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DISTANCE AND BRIDGE POSITION

DAvID BACHMAN AND SAUL SCHLEIMER

J. Hempel’'s definition of the distanceof a Heegaard surface generalizes to
a notion of complexity for any knot that is in bridge position with respect
to a Heegaard surface. Our main result is that the distance of a knot in
bridge position is bounded above by twice the genus, plus the number of
boundary components, of an essential surface in the knot complement. As
a consequence knots constructed via sufficiently high powers of pseudo-
Anosov maps have minimal bridge presentations which are thin.

1. Introduction

Hempel's definition 2007 of the distanceof a Heegaard splitting is a natural
measure of complexity, generalizing the standard notioniedhicibility (distance
zero),weak reducibility(distance at most one), asttong irreducibility (distance
at least two). Hempel proves that there exist Heegaard splittings of arbitrarily high
distance.

In his Ph.D. thesis, K. Hartshorn related the distance of a Heegaard splitting tc
the genus of any essential surface, thus refining work of T. Kobayh388}

Theorem[Hartshorn 199P Let M be a closegorientable irreducible 3-manifold
with Heegaard splitting F Suppose M contains an orientabli@compressible
surface SThen the distance of F is bounded above by twice the genus of S

We introduce our results by recalling a generalization of the curve complex for
surfaces with nonempty boundary. This allows us to translate Hempel's definition
of distance for Heegaard splittings to a definition of distance for knots that are in
bridge position with respect to a Heegaard surfaderjmoto and Sakuma 1991
Our main result is a translation of Hartshorn’s Theorem into this new context:

Theorem 5.1. Let K be a knot in a closedrientable3-manifold M which is in
bridge position with respect to a Heegaard surfacellet S be a properly embed-
ded orientable essential surface in . Then the distance of K with respect to F
is bounded above by twice the genus of S [HS}.
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In the special case of a meridional disk we find that a stronger result holds; the
distance ofK with respect toF is zero. This follows from a variant of the Haken
Lemma (sed.emma 4.).

Although our proof contains Hartshorn’s result as a special dase §), there
is an interesting qualitative difference. Unlike Hartshorn, we make no minimality
assumption on the way in whicBintersects~. That is,any generic positionf S
with respect ta- forces the bound on distance as stated in the theorem.

The main idea behind our proof is to simply count saddles dickt, F) denote
the distance oK with respect toF. It is a standard technique in 3-manifold
topology to use a Heegaard splittikg for a 3-manifoldM to define a height
functionh on M. This, in turn, induces a height function on a surf&e M.
With respect to this height functio8 will have maxima, minima, and saddles.
The moral of the story is that each critical point®gither

(1) contributes at most 1 td(K, F) and exactly—1 to the Euler characteristic of
S, or

(2) contributes nothing td (K, F) and nothing to the Euler characteristic &f

Hence, the distance & with respect toF would then be bounded by the neg-
ative of the Euler characteristic & Unfortunately, for Heegaard splittings the
above classification isn’t exactly correct. We find that there may be at most two
special critical points that each contribute one to the distanég, &fut nothing to
the Euler characteristic &. This gives the bound

d(K,F) < —x(9+2=29(5+199|.

We note that several authors have explicitly computed the distances of vari-
ous classes of knots (using varying definitionsdiftancg. See, for example,
[Akiyoshi et al. 2000 Morimoto 1989 Saito 2004

In the final section we present corollariesTtoeorem 5.1 Among these are:

Corollary 6.1. Suppose K is a knot in®Svhose distance is@, F) with respect
to a bridge sphere FThen the genus of K is at leasfd(K, F) — 1).

