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Complete affine 3-manifolds

m A complete affine manifold M" is a quotient M = R" /T’
where I is a discrete group of affine transformations acting
properly and freely.

m Which kind of groups I can occur?
m Two types when n = 3:
m [ is solvable: M3 is finitely covered by an iterated fibration of
circles and cells.
m [ is free: M3 is (conjecturally) an open solid handlbody with
complete flat Lorentzian structure.
m First examples discovered by Margulis in early 1980's
m Closely related to hyperbolic geometry on surfaces
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Euclidean manifolds

m If M compact, then T finite extension of a subgroup of
translations T NR" = A= 7" (Bieberbach 1912);

m M finitely covered by flat torus R"/A (where A C R” lattice).
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Consequences of Bieberbach theorems

Only finitely many topological types in each dimension.
Only one commensurability class.

m1(M) is finitely generated.

m1(M) is finitely presented.

x(M) = 0.
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Example: Hyperbolic torus bundles

m Mapping torus M3 of automorphism of R?/Z? induced by
hyperbolic A € SL(2,Z) inherits a complete affine structure.

m Flat Lorentz metric (A-invariant quadratic form).
m Extend Z? to R? and A to one-parameter subgroup
exp (tlog(A)) to get solvable Lie group G = R? x R acting
simply transitively on E.
m M3 = T\H is a complete affine solvmanifold.
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Proper affine actions

m Suppose M =R"/G is a complete affine manifold:

m For M to be a (Hausdorff) smooth manifold, G must act:

m Discretely: (G C Homeo(R") discrete);
m Freely: (No fixed points);

m Properly: (Go to 0o in G = go to oo in every orbit Gx)
m More precisely, the map
GxX—XxX
(g, %) — (g%, x)
is a proper map (preimages of compacta are compact).
m Discreteness does not imply properness.
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Margulis Spacetimes

m Most interesting examples: Margulis (~ 1980):
m G is a free group acting isometrically on E2*!
m L(G) C O(2,1) is isomorphic to G.
m M°® noncompact complete flat Lorentz 3-manifold.
m Associated to every Margulis spacetime M3 is a noncompact
complete hyperbolic surface ¥2.

m Closely related to the geometry of M3 is a deformation of the
hyperbolic structure on ¥2.
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Milnor's Question (1977)

Can a nonabelian free group act properly, freely and discretely by
affine transformations on R"?
m Equivalently (Tits 1971): “Are there discrete groups other
than virtually polycycic groups which act properly, affinely?”
m If NO, M" finitely covered by iterated S!-fibration

m Dimension 3: M3 compact = M? finitely covered by
T2-bundle over S* (Fried-G 1983),
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Evidence?

Milnor offers the following results as possible “evidence” for a
negative answer to this question.

m Connected Lie group G admits a proper affine action
<= G is amenable (compact-by-solvable).

m Every virtually polycyclic group admits a proper affine action.
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An idea for a counterexample...

m Clearly a geometric problem: free groups act properly by
isometries on H3 hence by diffeomorphisms of E3

m These actions are not affine.
m Milnor suggests:

Start with a free discrete subgroup of O(2,1) and
add translation components to obtain a group of
affine transformations which acts freely.

However it seems difficult to decide whether the
resulting group action is properly discontinuous.



Deformation spaces of 3-dimensional affine space forms

Lorentzian and Hyperbolic Geometry




Deformation spaces of 3-dimensional affine space forms

Lorentzian and Hyperbolic Geometry

m R?! is the 3-dimensional real vector space with inner product:

X1 X2
il - |y2| = xixo+y1yo — 212
Z] Z2

and Minkowski space E>! is the corresponding affine space, a
simply connected geodesically complete Lorentzian manifold.



Deformation spaces of 3-dimensional affine space forms

Lorentzian and Hyperbolic Geometry

m R?! is the 3-dimensional real vector space with inner product:

X1 X2
il - |y2| = xixo+y1yo — 212
Z] Z2

and Minkowski space E>! is the corresponding affine space, a
simply connected geodesically complete Lorentzian manifold.
m The Lorentz metric tensor is dx? + dy? — dz>.



Deformation spaces of 3-dimensional affine space forms

Lorentzian and Hyperbolic Geometry

m R?! is the 3-dimensional real vector space with inner product:

X1 X2
il - |y2| = xixo+y1yo — 212
Z] Z2

and Minkowski space E>! is the corresponding affine space, a
simply connected geodesically complete Lorentzian manifold.
m The Lorentz metric tensor is dx? + dy? — dz>.
m Isom(E?!) is the semidirect product of R%! (the vector group
of translations) with the orthogonal group O(2,1).



