
§8. Hierarchies

In this section, we consider not just a single incompressible surface, but a

whole sequence of them.

Terminology. Let M be a 3-manifold, containing an incompressible surface S.

Then MS = M − int(N (S)) is the result of cutting M along S.

Definition. A partial hierarchy for a Haken 3-manifold M1 is a sequence of 3-

manifolds M1, . . . ,Mn, where Mi+1 is obtained from Mi by cutting along an ori-

entable incompressible properly embedded surface in Mi, no component of which

is a 2-sphere. This is a hierarchy if, in addition, Mn is a collection of 3-balls. We

denote (partial) hierarchies as follows:

M1
S1−→M2

S2−→ . . .
Sn−1

−→ Mn.

Example. The following is a hierarchy for S1 × S1 × S1:

S1 × S1 × S1 S
1×S1×{∗}
−→ S1 × S1 × I

S1×{∗}×I
−→ S1 × I × I

{∗}×I×I
−→ I × I × I.

Example. An example of hierarchy for a knot exterior is given below.
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Figure 25.

Non-example. Let M be any 3-manifold with non-empty boundary. Let D be a

disc in ∂M . Let D′ be D with its interior pushed a little into the interior of M .

Then decomposing M along D′ gives a copy of M and a 3-ball. Hence, we may

repeat this process indefinitely.
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Non-example. Let S be the genus one orientable surface with one boundary

component. Then S × I is homeomorphic to a genus two handlebody. Pick a

simple closed non-separating curve C in the interior of S. Then C×I is a properly

embedded annulus that is π1-injective and hence incompressible. Cutting S along

C gives a pair of pants F0,3, and F0,3 × I is again a genus two handlebody. Hence,

we may cut along a similar surface again, and repeat indefinitely.

Lemma 8.1. Let M be a compact orientable irreducible 3-manifold. Let S be a

properly embedded incompressible surface, no component of which is a 2-sphere.

Then MS is irreducible, and hence Haken since ∂MS 6= ∅.

Proof. Let S2 be a 2-sphere in MS . As M is irreducible, it bounds a 3-ball in M .

If this 3-ball contained any component of S, then S would be compressible, by

Theorem 3.8. Hence, S is disjoint from the 3-ball, and so the 3-ball lies in MS.

Despite the ‘non-examples’ above, the following theorem is in fact true.

Theorem 8.2. Every Haken 3-manifold has a hierarchy.

Theorem 8.2 will be proved in §11, but first, we show why hierarchies are

useful.

9. Boundary patterns and the Loop Theorem

Definition. A boundary pattern P in a 3-manifold M is a (possibly empty)

collection of disjoint simple closed curves and trivalent graphs in ∂M , such that

no simple closed curve in ∂M intersects P transversely in a single point.

If S is a 2-sided surface properly embedded in a compact 3-manifold M , with

∂S intersecting P transversely (and missing the vertices of P ), then the manifold

MS obtained by cutting along S inherits a boundary pattern, as follows. Note

that ∂MS is the union of subsurfaces, one of which is ∂M ∩ ∂MS , the other of

which is ∂N (S) ∩ ∂MS, which is two copies S1 and S2 of S. Then, MS inherits a

boundary pattern (P ∩ ∂MS) ∪ ∂S1 ∪ ∂S2.
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The motivation for defining boundary patterns is as follows. If

M1
S1−→ M2

S2−→ . . .
Sn−1

−→ Mn

is a partial hierarchy for a 3-manifold M1, then ∂Mn is a union of subsurfaces,

which come from bits of ∂M1 and S1, . . . , Sn−1. The union of the boundaries of

these bits of surface forms a boundary pattern for Mn.

Definition. A boundary pattern P for M is essential if, for each disc D properly

embedded in M with ∂D ∩ P at most three points, there is a disc D′ ⊂ ∂M with

∂D′ = ∂D, and D′ containing at most one vertex of P and no simple closed curves

of P .

Essential boundary pattern

Forbidden

Figure 27.

Definition. A boundary pattern P is homotopically essential if, for each map of

a disc (D, ∂D) → (M, ∂M) with ∂D∩P at most three points (which are disjoint),
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there is a homotopy (keeping ∂D ∩P fixed, introducing no new points of ∂D∩P ,

and keeping ∂D in ∂M) to an embedding of D into ∂M so that the image of D

contains at most one vertex of P and no simple closed curves of P .

Clearly, if a boundary pattern is homotopically essential, then it is essential.

(A proof of this requires the fact from surface topology that if two properly em-

bedded arcs in a surface are homotopic keeping their endpoints fixed, then they

are ambient isotopic keeping their endpoints fixed.) The main technical result

that we will prove is that the converse holds.

Theorem 9.1. An essential boundary pattern for a compact orientable irreducible

3-manifold is homotopically essential.

The Loop Theorem is a corollary of this result. This remarkable result is one

of the most important theorems in 3-manifold theory. In this course, we will give

a new proof of it, using hierarchies.

Theorem 9.2. (The Loop Theorem) Let M be a compact orientable irreducible

3-manifold. Then ∂M is incompressible if and only if π1(F ) → π1(M) is injective

for each component F of ∂M .

Proof of 9.2 from 9.1. A standard fact from surface topology gives that a simple

closed curve in ∂M is homotopically trivial in ∂M if and only if it bounds a disc

in ∂M . Hence, if a component F of ∂M is compressible, then π1(F ) → π1(M) is

not injective.

To prove the converse, suppose that ∂M is incompressible. Let P be the

empty boundary pattern in ∂M . This is then essential. By Theorem 9.1, P is

homotopically essential. Hence, if ℓ is any loop in ∂M that is homotopically trivial

in M , then ℓ is homotopically trivial in ∂M .

We can in fact prove the following slightly stronger version of the Loop The-

orem.

Theorem 9.3. Let M be a compact orientable irreducible 3-manifold, and let

F be a connected surface in ∂M . If π1(F ) → π1(M) is not injective, then F is

compressible.