Corollary 6.2. If K is a knot whose distance is at leéwith respect to some
Heegaard surfacghe complement of K is hyperbalic

Finally, we define théridge link associated to an element of the braid group
B, to be the link obtained by gluing two trivial-strand tangles by this element.
By a construction essentially due to Kobayast8§9g, powers of certain pseudo-
Anosov maps give associated bridge links with arbitrarily high distance. Suppose
¢ is such a map. Then it follows froi@orollary 6.5that for all sufficiently high
powers of¢ if the associated link is a knot, its minimal bridge presentation is thin.
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A priori, bridge knots associated to high powers of pseudo-Anosov maps might
have low bridge numbers. We conjecture that this is not in fact possible:

Conjecture. Suppose is a knot whose distance is at least 2 with respect to some
Heegaard surfacé. Then the distance df with respect to any other Heegaard
surface is bounded above ly(F — K) + 2.

Compare this to the statement Dfieorem 5.1 In the theorem we assert that
the distance of a knot with respect to a Heegaard surface is bounded by two plu
the Euler characteristic of an essential surface. In the conjecture we propose th:
distance is similarly bounded by a strongly irreducible surface.

2. Basic definitions

In this section we give the definitions that will be used throughout the paper. Let
K be a knot in a closed, orientable 3-manifoM, Let Mx = M — N(K) where
N(K) denotes a regular neighborhood Kf For the remainder of this paper all
surfacesSin Mk will be embedded, compact, and orientable WBthoMy C 9S.

Definition 2.1. A cut surface(seeFigure J) is either
(1) adiskE c Mg such thatE NnaMg = &,
(2) a bigonE c Mk such thate N9 Mg is an arc, or

(3) an annulusE ¢ Mg with exactly one meridional boundary component on
dMg . In other wordsE N dMg is a loop bounding a disk iN(K).

If E is a cut surface angd = 9E — 9 Mk we say thaty bounds a cut surface

14 14

- :

Figure 1. Disk, bigon, and meridional cut surfaces.

A properly embedded simple curve 8is inessentialf it bounds a subsurface
of Sthat is a cut surface, arebsentiabtherwise.

Suppose’ bounds a cut surfadg, thatSis properly embedded iNlk , and that
SN E =y. We may thersurger SalongE by replacing a neighborhood ¢fin S
with two parallel copies oE. If y is essential irS we sayE is acompressiorior
S. In this case we also saybounds a compressidor S.
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A properly embedded surfac® C M is essentialif first there are no curves
on S which bound compressions My and second S (if nonempty) is not null-
homotopic ondaMy. We also consider a 2-sphere to be essential if it does not
bound a ball inMk . This notion of essentialnessnstidentical to that of “super-
incompressible” found inNlorgan and Bass 1984

A handlebodyis a 3-manifold homeomorphic to the closure of a regular neigh-
borhood of a compact, connected grapliti If such a graph has no valence-one
vertices and the corresponding handlebody has nonzero genus, the graph’s ima
under such a homeomorphism isgineof the handlebody. We will insist that the
spine of a 3-ball be a single edge.

A closed surfacd= in M is aHeegaard surfacef M if F separate$/ into two
handlebodies. An arc properly embeddedHins trivial if it bounds a bigon irH.
Suppos« is a knot in a 3-manifold with Heegaard surfacé. The knotK isin
bridge position with respect to FMorimoto and Sakuma 1991 K meets each
of the handlebodies bounded Byin a collection of trivial arcs. Such a position
is sometimes referred to as(g, b)-presentatiorof K, whereg = genugF) and
2b=|KNF]|.

3. The arc complex

Following Hempel's definition200] of the distance of a Heegaard splitting, we
now define thalistanceof a knot K that is in bridge position with respect to a
Heegaard surfaceé c M. Set

Mk =M —N(K) and Fx =FnN M.

Construct a 1-complek (Fk) as follows: for each proper isotopy class of es-
sential curves ik there is a vertex df'(Fk ). There is an edge af(Fx ) between
two distinct vertices if and only if there are representatives of the corresponding
isotopy classes which are disjoinl.(Fk) is called thearc complexof Fx (see
[Masur and Minsky 1999for example).

Now, Fx divides M into two submanifoldsH andH’. LetV andV’ denote
the sets of vertices df (Fk) corresponding to curves that bound compressions in
H and H’, respectively. Them (K, F), thedistance of K with respect to,As
defined to be the number of edges in the shortest path ¥¥dmV’ in I'(Fk). As
long asy (Fk) is at most-2 this is well defined, since the arc complex is connected
in those cases.

