-manifolds. This will

be a useful application of the pl theory outlined in the last section.

Construction 1. Heegaard splittings.

Definition. A handlebody of genus g is the 3-manifold with boundary obtained

from a 3-ball B3 by gluing 2g disjoint closed 2-discs in ∂B3 in pairs via orientation-

reversing homeomorphisms.

glue glue @

Figure 17.

Lemma 5.1. Let H be a connected orientable 3-manifold with a handle structure

consisting of only 0-handles and 1-handles. Then H is a handlebody.

Proof. Pick an ordering on the handles of H , and reconstruct H by regluing these

balls, one at a time, as specified by this ordering. At each stage, we identify discs,

either in distinct components of the 3-manifold, or in the same component of the

3-manifold. Perform all of the former identifications first. The result is a 3-ball.

Then perform all of the latter identifications. Each must be orientation-reversing,
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since H is orientable. Hence, H is a handlebody.

Let H1 and H2 be two genus g handlebodies. Then we can construct a 3-

manifold M by gluing H1 and H2 via a homeomorphism h: ∂H1 → ∂H2. This is

known as a Heegaard splitting of M .

homeomorphism h

Figure 18.

Exercise. Take two copies of the same genus g handlebody and glue their bound-

aries via the identity homeomorphism. Show that the resulting space is homeo-

morphic to the connected sum of g copies of S1 × S2.

Exercise. Show that, if H is the genus g handlebody embedded in S3 in the

standard way, then S3 − int(H) is also a handlebody. Hence, show that S3 has

Heegaard splittings of all possible genera.

Example. A common example is the case where two solid tori are glued along

their boundaries. By the above two exercises, S3 and S2 ×S1 have such Heegaard

splittings. However, other manifolds can be constructed in this way. A lens space is

a 3-manifold with a genus 1 Heegaard splitting which is not homeomorphic to S3 or

S2×S1. Note that there are many ways to glue the two solid tori together, because

there are many possible homeomorphisms from a torus to itself, constructed as

follows. View T 2 as R
2/ ∼, where (x, y) ∼ (x +1, y) and (x, y) ∼ (x, y + 1). Then

any linear map R
2 → R

2 with integer matrix entries and determinant ±1 descends

to a homeomorphism T 2 → T 2.

Theorem 5.2. Any closed orientable 3-manifold M has a Heegaard splitting.

Proof. Pick a handle structure for M . The 0-handle and 1-handles form a han-
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dlebody. Similarly, the 2-handles and 3-handles form a handlebody. (If one views

each i-handle in a handle structure for a closed n-manifold as an (n − i)-handle,

the result is again a handle structure.)

0-handles and 1-handles 2-handles and 3-handles

Figure 19.

Construction 2. The mapping cylinder.

Start with a compact orientable surface F . Now glue the two boundary

components of F ×[0, 1] via an orientation-reversing homeomorphism h: F ×{0} →

F × {1}. The result is a compact orientable 3-manifold (F × [0, 1])/h known as

the mapping cylinder for h.

Exercise. If two homeomorphisms h0 and h1 are isotopic then (F × [0, 1])/h0 and

(F × [0, 1])/h1 are homeomorphic.

However, there are many homeomorphisms F → F not isotopic to the identity.

Definition. Let C be a simple closed curve in the interior of the surface F . Let

N (C) ∼= S1 × [−1, 1] be a regular neighbourhood of C. Then a Dehn twist about

C is the map h: F → F which is the identity outside N (C), and inside N (C) sends

(θ, t) to (θ + π(t + 1), t).

Note. The choice of identification N (C) ∼= S1 × [−1, 1] affects the resulting

homeomorphism, since it is possible to twist in ‘both directions’.
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Figure 20.

Exercise. If C bounds a disc in F or is parallel to a boundary component, then

a Dehn twist about C is isotopic to the identity. But it is in fact possible to

show that if neither of these conditions holds, then a Dehn twist about C is never

isotopic to the identity.

Theorem 5.3. [Dehn, Lickorish] Any orientation preserving homeomorphism of

a compact orientable surface to itself is isotopic to the composition of a finite

number of Dehn twists.

Construction 3. Surgery

Let L be a link in S3 with n components. Then N (L) is a collection of

solid tori. Let M be the 3-manifold obtained from S3 − int(N (L)) by gluing in n

solid tori
⋃n

i=1 S1 × D2, via a homeomorphism ∂(
⋃n

i=1 S1 × D2) → ∂N (L). The

resulting 3-manifold is obtained by surgery along L.

There are many possible ways of gluing in the solid tori, since there are many

homeomorphisms from a torus to itself.

Theorem 5.4. [Lickorish, Wallace] Every closed orientable 3-manifold M is ob-

tained by surgery along some link in S3.

Proof. Let H1 ∪ H2 be a Heegaard splitting for M , with gluing homeomorphism

f : ∂H1 → ∂H2. Let g: ∂H1 → ∂H2 be a gluing homeomorphism for a Heegaard

splitting of S3 of the same genus. Note that H1 and H2 inherit orientations

from M and S3, and, with respect to these orientations, f and g are orientation

reversing. Then, by Theorem 5.3, g−1 ◦ f is isotopic to a composition of Dehn

twists, τ1, . . . , τn along curves C1, . . . , Cn, say. Let k: ∂H1 × [n, n + 1] → ∂H1 ×

[n, n+1] be the isotopy between τn ◦ . . .◦ τ1 and g−1◦f . A regular neighbourhood
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N (∂H1) of ∂H1 in H1 is homeomorphic to a product ∂H1 × [0, n + 1], say, with

∂H1 × {n + 1} = ∂H1. (See Theorem 6.1 in the next section.) For i = 1, . . . , n,

let Li = τ−1
1 . . . τ−1

i−1Ci × {i − 3/4} ⊂ H1 ⊂ M . Define a homeomorphism

M −
n⋃

i=1

int(N (Li)) → S3 − int(N (L))

H1 − (∂H1 × [0, n + 1])
id
−→ H1 − (∂H1 × [0, n + 1])

(∂H1 −N (C1)) × [0, 1/2]
id
−→ (∂H1 −N (C1)) × [0, 1/2]

∂H1 × [1/2, 1]
τ1−→ ∂H1 × [1/2, 1]

(∂H1 −N (τ−1
1 C2)) × [1, 3/2]

τ1−→ (∂H1 −N (C2)) × [1, 3/2]

∂H1 × [3/2, 2]
τ2τ1−→ ∂H1 × [3/2, 2]

. . .

∂H1 × [n − 1/2, n]
τn...τ1−→ ∂H1 × [n − 1/2, n]

∂H1 × [n, n + 1]
k

−→ ∂H1 × [n, n + 1]

H2
id
−→ H2

Here, L is a collection of simple closed curves in H1 ⊂ S3. These homeomor-

phisms all agree, since τi . . . τ1 and τi−1 . . . τ1 agree on ∂H1 − τ−1
1 . . . τ−1

i−1N (Ci).

Therefore, M is obtained from S3 by first removing a regular neighbourhood of

the link L, and then gluing in n solid tori.
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