Proof of 9.3 from 9.1. Suppose that F is incompressible. Let ∂F be the boundary
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pattern of M . If this is not essential, then there is a compressing disc for ∂M

that intersects ∂F at most twice. Decompose M along this disc to give a new

3-manifold M ′. Let F ′ be M ′ ∩ F . Then π1(F ) → π1(M) is injective if and

only if each component of F ′ is π1-injective in M ′. Also, F ′ is incompressible in

M ′. Repeat this process if necessary. At each stage, we reduce the complexity

of ∂M . Hence, we may assume that the boundary pattern ∂F is essential in M .

By Theorem 9.1, it is homotopically essential, and therefore π1(F ) → π1(M) is

injective.

This stronger version of Theorem 9.3 allows us to prove Theorem 3.3.

Theorem 3.3. Let S be a connected compact orientable surface properly embed-

ded in a compact orientable irreducible 3-manifold M . Then S is incompressible

if and only if the map π1(S) → π1(M) induced by inclusion is an injection.

Proof. Suppose that π1(S) → π1(M) is not injective. There is then a map

h: (D, ∂D) → (M,S) of a disc D such that h(∂D) is homotopically non-trivial in

S. Using an argument similar to that in Lemma 7.8, we may perform a homotopy

of D (keeping ∂D fixed) so that h−1(S) is a collection of simple closed curves in

D. Pick one innermost in D. If this is sent to a curve that is homotopically trivial

in S, we may modify h and remove this curve. Hence, we may assume that there

is a map h:D → M so that h−1(S) = ∂D and so that h(∂D) is homotopically

non-trivial in S. We may also assume that h|N (∂D) respects the product structure

on N (S). Hence, h restricts to a trivialising homotopy for some loop in one of

the two copies of S in MS . Applying Theorem 9.3 to this copy F of S gives that

F is compressible. Extending the compression disc using the product structure

N (S) ∼= S × I gives a compression disc for S.

Remark. This argument fails (and the result need not be true) when S is non-

orientable: since N (S) is not a product, a compression disc for the ∂I-bundle of

N (S) does not necessarily extend to a compression for S.

Theorem 9.3, together with the existence of hierarchies, also allows us to prove

the following.

Theorem 9.4. Let M be a compact orientable Haken 3-manifold. Then πk(M) =

0 for all k ≥ 2.
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Proof. Pick a hierarchy

M = M1
S1−→M2

S2−→ . . .
Sn−1

−→ Mn.

Consider a map h:S2 →M , and let Si be the first surface to intersect h(S2). We

may homotope h so that h−1(Si) is a collection of simple closed curves. Let C

be one innermost in S2 bounding a disc D. Then h(C) is homotopically trivial

in Mi+1. Hence, by the argument of Theorem 9.3, we may homotope D into

Si. There is then a a further homotopy removing C from h−1(Si). We may

therefore assume that h(S2) ⊂ Mi+1. Repeating this as far as Mn gives that

h(S2) ⊂ Mn. Since π2(Mn) is trivial, h represents a trivial element of π2(M).

Therefore π2(M) = 0.

If M is closed, then π1(M) contains the fundamental group of a closed ori-

entable surface other than a 2-sphere, and hence π1(M) is infinite. If M has

non-empty boundary, then (providing it is not a 3-ball), H1(M) is infinite, by The-

orem 7.5, and so π1(M) is infinite. Therefore the universal cover M̃ of M is non-

compact. Hence, Hk(M̃) = 0 for all k ≥ 3. Now, πk(M̃) ∼= πk(M) for all k ≥ 2.

Therefore, π2(M̃) = 0. Hence, by the Hurewicz theorem, πk(M̃) ∼= Hk(M̃) ∼= 0

for all k ≥ 3. This proves the theorem.

Remark. It is possible to show (using rather different methods) that π2(M) = 0

for all irreducible orientable 3-manifoldsM . Hence, if in addition π1(M) is infinite,

πk(M) = 0 for all k ≥ 3.

10. Special hierarchies

Definition. Let S be a surface properly embedded in a 3-manifold M with

boundary pattern P . Then a pattern-compression disc for S is a disc D embedded

in M such that

• D ∩ S is an arc α in ∂D,

• ∂D − int(α) = D ∩ ∂M intersects P at most once, and

• α does not separate off a disc from S intersecting P at most once.

If no such pattern-compression disc exists, then S is pattern-incompressible.
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Definition. Two surfaces S0 and S1 embedded in a 3-manifold M are parallel if

there is an embedding of S× [0, 1] in M such that S0 = S×{0} and S1 = S×{1}.

If ∂(S × [0, 1])− S0 ⊂ ∂M , we say that S0 is boundary-parallel.

Definition. A special hierarchy for a compact orientable irreducible 3-manifold

M with boundary pattern P is a hierarchy for M of properly embedded con-

nected pattern-incompressible incompressible surfaces, none of which is a 2-sphere

or boundary-parallel disc. (At each stage, the cut-open 3-manifold inherits its

boundary pattern from the previous one.) We write the manifolds and boundary

patterns as:

(M,P ) = (M1, P1)
S1−→ (M2, P2)

S2−→ . . .
Sn−1

−→ (Mn, Pn).

We now give an overview of the proof of Theorem 9.1. It proceeds in four

main steps:

1. Show that any compact connected orientable irreducible 3-manifold M with

essential boundary pattern P and non-empty boundary has a special hierarchy

(M,P ) = (M1, P1)
S1−→ (M2, P2)

S2−→ . . .
Sn−1

−→ (Mn, Pn).

2. Show that (Mi, Pi) is essential if and only if (Mi+1, Pi+1) is.

3. Show, using simple properties of the 3-ball, that (Mn, Pn) being essential

implies that it is homotopically essential.

4. Show that if (Mi+1, Pi+1) is homotopically essential, then so is (Mi, Pi).

We will save step 1 until §11. We now embark on steps 2, 3 and 4.

