Hitting measures on \mathcal{PMF}

Vaibhav Gadre

July 25, 2011

Random walks on groups

Let G be a group with a finite generating set S. Let $C_S(G)$ be the Cayley graph of G w.r.t S. The nearest neighbor random walk on G is a random walk on $C_S(G)$.

General setup:

- $\blacktriangleright \mu$: probability distribution on G.
- $w_n = g_1g_2...g_n$ is a sample path of length n where each increment g_i is sampled by μ .
- ▶ Distribution of w_n is $\mu^{(n)}$.

$$\mu^{(2)}(g) = \sum_{h} \mu(h)\mu(h^{-1}g)$$

μ -boundaries for random walks

(Furstenberg)

- ▶ G acting on a topological space B
- ▶ After projection to *B*, a.e. sample path converges in *B*.

Examples:

- ▶ $S^1 = \partial \mathbb{H}$ is a μ -boundary for $SL(2, \mathbb{R})$.
- ▶ The space of full flags is a μ -boundary for $SL(d, \mathbb{R})$.
- ▶ $\mathfrak{PMF} = \partial \mathfrak{T}(S)$ is a μ -boundary for Mod(S).

Teichmüller space and the mapping class group

Let S be an orientable surface with non-negative Euler characteristic.

► Mapping class group:

$$Mod(S) = \pi_0(Diffeo^+(S))$$

▶ Teichmüller space:

 $\mathfrak{I}(S) = \mathsf{marked}$ conformal structures on S modulo isotopy

▶ Mod(S) acts on $\mathfrak{T}(S)$ by changing the marking. The quotient

$$M = \mathfrak{T}(S)/Mod(S)$$

is the moduli space of curves.

► Thurston compactification:

$$\overline{\mathfrak{I}(S)} = \mathfrak{I}(S) \sqcup \mathfrak{PMF}$$

Random walks on Mod(S)

Theorem (Maher, Rivin)

pseudo-Anosov mapping classes are generic with respect to random walks.

- ▶ Rivin: quantitative but applies to $\langle Supp(\mu) \rangle \rightarrow Sp(2g, \mathbb{Z})$.
- Maher: applies to the Torelli group but is less quantitative.

Theorem (Kaimanovich-Masur)

Fix $X \in \mathfrak{T}(S)$. If $< Supp(\mu) >$ is non-elementary then for a.e sample path the sequence $w_n X$ converges to $\mathfrak{PMF} = \partial \mathfrak{T}(S)$.

- ▶ This defines hitting measure h on \mathcal{PMF} .
- ▶ Furthermore, they show $h(\mathfrak{PMF} \setminus UE) = 0$. By Klarreich's theorem, no information is lost if the random walk is projected to curve complex (or relative space) instead of $\mathfrak{T}(S)$.

Applications of Kaimanovich-Masur

▶ Farb-Masur rigidity: A homomorphic image in Mod(S) of a lattice of \mathbb{R} -rank $\geqslant 2$ is finite.

compare to

► Furstenberg rigidity: No lattice in $SL(d, \mathbb{R})$; $d \ge 2$ is isomorphic to a subgroup of $SL(2, \mathbb{R})$.

Hitting measures

Lebesgue measure class on \mathcal{PMF} :

- MF has piecewise linear structure by maximal train tracks.
- ▶ Projectivizing, get charts on \mathcal{PMF} with Lebesgue measure.
- ► Transition functions are absolutely continuous.

The main theorem:

Theorem (G)

If μ finitely supported and < Supp $(\mu)>$ non-elementary then h is singular w.r.t Lebesgue.

Theorem (Guivarc'h-LeJan)

For a non-compact lattice $G < SL(2,\mathbb{R})$ (\mathbb{H}/G finite volume), h is singular w.r.t Lebesgue on S^1 .

Analogy really lies in the proof.

Hitting measures continued

- ► Conjecture (Guivarc'h-Kaimanovich-Ledrappier): true for any lattice in $SL(2,\mathbb{R})$.
- ▶ Kaimanovich-LePrince have examples of initial distributions on any Zariski dense subgroup of $SL(d, \mathbb{R})$ that are singular on the boundary.
- ▶ Conjecture (Kaimanovich-LePrince): true for any lattice in $SL(d,\mathbb{R})$.
- ▶ McMullen has an example of a non-discrete subgroup of $SL(2,\mathbb{R})$ for which experiments suggest that h is absolutely continuous on S^1 . Also some examples by Peres-Simon-Solomyak.

