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Measured laminations

WM = { weighted multicurves on S } : set of disjoint simple closed
curves, each with a positive weight.
WM is in�nite : simple closed curves on S can wrap around a lot.
Let (ci , li )i=1,··· ,n ∈ WM, the ci form a
lamination and the li de�ne a transverse

measure : gives a total weight to γ, trans-
verse to the ci .
This gives a topology to WM.
The completion of WM is the space of
measured laminationsML.

c c c
1

2 3

γ

Measured laminations can be pretty complicated.

ML ' R6g−6.

∂T 'ML/R>0 (Thurston).

T ×ML ' T ∗T .
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Earthquakes

Start with a hyperbolic surface.
If w ∈ ML is a weighted curve and h ∈
T , Ew (h) is obtained by realizing w as a
geodesic in h, cutting S open along w ,
turning the left-hand side by the weight,
and gluing back.
De�nes a homeomorphism

Ew : T → T .

Extends by continuity to E : T ×ML → T (Thurston).
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Some key properties

1 Earthquakes de�ne a �ow on T ×ML : Esλ ◦ Etλ = E(s+t)λ.

2 Earthquake Thm (Thurston, Kerckho�) :
∀h, h′ ∈ T ,∃!λ ∈ML,Eλ(h) = h′.

3 Complex earthquakes (McMullen) : for (h, λ) ∈ T ×ML, the map
t 7→ Etλ(h) extends to a holomorphic map H→ T .

4 E(t+is)λ = grsλ ◦ Etλ, where grλ : T → T is the grafting map.

gr = π ◦ Gr :ML× T Gr→ CP π→ T , and t + is 7→ Grsλ ◦ Etλ is
holomorphic from H to CP.

5 Gr :ML× T → CP is a homeo (Thurston).

Simple proof of Earthquake Thm by Mess (1990) based on AdS geometry.
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The landslide �ow

Recall that

E : T ×ML× R → T ×ML
(h, λ, t) 7→ (Etλ(h), λ)

is a �ow (R-action).
We'll de�ne �landslides�

L : T × T × S1 → T × T
(h, h∗, e iθ) 7→ Le iθ (h, h∗)

Def either analytic (minimal Lagrangian di�eos) or geometric (3d AdS
geometry).
Key properties of earthquakes extend.
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Properties of landslides

0 Limit to earthquakes : if tnh
∗
n → λ, then L1(h, h∗n, e

iθn )→ Eλ(h).

1 L is a �ow (S1-action) : Le iθ ◦ Le iθ′ = Le i (θ+θ′) .

2 �Landslide thm� : ∀h, h′ ∈ T ,∀e iθ 6= 1,∃!h∗ ∈ T , Le iθ (h, h∗) = h′.

3 Complex extension : L1· (h, h
∗) : S1 → T extends to a holomorphic

map D → T .
4 �Smooth grafting� : for r ∈ (0, 1), L1r : T × T → T is a smooth

version of grafting, sgrr . sgrr = π ◦SGrr , where SGrr : T ×T → CP,
and s + it → SGre−s ◦ Le it (h, h∗) is holomorphic on H.

5 SGrr : T × T → CP is a homeomorphism.
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Measured laminations and earthquakes
Landslides

AdS geometry

Minimal Lagrangian maps

First possible de�nition : by minimal Lagrangian maps.
Def : a di�eomorphism u between two hyperbolic surfaces (S , h) and
(S , h∗) is minimal Lagrangian if it is area-preserving and its graph is
minimal.
Then u : w ◦ v−1, where v : (S , c)→ (S , h) and w : (S , c)→ (S , h∗) are
harmonic maps with opposite Hopf di�erentialq,−q.
Example : if S is a constant curvature surface in a constant curvature
3-manifold, then Id : (S , I )→ (S , III ) is minimal Lagrangian.
Thm (Schoen, Labourie 1992) : there is a unique minimal Lagrangian
di�eo isotopic to the identity between two hyperbolic metrics on S .
Def : Le iθ (h, h∗) = (hθ, h

∗
θ), where the harmonic map

vθ : (S , c)→ (S , hθ) has Hopf di�erential e iθq (and similarly for wθ).
However this de�nition is di�cult to work with.
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Measured laminations and earthquakes
Landslides

AdS geometry

AdS3 as a Lorentz analog of H3

AdS3 = {x ∈ R2,2 | 〈x , x〉 = −1} .

Constant curvature −1, π1(AdS3) = Z.
Conformal model, in a cylinder.

Projective model, in a quadric.

Space-like, time-like, light-like
directions. Time-like geodesics are
closed of length 2π.