Lemma 10.1. Let M be a compact orientable irreducible 3-manifold with es-

sential boundary pattern P . Let S be a connected pattern-incompressible incom-
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pressible surface in M , which is not a boundary-parallel disc. Then the 3-manifold

MS obtained by cutting along S inherits an essential boundary pattern P ′.

Proof. Let D be a disc properly embedded in MS with ∂D ∩ P ′ at most three

points. The curve ∂D may run through parts of ∂MS coming from ∂M and parts

coming from S. Note however the points where it swaps must be points of ∂D∩P ′,

and that at most one side of any point of ∂D ∩ P ′ lies in S. Hence, at most one

arc of ∂D − P ′ lies in S.

Case 1. ∂D is disjoint from S.

Then ∂D ⊂ ∂M . Since P is essential, ∂D bounds a disc D′ in ∂M containing

at most one vertex of P and no simple closed curves. If S intersects D′, then pick

a simple closed curve of S ∩D′ innermost in D′. The disc this bounds cannot be

a compression disc for S. Hence, S must be a disc. Since M is irreducible, it is

parallel to a disc in ∂M , contrary to assumption. Hence, D′ is disjoint from S,

and therefore lies in ∂MS. This verifies that D does not violate the essentiality of

P ′.

Case 2. ∂D intersects S.

Then ∂D−S intersects P at most once. Since D is not a pattern-compressing

disc for S, D ∩ S separates off a disc D1 of S intersecting P in at most one point.

Then, D ∪ D1 is a disc properly embedded in M , intersecting P in at most two

points. There is therefore a disc D2 in ∂M with ∂D2 = ∂(D ∪ D1), containing

at most one vertex of P and no simple closed curves, since P is essential. Since

D∪D1 intersects P in at most two points, D2 cannot therefore contain any vertex

of P . Therefore, D1 ∪ D2 is a disc in ∂MS containing at most one vertex of P ′

and no simple closed curves. This gives that P ′ is essential.

Lemma 10.2. Suppose that M is a 3-ball with essential boundary pattern P .

Then P is homotopically essential.

Proof. Consider a map (D, ∂D) → (M, ∂M) with ∂D ∩ P at most three points.

Since P is essential, each component of ∂M − P is a disc. We may therefore

homotope each arc of ∂D − P so that it is embedded. The arcs ∂D − P lie in

different components of ∂M − P , since P is a boundary pattern. Hence, we have

homotoped ∂D so that it is embedded. It therefore bounds an embedded disc D′

8



in ∂M . Since P is essential, D′ contains at most one vertex of P and no simple

closed curves. As the 3-ball has trivial π2, there is a homotopy taking D to D′

keeping ∂D fixed.

Lemma 10.3. Let M be a compact orientable 3-manifold with boundary pattern

P . Let S be an orientable incompressible pattern-incompressible surface properly

embedded in M . Let P ′ be the boundary pattern inherited by MS . If P ′ is

homotopically essential, then so is P .

Proof. Consider a map h: (D, ∂D) → (M, ∂M) such that ∂D intersects P in

at most three points. We may perform a small homotopy so that h−1(S) is a

collection of properly embedded arcs and circles in D.

Suppose that there is some simple closed curve of h−1(S). Pick one C in-

nermost in D, bounding a disc D′. Since P ′ is homotopically essential, we may

homotope D′ to an embedded disc in S. Perform a further small homotopy to

reduce |h−1(S)|.

Hence, we may assume that there are no simple closed curves of h−1(S). If

there is more than one arc, at least two are extrememost in D. They separate off

discs D1 and D2 from D. Similarly, if there is only one arc of h−1(S), it divides D

into two discs D1 and D2. There are only three points of h−1(P ), and so D1, say,

contains at most one of these points. Hence, h(∂D1) intersects P ′ in at most three

points. Since P ′ is homotopically essential, we may homotope D1 to an embedded

disc D′ in ∂MS containing at most one vertex of P ′ and no simple closed curves.

Replace D1 with D′, and perform a homotopy to reduce |h−1(S)|.

Repeat this process until h−1(S) = ∅. Then, use that P ′ is homotopically

essential to construct the desired homotopy of D to an embedded disc in ∂M

containing at most one vertex of P and no simple closed curves.

This completes steps 2, 3 and 4. A similar argument to that of Lemma 10.3

gives the following.

Lemma 10.4. Let M be a compact orientable 3-manifold with boundary pattern

P . Let S be an orientable incompressible pattern-incompressible surface properly

embedded in M . Let P ′ be the boundary pattern inherited by MS . If P ′ is

essential, then so is P .
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All that is now required in the proof of the Loop Theorem is to establish the

existence of special hierarchies. For this, we need extra machinery.

11. Normal surfaces

Definition. A triangle (respectively, square) in a 3-simplex ∆3 is a properly

embedded disc D such that ∂D intersects precisely three (respectively, four) 1-

simplices transversely in a single point, and is disjoint from the remaining 1-

simplices and all the vertices.




Figure 29.

Fix a triangulation T of the 3-manifold M .

Definition. A properly embedded surface in M is in normal form with respect to

T if it intersects each 3-simplex in a finite (possibly empty) collection of disjoint

triangles and squares.

Theorem 11.1. Let M be a compact irreducible 3-manifold. Let S be a properly

embedded closed incompressible surface in M , with no component of S a 2-sphere.

Then, for any triangulation T of M , S may ambient isotoped into normal form.

Proof. First, a small ambient isotopy makes S transverse to the 2-skeleton of the

triangulation. Then S intersects each 2-simplex in a collection of arcs and simple

closed curves. We may assume that it misses the vertices of T . Let the weight

w(S) of S be the number of intersections between S and the 1-simplices.

Suppose first that there is a simple closed curve of intersection between S and

the interior of some 2-simplex. Pick one C innermost in the 2-simplex, bounding
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a disc D in the 2-simplex. Then C bounds a disc D′ in S, since D is not a

compression disc for S. Since M is irreducible, we may ambient isotope D′ onto

D. This does not increase w(S). Hence, we may assume that S intersects each

2-simplex in a (possibly empty) collection of arcs.