$SL(2,\mathbb{Z})$

▶ $SL(2,\mathbb{Z})$ is quasi-isometric to the tree dual to the Farey tessellation.

Figure: Farey graph and the dual tree

▶ With the base-point as shown, every $r \in (0,1) \setminus \mathbb{Q}$ is encoded by an infinite path $R^{a_1}L^{a_2}....$

In fact,

$$r = \frac{1}{a_1 + \frac{1}{a_2 + \cdots}}$$

which is the classical connection to continued fractions.

▶ Distribution of a_n w.r.t Lebesgue:

$$\ell(a_n\geqslant m)\approx \frac{1}{m}$$

▶ Distribution of a_n w.r.t the measure h:

$$h(a_n \geqslant m) \approx \exp(-m)$$

- ▶ Borel-Cantelli to construct the singular set.
- ▶ Use Bowen-Series coding for $G < SL(2, \mathbb{R})$; \mathbb{H}/G finite volume with cusps, to get Guivarc'h-LeJan.

$SL(2,\mathbb{Z})$ as mapping class group of the torus

▶ The expansion $R^{a_1}L^{a_2}$ or $L^{a_1}R^{a_2}$ can be recognized as Rauzy-Veech expansion of an interval exchange with two subintervals with widths satisfying

$$r = \frac{\lambda_1}{\lambda_2}$$

▶ R and L correspond to Dehn twists in the curves (1,0) and (0,1) respectively, on the torus.

General setup for Mod(S)

▶ Encode measured foliations on *S* by Rauzy-Veech expansions of non-classical interval exchanges (maximal train tracks with a single switch).

Figure: Genus 2

- Find combinatorics for a non-classical exchange such that there is a finite splitting sequence that returns to the same combinatorics and is a Dehn twist in a vertex cycle.
- Get the measure theory to work!

Rauzy-Veech renormalization

- ▶ Parameter space is the standard simplex Δ cut out by normalizing $\lambda_1 + \lambda_2 = 1$.
- ▶ Suppose band 1 splits band 2, then associated matrix is *R*.
- ▶ Denote initial widths: $\lambda = (\lambda_1, \lambda_2)$.
- ▶ Denote new widths: $\lambda^{(1)} = (\lambda_1^{(1)}, \lambda_2^{(1)})$
- Notice $\lambda_1^{(1)} = \lambda_1, \lambda_2^{(1)} = \lambda_2 \lambda_1$ so $\lambda = R\lambda^{(1)}$
- ▶ Projectivize to get $\Gamma R : \Delta \to \Delta$ i.e.

$$\Gamma R(\mathbf{x}) = \frac{R\mathbf{x}}{|R\mathbf{x}|}$$

where $|\mathbf{x}| = |x_1| + |x_2|$.

- ▶ Iterations produce a matrix Q and a projective linear map $\Gamma Q : \Delta \to \Delta$.
- ▶ Normalizing $vol(\Delta) = 1$,

 $\ell(\Gamma Q(\Delta)) pprox$ probability calculated from continued fractions

- Splitting is non-Markov.
- ▶ Distortion is uniform every time we switch from *R* to *L* and vice versa. Consequently, *a_n* as random variables are almost independent w.r.t Lebesgue.

Uniform distortion and estimating measures

After fixing combinatorics, the parameter space of a non-classical exchange is a codimension 1 subset of Δ .

Theorem (G)

For almost every non-classical exchange, the splitting sequence becomes uniformly distorted.

If a stage \jmath with matrix Q_{\jmath} is uniformly distorted i.e. the Jacobian $\mathcal{J}(\Gamma Q_{\jmath})$ is roughly the same at all points then

$$\ell(\Gamma Q_{j}(A)) \approx \ell(A)$$

Control: The probability that a finite permissible sequence κ follows a uniformly distorted stage j is roughly the same as the probability that an expansion begins with κ .

Dehn twist splitting

Figure: Genus 2

- ▶ Split down for all subintervals on top to return to the same combinatorics. This is a Dehn twist in a vertex cycle.
- ▶ Call this splitting sequence j. Call the parameter space W.

$$\ell(\Gamma Q_{nj}(W)) \approx \frac{1}{n^d}$$

Estimating the hitting measure and concluding singularity

- ► The Dehn twist splitting repeated *n* times increases subsurface projection to the annulus given by the vertex cycle.
- ▶ (Maher) The hitting measure *h* decays exponentially with increase in subsurface projections (more precisely, nesting distance w.r.t subsurface projection).
- ▶ Run the measure theory technology to conclude singularity.

Three cheers for Caroline!!! Happy B'day