Deformation spaces of 3-dimensional affine space forms

Lorentzian and Hyperbolic Geometry

m R?! is the 3-dimensional real vector space with inner product:

X1 X2
il - |y2| = xixo+y1yo — 212
Z] Z2

and Minkowski space E>! is the corresponding affine space, a
simply connected geodesically complete Lorentzian manifold.

m The Lorentz metric tensor is dx? + dy? — dz>.

m Isom(E?!) is the semidirect product of R%! (the vector group
of translations) with the orthogonal group O(2,1).

m The stabilizer of the origin is the group O(2,1) which
preserves the hyperbolic plane

H? = {veR*' | v.v=—-12>0}
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A Schottky group

m Generators g1, g» pair half-spaces A, — H2\ Af.
B g1, freely generate discrete group.
m Action proper with fundamental domain H? \ UA,jE
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Flat Lorentz manifolds

Suppose that I C Aff(R3) acts properly and is not solvable.

m (Fried-G 1983): Let I' L GL(3,R) be the linear part.
m L(I") (conjugate to) a discrete subgroup of O(2,1);
m L injective.

m Homotopy equivalence
M3 = E2Y)I — ¥ :=H?/L(I
where ¥ complete hyperbolic surface.
m Mess (1990): X not compact .

m [ free;

m Milnor's suggestion is the only way to construct examples
in dimension three.
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Cyclic groups

m Most elements v € [ are boosts, affine deformations of
hyperbolic elements of O(2,1). A fundamental domain is the
slab bounded by two parallel planes.

A
=
y’

I

A boost identifying two parallel planes
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Closed geodesics and holonomy

m Each such element leaves invariant a unique (spacelike) line,
whose image in E>! /T is a closed geodesic. Like hyperbolic
surfaces, most loops are freely homotopic to (unique) closed

geodesics.
e 0 0 0
y=[0 1 0 |la()
0 0 ™| | 0

{(y) € R*: geodesic length of v in X2

]
m o) € R: (signed) Lorentzian length of y in M3,
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Geodesics on X

m The unique 7-invariant geodesic C, inherits a natural
orientation and metric.

m 7 translates along C, by a(v).
m Closed geodesics on ¥ «— closed spacelike geodesics on M3,

m Orbit equivalence: Recurrent orbits of geodesic flow on UX
«— Recurrent spacelike geodesics on M3. (G-Labourie 2011)
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Slabs don't work!

In H2, the half-spaces A,i are disjoint;

Their complement is a fundamental domain.

[
[
m In affine space, half-spaces disjoint = parallel!
m Complements of slabs always intersect,

[

Unsuitable for building Schottky groups!
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Drumm'’s Schottky groups

The classical construction of Schottky groups fails using affine
half-spaces and slabs. Drumm’s geometric construction uses
crooked planes, PL hypersurfaces adapted to the Lorentz geometry
which bound fundamental polyhedra for Schottky groups.
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Crooked polyhedron for a boost

m Start with a hyperbolic slab in H2.

m Extend into light cone in E21.

m Extend outside light cone in E21.

m Action proper except at the origin and two null half-planes.
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Images of crooked planes under a linear cyclic group

The resulting tessellation for a linear boost.
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Images of crooked planes under an affine deformation

—

m Adding translations frees up the action
m — which is now proper on all of E>!,
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A foliation by crooked planes
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Linear action of Schottky group

Crooked polyhedra tile H? for subgroup of O(2,1).
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Affine action of Schottky group

=
=

Carefully chosen affine deformation acts properly on E%*.



Affine action of level 2 congruence subgroup of GL(2,7Z)

Proper affine deformations exist even for lattices (Drumm).
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An arithmetic example

m Minkowski space compactifies into the space of Lagrangian
2-planes in a 4-dimensional symplectic R-vector space (V,w).
m Choose two transverse Lagrangian 2-planes Ly and L.

m Minkowski 2 + 1-space E?1 is the space of Lagrangian
2-planes L C V transverse to L.

m Graphs of symmetric maps Ly LN Loo.
m Lorentzian inner product defined by f — Det(f)

m R —s { 2 X 2 symmetric matrices }
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Minkowski space inside Sp(4, R)

m Lo and Lo dual under symplectic form Ly x Loo = R

m g € GL(Lw) induces linear symplectomorphism of
V = L @ Lo, represented as block upper-triangular matrices:

h—-1 _ |& 0 }
® = _
g®(g") [0 (gT) 1
m Translations of Minkowski space correspond to shears: (fixing

Lo and L/Lo):
L f
0 b

f . .
where Lo — Ly is a symmetric linear map.
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Affine deformation of SL(2,7Z)

m For i =1,2,3 choose three positive integers p1, t2, 3. Then
the subgroup I' of Sp(4,Z) generated by