If w(S) is zero, then each component of S lies in a 3-simplex. By Theorem

3.8, any such component is 2-sphere, contrary to assumption. We will perform a

sequence of ambient isotopies to the surface, which will reduce w(S) and hence

are guaranteed to terminate.

Let ∆3 be a 3-simplex of M . Suppose first that S intersects ∆3 in something

other than a collection of discs. If there is a non-disc component of S ∩ ∆3 with

non-empty boundary, then pick a curve of S ∩ ∂∆3 innermost in ∂∆3 among all

curves not bounding discs of S∩∆3. This bounds a compression disc D for S∩∆3.

Since S is incompressible in M , ∂D bounds a disc in S. Ambient isotope this disc

onto D to decrease w(S). If every component of S∩∆3 with non-empty boundary

is disc, then any closed component of S∩∆3 lies in the complement of these discs,

which is a 3-ball. Hence, it is a 2-sphere by Theorem 3.8. Thus, we may assume

that each component of S ∩ ∆3 is a disc.

Now suppose that some disc D of S ∩ ∆3 intersects a 1-simplex σ more than

once, as in Figure 30. We claim that we can find such a disc D, and two points

of D ∩ σ, so that no other points of S ∩ σ lie between them on σ. First pick two

points of D∩σ having no points of D∩σ between them on σ. Let β be the arc of σ

between them. Note that ∂D separates ∂∆3 into two discs and that β is properly

embedded in one of these. Hence, if D′ is any other disc of S ∩∆3, it intersects β

in an even number of points. Hence, we may find a disc D of S ∩ ∆3 intersecting

σ in adjacent points on σ. Let β be the arc of σ between them, and let α be some

arc properly embedded in D joining these two points. Note that S ∩∆3 separates

∆3 into 3-balls and that α ∪ β lies in the boundary of one of these balls. Hence,

there is a disc D′ embedded in ∆3 with D′ ∩ (S ∪ ∂∆3) = α ∪ β. Then we may

use the disc D′ to ambient isotope S, reducing w(S), as in Figure 30.

Hence, we may assume that each disc of S ∩ ∆3 intersects each 1-simplex at

most once. It is then a triangle or square. Hence, S is now normal.
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Theorem 11.2. Let M be a compact orientable irreducible 3-manifold. Then

there is some integer n(M) with the following property. If S is a closed properly

embedded incompressible surface in M with more than n(M) components, none

of which is a 2-sphere, then at least two components of S are parallel (with no

component of S in the product region between them).

Proof. We let n(M) = 2β1(M ; Z2)+6t, where t is the number 3-simplices in some

triangulation of M . Let S have components S1, . . . , Sk, with k > n(M). Then, by

Theorem 11.1, S may be ambient isotoped into normal form. Note that MS has

more than β1(M ; Z2)+6t components. Also, for each 3-simplex ∆3, all but at most

six components of ∆3 − S is a product region, lying between adjacent triangles

or squares. Therefore, more than β1(M ; Z2) components of MS are composed

entirely of product regions. Each such component X of MS is an I-bundle. If X is

not a product I-bundle, then it is an I-bundle over a non-orientable surface. Then

we can calculate that H1(∂X ; Z2) → H1(X ; Z2) is not surjective. Hence, there is

a non-trivial summand of H1(M ; Z2) for each such component X of M . So, at

most β1(M ; Z2) are of this form. Hence, there is at least one product I-bundle of

MS . Its two boundary components are parallel in M .

Lemma 11.3. Let M be a compact orientable 3-manifold, and let

M = M1
S1−→ M2

S2−→ . . .
Sn−1

−→ Mn

be a partial hierarchy. Let X = N (∂M ∪ S1 ∪ . . . ∪ Sn−1). Then ∂X − ∂M is

incompressible in X .

Proof. Consider a compression disc D for ∂X − ∂M in X . Let Si be the first
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surface in the hierarchy it intersects. Then we may assume D ∩ Si is a collection

of simple closed curves in the interior of D. Pick one innermost in D, bounding a

disc D1. This cannot be a compression disc for Si, and so it bounds a disc D2 in

Si. Remove D1 from D, replace it with D2, and perform a small isotopy to reduce

|D∩Si|. This does not introduce any new intersections with S1∪ . . .∪Si−1. Thus,

we may assume that D is disjoint from Si, and, repeating, from all of the surfaces

in the partial hierarchy. It therefore lies in the the space X , with the interior

of a small regular neighbourhood of S1 ∪ . . . ∪ Sn−1 removed. This is a copy of

F × I , for a closed orientable surface F , with F × {1} identified with ∂X − ∂M .

But the boundary of F × I is π1-injective, and hence incompressible, which is a

contradiction.

Theorem 11.4. Let M be a compact orientable irreducible 3-manifold with non-

empty boundary and an essential boundary pattern P . Then M has a special

hierarchy. Furthermore, if M has non-empty boundary, we may assume that no

surface in this hierarchy is closed.

Proof. Suppose first that ∂M is compressible. Let D be a compression disc. If

there is a pattern-compression disc for D, then ‘compressing’ D along this disc

decomposes D into two discs. Both of these discs have fewer intersections with P ,

and at least one of these is a compression disc for ∂M . Focus on this disc, and

repeat until we have a pattern-incompressible compression disc for M . Decompose

M along this disc. By Lemma 10.1, the resulting manifoldM2 inherits an essential

boundary pattern. If its boundary is compressible, cut again along a pattern-

incompressible compression disc. Repeat, giving a partial special hierarchy

M = M1
S1−→M2

S2−→ . . .
Si−1

−→ Mi,

where ∂Mi is incompressible in Mi. We must reach such an Mi, since the com-

plexity of ∂M2 is less than that of ∂M1, and so on. Push ∂Mi a little into M ,

giving a closed properly embedded surface F1.