Totally geodesic space-like planes
' H2.

Isom(AdS3) = O(2, 2).

Boundary at ∞ with
Lorentz-conformal structure.

Space−like

Time−like

Light−like
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Measured laminations and earthquakes
Landslides

AdS geometry

AdS3 as a Lorentz analog of S3

Recall : S3 = SU(2) ' SO(3), and Isom(S3) = O(4) ' O(3)× O(3).
AdS3 = PSL(2,R) with its Killing metric. Left and right actions of
PSL(2,R), identi�es Isom0(AdS3) = PSL(2,R)× PSL(2,R) (up to index
2).

Geometrically :

∂∞AdS3 is foliated by 2 families of
lines.

Thus ∂∞AdS3 ' RP1 × RP1,

Isometries act projectively on each
family,

Space-like curves in ∂∞AdS3 are
graphs of functions RP1 → RP1.
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Measured laminations and earthquakes
Landslides

AdS geometry

Globally hyperbolic AdS manifolds

Def. an AdS m�d M is maximal globally hyperbolic if

it contains a closed, space-like surface S ,

any inextendible time-like curve intersects S exactly once,

it is maximal (for inclusion) under those properties.

Then M ' S × R, and M = Ω/ρ(π1S), where Ω ⊂ AdS3.
GH AdS m�ds are strongly reminiscent of quasifuchsian hyperbolic m�ds,
but in a way more relevant to Teichmüller theory (Mess).
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Measured laminations and earthquakes
Landslides

AdS geometry

A Bers-type parametrization

Given a GHMC AdS m�d M, ρ : Γ→ SO(2, 2) ' PSL(2,R)× PSL(2,R).
So, (ρL, ρR) : Γ→ PSL(2,R).
Thm (Mess).

ρL, ρR have maximal Euler number.

The map GH → T × T is a homeomorphism.

The hyperbolic metrics cL, cR corresponding to ρL, ρR are analogs of the
conformal metrics at in�nity of quasifuchsian manifolds.
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Landslides and 3d geometry

Def : let h, h∗ ∈ T and let e iθ ∈ S1. There is a unique equivariant
embedding of S in AdS3 with I = 1/ cos2(θ/2)h, III = 1/ sin2(θ/2)h∗. S
is contained in a unique GH AdS 3-manifold. Le iθ (h, h∗) = (hθ, h

∗
θ) where

hθ is the left representation of M, and h∗θ = hθ+π.
Smooth grafting sgre−t is de�ned similarly, with a surface in H3,
I = 1/ cosh2(t/2)h, III = 1/ sinh2(t/2)h∗.
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A word on the proofs

0 Limit to earthquakes : if tnh
∗
n → λ, then L1(h, h∗n, e

iθn )→ Eλ(h).

Technical issues but main idea is convergence of K -surfaces to the
boundary of the convex core of a GH AdS manifold when K → −1. A
statement of independent interest is hidden.
Thm : Suppose tnh

∗
n → λ (length spectrum), and suppose that the

identity between (S , h) and (S , h∗n) is minimal Lagrangian. Then for any
segment γ ⊂ S , with endpoints 6∈ supp(λ), Ltnh∗n (γ)→ i(γ, λ).

1 L is a �ow (S1-action) : Le iθ ◦ Le iθ′ = Le i (θ+θ′) .

Long computation, but no geometric explanation (yet).
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A word on the proofs (2)

2 �Landslide thm� : ∀h, h′ ∈ T ,∀e iθ 6= 1,∃!h∗ ∈ T , Le iθ (h, h∗) = h′.

Proof uses a recent result by Barbot, Béguin, Zeghib, on existence and
uniqueness of foliation by K -surfaces of GH AdS manifolds.

3 Complex extension : L1· (h, h
∗) : S1 → T extends to a holomorphic

map D → T .
Long computation/argument, however a nice geometric argument seems
possible based on surfaces in PSL(2,C).

4 �Smooth grafting� : for r ∈ (0, 1), L1r : T × T → T is a smooth
version of grafting, sgrr . sgrr = π ◦SGrr , where SGrr : T ×T → CP,
and s + it → SGre−s ◦ Le it (h, h∗) is holomorphic on H.

Based on hyperbolic geometry.

5 SGrr : T × T → CP is a homeomorphism.

Follows from older result of Labourie on constant curvature surfaces in
hyperbolic ends.
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Questions

There is a number of natural questions :

Is the landslide �ow a Hamiltonian �ow ?

Extension of result of Scannell-Wolf on grafting being
homeomorphism ?

Some of those questions have simple translations in terms of 3d geometry.

Thanks for your attention !
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