-1 =2 wy+pp—p3 0 -1 0 —p 2w
0 -1 2/11 — U1 2 -1 0 0
0 0 -1 0[]0 0 -1 -2
0 0 2 -1 0 0 0 -1

is a proper affine deformation of a rank two free group.
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Affine deformation of SL(2,7Z)

m For i =1,2,3 choose three positive integers p1, t2, 3. Then
the subgroup I' of Sp(4,Z) generated by

-1 =2 wy+pp—p3 0 -1 0 —p 2w
0 -1 2/11 — U1 2 -1 0 0
0 0 -1 0[]0 0 -1 -2
0 0 2 -1 0 0 0 -1
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Affine deformation of SL(2,7Z)

m For i =1,2,3 choose three positive integers p1, t2, 3. Then
the subgroup I' of Sp(4,Z) generated by

-1 =2 wy+pp—p3 0 -1 0 —p 2w
0 -1 2/11 — U1 2 -1 0 0
0 0 -1 0[]0 0 -1 -2
0 0 2 -1 0 0 0 -1

is a proper affine deformation of a rank two free group.

m M3 genus two handlebody and X2 triply—punctured sphere.
m Depicted example is p3 = pp = uz = 1.
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Affine action of level 2 congruence subgroup of GL(2,7Z)

Symmetrical example: u1 = pp = puz = L
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The linear part

m Mess's theorem (X noncompact) is the only obstruction for
the existence of a proper affine deformation:

m (Drumm 1990) Every noncompact complete hyperbolic
surface ¥ (with 71(X) finitely generated) admits a proper
affine deformation.

m M3 homeomorphic to solid handlebody.
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Deformation spaces of 3-dimensional affine space forms

Marked Signed Lorentzian Length Spectrum

m For every affine deformation I’ L SON Isom(E>1)°, define
ayu(7y) € R as the (signed) displacement of ~ along the unique
7-invariant geodesic C,, when L(7) is hyperbolic.

m o, is a class function on [;

m When p acts properly, |a,(7)] is the Lorentzian length of the
closed geodesic in M3 corresponding to 7;

m The Margulis invariant I = R determines I up to conjugacy
(Charette-Drumm 2004).
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Opposite Sign Lemma

(Margulis 1983) Let p be a proper affine deformation.
moay(y) >0y #1, or
moa,(y) <0Vy#L.
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Affine deformations

m Start with a Fuchsian group 'y C O(2,1). An affine
deformation is a representation p = p, with image ' =T,

Isom(R?1)
/5/7 M
M &——0(2,1)
determined by its translational part

ue ZY (o, R%Y).

m Conjugating p by a translation <= adding a coboundary to u.
m Translational conjugacy classes of affine deformations of g
form the vector space H!(Ig, R>1).
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Deformations of hyperbolic structures

m Translational conjugacy classes of affine deformations of 'y
+— infinitesimal deformations of the hyperbolic surface ¥.

m Infinitesimal deformations of the hyperbolic structure on X
comprise HY(Z,s[(2,R)) = H(Ip, R>1).
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Deformation-theoretic interpretation of Margulis invariant

m Suppose u € Z1(y,R?1) defines an infinitesimal deformation
tangent to a smooth deformation > ; of X.

m The marked length spectrum /¢; of ¥; varies smoothly with t.
m Margulis's invariant o, () represents the derivative

q
dt|i—o

gt(’Y)

(G-Margulis 2000).

m [, is proper = all closed geodesics lengthen (or shorten)
under the deformation X;.

m Converse: When ¥ is homeomorphic to a three-holed sphere
or two-holed RP?.



Deformation spaces of 3-dimensional affine space forms

Extensions of the Margulis invariant




Deformation spaces of 3-dimensional affine space forms

Extensions of the Margulis invariant

m «, extends to parabolic L(vy) given decorations of the cusps
(Charette-Drumm 2005).



Deformation spaces of 3-dimensional affine space forms

Extensions of the Margulis invariant

m «, extends to parabolic L(vy) given decorations of the cusps
(Charette-Drumm 2005).

m (Margulis 1983) ay(y") = |n|aw ().



Deformation spaces of 3-dimensional affine space forms

Extensions of the Margulis invariant

m «, extends to parabolic L(vy) given decorations of the cusps
(Charette-Drumm 2005).
m (Margulis 1983) ay(y") = |n|aw ().
m Therefore v, ()/4(7) is constant on cyclic (hyperbolic)
subgroups of T.