Claim. F1 is incompressible in M .

The surface F1 separates M into two components: Mi and X = N (∂M ∪S1 ∪

. . . ∪ Si−1). By assumption, F1 is incompressible in Mi. By Lemma 11.3, F1 is

incompressible in X . This proves the claim.
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Each 2-sphere component of ∂Mi bounds a 3-ball. If every component of ∂Mi

is a 3-ball, then we have constructed our special hierarchy as required. Suppose

therefore that at least one component of ∂Mi is not a 2-sphere. By Theorem 7.6,

Mi contains a properly embedded connected incompressible 2-sided non-separating

surface S. If Mi has non-empty boundary, then we may assume that ∂S is non-

empty. If S has a pattern-compression disc, then ‘compress’ S along this disc

giving a surface S′. Then S′ is incompressible and 2-sided, and at least one

component S1 of S′ is non-separating. Then either χ(S1) > χ(S), or χ(S1) = χ(S)

and |S1 ∩ P | < |S ∩ P |. Hence, we may assume that S is pattern-incompressible.

Cut along this surface to give Mi+1. If ∂Mi+1 is compressible, then, as above,

compress it as far as possible to give a closed incompressible surface F2 in M . Note

that F1 and F2 are disjoint. Continue this process. If we have not stopped by

the time we have constructed Fn(M)+1, Theorem 11.2 implies that at some stage

Fi and Fj are parallel for some i < j, with no Fk in the product region between

them. Some Sp lies in this product region. The theorem is then proved by the

following lemma.

Lemma 11.5. Let F be a compact orientable surface. Then there is no connected

non-separating incompressible surface S properly embedded in F × [0, 1] that is

disjoint from F × {1}.

Proof. If F is closed, pick a simple closed curve C in F that does not bound a disc.

Then C × [0, 1] is an annulus A. A small ambient isotopy of S ensures that S ∩A

is a collection of arcs and simple closed curves. We may remove all simple closed

curves of S ∩A that bound discs in A. If there is an arc, it has both its endpoints

in C × {0}. We may find such an arc separating off a disc of A with interior

disjoint from S. ‘Compress’ S along this disc to reduce |S ∩A|. The result is still

an incompressible surface, and at least one component is non-separating. Hence,

we may assume that S ∩ A contains only simple closed curves. By ‘compressing’

S along annuli in A, we may remove each of these. Hence, we may assume that S

lies in (F−C)× [0, 1]. Therefore, we may assume that F has non-empty boundary.

Pick a collection α of arcs properly embedded in F which cut F to a disc. Apply

an argument as above to ensure that S is disjoint from α × [0, 1]. It is then a

disc properly embedded in (F − N (α)) × [0, 1], which is a 3-ball. It is therefore

separating.
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12. Topological rigidity

In this section, we will prove that homotopy equivalent closed Haken 3-

manifolds are homeomorphic. The main ingredients are the existence of hierarchies

and the loop theorem. A vital part of the argument is a version of topological

rigidity for surfaces. Its proof is instructive, since it follows the same approach as

the 3-manifold case.

Theorem 12.1. Let F and G be connected compact surfaces with π1(F ) 6= 0.

Let f : (F, ∂F ) → (G, ∂G) be a map with f∗: π1(F ) → π1(G) injective. Then, there

is a homotopy through maps ft: (F, ∂F ) → (G, ∂G) with f0 = f and either

(i) f1:F → G is a covering map, or

(ii) F is an annulus or Möbius band and f1(F ) ⊂ ∂G.

If, for some components C of ∂F , f |C is a covering map, we can require that

ft|C = f |C for all t.

Lemma 12.2. Let f : (F, ∂F ) → (G, ∂G) be a map between connected surfaces

with non-empty boundary such that

1. f |∂F is not injective, and its restriction to each component of ∂F is a cover,

2. f∗: π1(F ) → π1(G) is an isomorphism,

3. π1(F ) 6= 0, and

4. F is compact.

Then conclusion (ii) of Theorem 12.1 holds.

Proof. By (1), there are two points in ∂F mapping to the same point in ∂G,

and there is a path γ: I → F joining them. Then f ◦ γ is a loop in G. By (2),

there is a loop β in F based at γ(0) such that f∗([β]) = [f ◦ γ]−1 ∈ π1(G, fγ(0)).

Then α = β.γ is a path (I, ∂I) → (F, ∂F ) such that α(0) 6= α(1) and f ◦ α is a

homotopically trivial loop in G.

For i = 0 and 1, let Ji be the component of ∂F containing α(i). (Possibly,

J0 = J1.) Orient Ji in some way, so that it is a loop based at α(i). Let K be the

component of ∂G containing f ◦α(0) = f ◦α(1). Then f∗([J0]) and f∗([α.J1.α
−1])
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are both non-zero powers of [K] in π1(G, fα(0)), by (1). Hence, by (2), some

power of [J0] is some power of [α.J1.α
−1] in π1(F, α(0)). Let x = α(0). Let

p: (F̃ , x̃) → (F, x) be the covering of F such that p∗π1(F̃ , x̃) = i∗π1(J0, x), where

i: J0 → F is the inclusion map. Lift α to a path α̃ starting at x̃. Let J̃i be the

component of ∂F̃ containing α̃(i). Since some power of [α.J1.α
−1] is some power

of [J0] ∈ π1(F, x), J̃1 is compact.

Claim. J̃0 6= J̃1.

Otherwise, since π1(J̃0) → π1(F̃ ) is an isomorphism, we may homotope α̃

(keeping its endpoints fixed) to a path α1 in J̃0. But then f ◦ p ◦ α1 is a loop in

K which lifts to a path under the covering f |J0
: J0 → f(J0) ⊂ K. Since f ◦ p ◦α1

is null-homotopic in G, π1(K) → π1(G) is therefore not injective. Hence G is a

disc and so, by (2), π1(F ) = 0. However, this contradicts (3) and so this proves

the claim.

Claim. F̃ is compact.

We have the following exact sequence:

0 → H2(F̃ , J̃0 ∪ J̃1; Z2) → H1(J̃0 ∪ J̃1; Z2) → H1(F̃ ; Z2).

The last of the above groups is isomorphic to H1(J̃0; Z2) ∼= Z2. The middle group

is Z2 ⊕ Z2. Hence, the first group must be non-trivial. Hence, F̃ is a compact

surface.

The only compact surface with the property that some power of one boundary

component can be freely homotoped into one power of another boundary compo-

nent is an annulus. Since χ(F̃ ) is a multiple of χ(F ), F is an annulus or Möbius

band. Using that f ◦ α is homotopically trivial, we can retract f into ∂G. So (ii)

of Theorem 12.1 holds.

Proof of Theorem 12.1. Let p: G̃ → G be the cover where p∗π1(G̃) = f∗π1(F ).

Construct a lift
G̃

f̃

ր




y

p

F
f

−→ G

Then f̃∗ is an isomorphism. We will show that f̃ may homotoped so that either

(i) or (ii) hold. This will prove the result.
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Note that each boundary component of F is π1-injective in F . Hence, if f̃ is

not already a covering map on ∂F , we may homotope it to so that it is a cover.

If f̃ |∂F is not a homeomorphism, then by Lemma 12.1, case (ii) of Theorem 12.1

holds for f̃ and hence f . So, we may assume that f̃ |∂F is a homeomorphism onto

its image.

Claim. G̃ is compact.

If G̃ is non-compact, then π1(G̃) is free. So, F is not a closed surface. Note

that the following commutes

H2(F, ∂F ; Z2) −→ H1(∂F ; Z2)




y





y

H2(G̃, ∂G̃; Z2) −→ H1(∂G̃; Z2)

Since the map along the top has non-zero image and the map on the right is

injective, their composition is not the zero map. Hence, H2(G̃, ∂G̃; Z2) is non-

trivial and so G̃ is compact.

By looking at f̃ instead of f , it therefore suffices to consider the case where

f∗ is an isomorphism and f |∂F is a homeomorphism onto its image. Consider

first the case where ∂G is non-empty. Pick a collection A of properly embedded

arcs in G which cut it to a disc. We may homotope f (keeping it unchanged on

∂F ) so that f−1(A) is a collection of properly embedded arcs and simple closed

curves. If there is any simple closed curve, its image in G lies in an arc, and

hence is homotopically trivial. Hence, each simple closed curve of f−1(A) bounds

a disc. By repeatedly considering an innermost such curve, we may homotope f

to remove all such simple closed curves.

Since f |∂F is a homeomorphism, the endpoints of each arc of f−1(A) map

to distinct points in G. Hence, we may homotope f |N (f−1(A)∪∂F ) so that it is a

homeomorphism. But the remainder F−(f−1(A)∪∂F ) maps to a disc in G. Since

f is π1-injective, F − (f−1(A) ∪ F ) is a collection of discs. A map of a disc to a

disc that is a homeomorphism from boundary to boundary may be homotoped to

a homeomorphism. Hence, we have therefore homotoped f to a homeomorphism.

Now consider the case where G is closed. Pick a simple closed curve C in G

that does not bound a disc. Homotope f so that f−1(C) is a collection of simple

closed curves in F , none of which bounds discs. Then f |F−int(N (f−1(C))):F −
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int(N (f−1(C))) → G− int(N (C)) is π1-injective. We have proved the theorem in

the case of surfaces with non-empty boundary. Consider therefore a component of

F−int(N (f−1(C))). If it is an annulus or Möbius band that can be homotoped into

C, then perform this homotopy. A further small homotopy reduces the number

of components of f−1(C). Hence, we may assume that case (i) applies to each

component of F − int(N (f−1(C))). Then we have homotoped f to a cover.

We can now tackle topological rigidity for Haken 3-manifolds. The full result

is the following.

Theorem 12.3. Let M and N be Haken 3-manifolds. Suppose that there is

a map f : (M, ∂M) → (N, ∂N ) such that f∗: π1(M) → π1(N ) is injective, and

such that for each component B of ∂M , (f |B)∗: π1(B) → π1(B
′) is injective,

where B′ is the component of ∂N containing f(B). Then there is a homotopy

ft: (M, ∂M) → (N, ∂N ) such that f0 = f and either

(i) f1:M → N is a covering map,

(ii) M is an I-bundle over a closed surface and f1(M) ⊂ ∂N , or

(iii) N and M are solid tori D2 × S1 and

f1:D
2 × S1 → D2 × S1

(r, θ, φ) 7→ (r, pθ+ qφ, sφ),

where p, s ∈ Z − {0} and q ∈ Z.

If, for any components B of ∂M , f |B is already a cover, then we may assume that

ft|B = f |B for all t.

Corollary 12.4. Let M and N be closed Haken 3-manifolds. Then a homotopy

equivalence between them can be homotoped to a homeomorphism.

In order to prove Theorem 12.3, we will need the following result. Its proof

can be found in Chapter 10 of Hempel’s book (Theorem 10.6).

Theorem 12.5. Let M be a compact orientable irreducible 3-manifold, and sup-

pose that π1(M) contains a finite index subgroup isomorphic to the fundamental

group of a closed surface other than S2 or RP 2. Then M is an I-bundle over some

closed surface.
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Lemma 12.6. Suppose that f : (M, ∂M) → (N, ∂N ) is a map between connected

orientable irreducible 3-manifolds with non-empty boundary such that

1. f |∂M is not injective, and its restriction to each component of ∂M is a cover,

2. f∗: π1(M) → π1(N ) is an isomorphism, and

3. M is compact.

Then either (ii) or (iii) of Theorem 12.3 holds.