Deformation spaces of 3-dimensional affine space forms

Extensions of the Margulis invariant

m «, extends to parabolic L(vy) given decorations of the cusps
(Charette-Drumm 2005).
m (Margulis 1983) ay(y") = |n|aw ().
m Therefore v, ()/4(7) is constant on cyclic (hyperbolic)
subgroups of T.

m Such cyclic subgroups correspond to periodic orbits of the
geodesic flow ¢ of UX.



Deformation spaces of 3-dimensional affine space forms

Extensions of the Margulis invariant

m «, extends to parabolic L(vy) given decorations of the cusps
(Charette-Drumm 2005).
m (Margulis 1983) ay(y") = |n|aw ().
m Therefore v, ()/4(7) is constant on cyclic (hyperbolic)
subgroups of I'.
m Such cyclic subgroups correspond to periodic orbits of the
geodesic flow ¢ of UX.
m Margulis invariant extends to continuous functional W (1) on

the space C(X) of ®-invariant probability measures p on UX.
(G-Labourie-Margulis 2010)



Deformation spaces of 3-dimensional affine space forms

Extensions of the Margulis invariant

m «, extends to parabolic L(vy) given decorations of the cusps
(Charette-Drumm 2005).
m (Margulis 1983) ay(y") = |n|aw ().
m Therefore v, ()/4(7) is constant on cyclic (hyperbolic)
subgroups of I'.
m Such cyclic subgroups correspond to periodic orbits of the
geodesic flow ¢ of UX.
m Margulis invariant extends to continuous functional W (1) on
the space C(X) of ®-invariant probability measures p on UX.
(G-Labourie-Margulis 2010)

m When L(I") is convex cocompact, I, acts properly <=
W, () # 0 for all invariant probability measures p.



Deformation spaces of 3-dimensional affine space forms

Extensions of the Margulis invariant

m «, extends to parabolic L(vy) given decorations of the cusps
(Charette-Drumm 2005).
m (Margulis 1983) ay(y") = |n|aw ().

m Therefore v, ()/4(7) is constant on cyclic (hyperbolic)
subgroups of I'.

m Such cyclic subgroups correspond to periodic orbits of the
geodesic flow ¢ of UX.

m Margulis invariant extends to continuous functional W (1) on
the space C(X) of ®-invariant probability measures p on UX.
(G-Labourie-Margulis 2010)

m When L(I") is convex cocompact, I, acts properly <=
W, () # 0 for all invariant probability measures p.

m C(X) connected = Either W (1) are all positive or all
negative.
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The Deformation Space

m Deformation space of marked Margulis space-times
corresponding to surface S fibers over space of marked
hyperbolic structures S — ¥ on S.

m Fiber is subspace of H'(X,R?!) (all affine deformations)
consisting of proper affine deformations ¥.

m Nonempty (Drumm 1989).
m (G-Labourie-Margulis 2010) Convex domain in H(XZ, R?1)
defined by generalized Margulis functionals of measured
geodesic laminations on X.
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m Proved when x(X) = —1 (that is, rank(m1(X)) = 2).
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One-holed torus.
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The Crooked Plane Conjecture

m Conjecture: Every Margulis spacetime M3 admits a
fundamental polyhedron bounded by disjoint crooked planes.

m Corollary: (Tameness) M3 ~ open solid handlebody.
m Proved when x(X) = —1 (that is, rank(m1(X)) = 2).
(Charette-Drumm-G 2010)
m Four possible topologies for ¥:

m Three-holed sphere;

m Two-holed cross-surface (projective plane);
m One-holed Klein bottle;

m One-holed torus.

m If 0L has b components, then the Fricke space

3(X) ~ [0,00)" x (0,00)>7P.
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Functionals «(+y) when ¥ = three-holed sphere

Charette-Drumm-Margulis functionals of 0¥ completely describe
deformation space as (0, c0)3.
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Functionals a(y) when ¥ ~ two-holed RP?.
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Deformation space is quadrilateral bounded by the four lines
defined by CDM-functionals of 0¥ and the two
orientation-reversing interior simple loops.
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Functionals «(+y) when ¥ = one-holed torus

77177
TRV

Properness region bounded by infinitely many intervals, each
corresponding to simple loop.
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Structure of the boundary

m O-points lie on intervals or are points of strict convexity
(irrational laminations) (G-Margulis-Minsky).

m Birman-Series argument = For 1-holed torus, these points
of strict convexity have Hausdorff dimension zero.
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Realizing an ideal triangulation by crooked planes

m Properness region tiled by triangles.
m Triangles «— ideal triangulations of X.

m Flip of ideal triangulation «—— moving to adjacent triangle.
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Functionals a(~) when ¥ ~ one-holed Klein bottle
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Properness region bounded by infinitely many intervals, each
defined by CDM-invariants of simple orientation-reversing loops,
arranged cyclically, and the one orientation-preserving interior
simple loop.
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