Proof. This proof was omitted in the lectures. The argument is very similar to that

of Lemma 12.2. By (1), there are two points in ∂M mapping to the same point in

∂N , and there is a path γ: I →M joining them. Then f ◦γ is a loop in N . By (2),

there is a loop β in M based at γ(0) such that f∗([β]) = [f ◦ γ]−1 ∈ π1(N, fγ(0)).

Then α = β.γ is a path (I, ∂I) → (M, ∂M) such that

(∗) α(0) 6= α(1) and f ◦ α is a homotopically trivial loop in N .

For i = 0 and 1, let Ji be the component of ∂M containing α(i) = xi.

(Possibly, J0 = J1.) Let K be the component of ∂N containing y = f ◦ α(0) =

f ◦α(1). Let p: (M̃, x̃0) → (M, x0) be the covering of M such that p∗π1(M̃, x̃0) =

i0∗π1(J0, x0), where i0: J0 → M is the inclusion map. Lift α to a path α̃ starting

at x̃0 and ending at x̃1, say. Let J̃i be the component of ∂M̃ containing α̃(i).

There is a commutative diagram

π1(J0, x0)
(f |J0

)∗
−→ π1(K, y)





y

i0∗





y

π1(M, x0)
f∗−→ π1(N, y)

x





ψα◦i1∗

x





π1(J1, x1)
(f |J1

)∗
−→ π1(K, y)

where i0 and i1 are the relevant inclusion maps, and ψα is the ‘change of base-

point map’ π1(M, x1) → π1(M, x0) sending a loop ℓ based at x1 to α.ℓ.α−1.

Commutativity of the lower half of the diagram follows from the fact that f ◦ α

is homotopically trivial. Since f |Ji
is a finite sheeted covering, we conclude that

ψαi1∗π1(J1, x1) ∩ i0∗π1(J0, x0) has finite index in each term. This intersection is

p∗ψαĩ1∗π1(J̃1, x̃1), where ĩ1: J1 → M̃ is the inclusion map. Hence, we conclude

that J̃1 is compact and that a nonzero power of each loop in J̃0 is freely homotopic

in M̃ to a loop in J̃1. Note also that p|J̃0
: J̃0 → J0 is a homeomorphism.
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Case 1. There is some path α satisfying (∗) which also satisfies

(∗∗) α is not homotopic (keeping ∂α fixed) to a path in ∂M .

Then J̃0 6= J̃1. Otherwise, since π1(J̃0) → π1(M̃) is surjective, α̃ would

homotope into J̃0 and projecting this homotopy would contradict (∗∗). In addition,

we can conclude that J̃0 is incompressible in M̃ . If not, we could write π1(M̃)

as a free product, with π1(J̃1) conjugate to a subgroup of one factor. This is

not possible, since π1(J̃1) maps to a subgroup of finite index in π1(M̃). Thus,

ĩ0∗: π1(J̃0) → π1(M̃) is injective, and therefore an isomorphism. Hence, ĩ0 is a

homotopy equivalence, as all the higher homotopy groups of J̃0 and M̃ are trivial.

We have the exact sequence

0 → H3(M̃, J̃0 ∪ J̃1; Z2) → H2(J̃0 ∪ J̃1; Z2) → H2(M̃ ; Z2).

Since H2(J̃0 ∪ J̃1; Z2) ∼= Z2 ⊕ Z2 and H2(M̃ ; Z2) ∼= H2(J̃0; Z2) ∼= Z2, we deduce

that H3(M̃, J̃0 ∪ J̃1; Z2) is non-trivial, and hence M̃ is compact. Hence, i0∗π1(J0)

has finite index in π1(M). By Theorem 12.5, M is an I-bundle over a closed

surface.

We now obtain a homotopy retracting M into ∂N . The map i0∗: π1(J0) →

π1(M) is a injection. For otherwise, J0 is compressible and hence so is J̃0, which

we already know not be the case. This implies that π1(K) → π1(N ) is an injection.

For if some element of π1(K) were sent to the identity in π1(N ), then some power

of it would lie in the image of π1(J0) and hence J0 would not be π1-injective.

Consider the covering q: Ñ → N corresponding to f∗π1(J0). An appropriate lifting

f̃ of f takes J0 and J1 into a component K̃ of q−1(K) (the same component since

[f ◦ α] = 1). The map π1(K̃) → π1(Ñ ) is necessarily surjective, and it is injective

since π1(K) → π1(N ) is injective. All higher homotopy groups of K̃ and Ñ are

trivial, and so the inclusion of K̃ into Ñ is a homotopy equivalence. Hence, there is

a deformation retract of Ñ onto K̃, by a homotopy ρt: Ñ → Ñ . Then ft = q◦ρt◦ f̃

homotopes M into ∂N . Hence we have conclusion (ii) of Theorem 12.3.

Note that if F sends two different components of ∂M to the same component

of ∂N , then we may find a path α satisfying (∗) and (∗∗). Hence, the theorem

holds in this case. On the other hand, if F sends distinct components of ∂M to

distinct components of ∂N , then the right-hand map in the following diagram is
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injective:

H3(M, ∂M) −→ H2(∂M)




y

f̃∗





y

f̃∗

H3(N, ∂N ) −→ H2(∂N )

Thus, H3(N, ∂N ) is non-trivial, and therefore N is compact.

Case 2. No path α satisfies both (∗) and (∗∗).

Then every path α satisfying (∗) is homotopic (keeping its endpoints fixed) to

a path α1 in ∂M . Hence, J0 = J1. The loop f ◦α1 is not contractible in K, since

f |J0
is a cover onto K. However f ◦ α1 is homotopically trivial in N . Therefore,

K is compressible in N . We wish to show that K is a torus and deduce (iii) of

Theorem 12.3.

If f maps two distinct components of ∂M to the same component of ∂N then

there is a path β joining these components such that f ◦ β is a loop. Since f∗ is

surjective, we may assume that [f ◦ β] = 1, and hence β satisfies (∗) and (∗∗).

Therefore, f takes distinct components of ∂M to distinct components of ∂N . Note

that f |J0
is not injective, since α satisfies (∗).

Now f is a homotopy equivalence, and so

χ(∂M)

2
= χ(M) = χ(N ) =

χ(∂N )

2
.

(Here, we are using the assumption that N is compact.) Let ∂M have components

J1, . . . , Jk, and suppose that f |Ji
is ni-sheeted. Then

∑

niχ(f(Ji)) =
∑

χ(Ji) = χ(∂M) = χ(∂N ) =
∑

χ(f(Ji)).

So, ni = 1 unless χ(f(Ji)) = 0. Since n1 > 1, χ(K) = 0 and so K is a torus.

We have already established that K is compressible. Thus N is a solid torus,

since this is the only irreducible 3-manifold with a compressible torus boundary

component. Also, J0 is a torus and π1(J0) → π1(M) ∼= π1(N ) ∼= Z. Therefore, J0

is compressible and M is a solid torus. It is now straightforward to homotope f

so that is in the form required by (iii) of Theorem 12.3.

Proof of Theorem 12.3. Consider first the case where ∂N is non-empty. Let
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p: Ñ → N be the cover such that p∗π1(Ñ ) = f∗π1(M). Consider the lift

Ñ
f̃

ր




y

p

M
f

−→ N

Then f̃∗ is an isomorphism. We will show that f̃ may homotoped so that either

(i), (ii) or (iii) holds. This suffices to prove the theorem. For if (i) holds for f̃ , then

p ◦ f̃ is a covering map. If (ii) holds for f̃ , then composing the homotopy with p,

we may homotope M into ∂N . Suppose that (iii) holds for f̃ . In particular, Ñ is

a solid torus. Then, N must have compressible boundary. Since it is irreducible,

and has boundary a torus, it must be a solid torus. Therefore, p is a standard

finite covering of the solid torus over itself. The composition of this with f̃ is a

map as in (iii), as required.

We are assuming that the restriction of f to each boundary component of M

is π1-injective onto its image component of ∂M . Hence, by Theorem 12.1, we may

homotope f |∂M to a covering. So, f̃ |∂M is a cover. If f̃ |∂M sends two distinct

components of ∂M to the same component of ∂Ñ , then, by Lemma 12.6, (ii) or

(iii) of 12.3 hold. So, we may assume that f̃ |∂M sends distinct components of

∂M to distinct components of ∂Ñ . Hence, the right-hand map in the following

diagram is injective.
H3(M, ∂M) −→ H2(∂M)





y

f̃∗





y

f̃∗

H3(Ñ, ∂Ñ) −→ H2(∂Ñ)

So, the fundamental class in H3(M, ∂M) has non-trivial image in H3(Ñ, ∂Ñ) and

hence Ñ is compact.

Hence, it suffices to consider the case where f∗ is an isomorphism. By Lemma

12.6, we may assume that f |∂M is a homeomorphism onto ∂N , for otherwise either

(ii) or (iii) holds.

Let

N = N1
S1−→ N2

S2−→ . . .
Sn−1

−→ . . .Nn

be a hierarchy. By Theorem 11.4, we may assume that each surface has non-

empty boundary. Let F1 = f−1(S1). After a homotopy of f (fixed on ∂M), we
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may assume that F1 is a 2-sided incompressible surface, no component of which

is a 2-sphere. We may also assume that f maps N (F1) onto N (S1) in way that

sends fibres homeomorphically to fibres. The following diagram commutes.

F1
f

−→ S1




y





y

M
f

−→ N

By Theorem 3.3, π1(F1) → π1(M) is injective and hence π1(F1) → π1(S1) is injec-

tive. Note that the restriction of f to ∂F1 is a homeomorphism. If any component

of F1 is a disc, so is S1, and hence so is every component of F1. We therefore

homotope f |F1
keeping f |∂F1

fixed, so that it is a homeomorphism on each com-

ponent. If no component of F1 is a disc, then we may apply Theorem 12.1. Note

that (ii) of Theorem 12.1 cannot hold, since f |∂F1
is a homeomorphism. So we may

homotope f |F1
to a covering map, keeping f |∂F1

fixed. This homotopy extends to

M , so that f still sends fibres of N (F1) onto fibres of N (S1). The cover f |F1
is

a homeomorphism on its boundary, and hence is a homeomorphism. Therefore,

f restricts to a map M2 = M − int(N (F1)) → N2 that is a homeomorphism be-

tween the boundaries of these 3-manifolds. Applying an argument similar to that

in Theorem 3.3, we get that π1(M2) → π1(M1) is injective. Hence, M2 → N2 is

π1-injective.

Arguing inductively, we may assume that (i), (ii) or (iii) holds for M2 → N2.

However, neither (ii) nor (iii) holds, except possibly |p| = |s| = 1 in (iii), since

f |∂M2
is a homeomorphism. Thus, f |M2

is a cover. It is a homeomorphism near

∂M2, and therefore f is a homeomorphism. This proves the inductive step.

The induction starts withMn → Nn, withNn a collection of 3-balls. Since the

restriction of this map to each component of ∂Mn is π1-injective, each component

of ∂Mn is a 2-sphere. But Mn is irreducible. Hence, it is a collection of 3-balls.

The map may therefore be homotoped to a homeomorphism.

Suppose now that N is closed. Let S be an orientable incompressible surface

in N , no component of which is a 2-sphere. Then we may homotope f so that

F = f−1(S) is an orientable incompressible surface in M , no component of which

is a 2-sphere. As above, the map f |F :F → S is π1-injective and may therefore be

homotoped to a cover. Also, f |M−int(N (F )):M − int(N (F )) → N − int(N (S)) is
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π1-injective. Apply the theorem in the case of bounded 3-manifolds to this map.

No component of M − int(N (F )) satisfies (iii) of Theorem 12.3. If any component

satisfies (ii), we may homotope f to reduce |F |. Therefore, we may assume that

(i) holds for each component of M − int(N (F )). We have therefore homotoped f

to a cover.
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