4. Lemmas

The following is a slight variant of the Haken Lemni0pg. We assume famil-
iarity with the proof of this result found inJaco 1980Theorem I1.7].
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Lemma 4.1(Haken).Let K be a knotin &-manifold M which is in bridge position
with respect to a Heegaard surface Ff Mg contains an essentid@-sphere or
meridional disk then ¢K, F) = 0.

Proof. Among all essential 2-spheres and meridional disklljn choose ones,
meetingFx minimally. Let H and H’ denote the submanifolds ®&flx bounded
by Fk, with 89S (if nonempty) contained id. If SN Fx = @ thenSlies entirely
in H or H’, a contradiction. It follows thaBn Fx is a nonempty set of loops that
are essential ok . Hence, ifS meetsFg in a single loop, the result follows.

Suppose then thaBn Fx | > 1. Let H* denote one oH or H’, where there is
a componenT of SN H* with [0T — 35| > 2. Choose &asisA for H*, that is, a
system of disks and bigons cuttitdy* into a 3-ball. If SN A contains any loops,
surgerS along these loops, innermost (&) first. At least one component of the
resulting surface is again an essential sphere or meridional disk. We continue t
denote this surface bS$.

Now reduce/SN A| as follows. If any component afSN H*) — A is a bigon,
surgerA along this surface. Some subcollection of the resulting set is again a basis
which we continue to denote . If not, choose a bigon oA — S, and use this
to guide an isotopy 08 (see the “isotopy of type A’ inJaco 1980p. 24]). Repeat
this procedure until all component®s of SN H* satisfy |0T —dS| = 1. LetS
denote the resulting surface.

It follows from the argument ofJaco 1980Lemma I1.9] that ifH* = H' then
IS N Fk| < |SN Fk|, and we have reached a contradiction. Hf = H then
IS N Fk| <|SN Fk|. If equality holds we repeat the preceding steps vBth
replacingSand lettingH* = H’. This gives a surfacg” with |S'"NFx | <|SNFk],

a contradiction. O

Lemma 4.2. Let K be a knot in &8-manifold M which is in bridge position with
respect to a Heegaard surface. FSupposes bounds two cut surfaces A and B
with AN B =y. Then A and B are both bigonisoth annulj or both disksunless
d(K, F)=0.

Proof. If AandB are of different types, their union is a meridional disk. The result
now follows fromLemma 4.1 O

Lemma 4.3. Let K be a knot in &8-manifold M which is in bridge position with
respect to a Heegaard surface F and let Q be any properly embedded surface i
M. If there is a curvey that is essential on Q and bounds a cut surface E in M
then either there is a curvg’ ¢ E N Q that bounds a compression for, @nless
d(K,F)=0.

Proof. Let A ¢ EN Q be the collection of curves that are essentiakanLet E’
denote the closure of a componenttof- A that is a cut surface. Set = E'NA.
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Consider the se® of cut surfaces bounded by such that the only curve of
intersection withQ, essential orQ, is y’. Note thatE’ is such a surface, 90 is
nonempty. LetE* be an element o® with |[E* N Q| minimal.

We now claimE* N Q = y’. Suppose not. LeE” be a cut surface component
of E* — Q. The curvey” = E” N Q is inessential orQ and hence bounds two cut
surfacesA C Q andE”. Note thatANE” = y”. By Lemma 4.2we may obtain
a new cut surface fronkE* by replacinge” with a push-off of A. This violates
the minimality of|E* N Q|. We conclude thaE* is a compression fo®, which
finishes the proof. g

Lemma 4.4. Let K be a knot in a3-manifold M which is in bridge position
with respect to a Heegaard surface F and let S be an essential surface in M
If we surger S along a disk or bigon cut surface then at least one of the remaining
components is essentiainless dK, F) = 0.

Proof. By assumption there is a curgeC Sthat bounds a cut surfad®’, home-
omorphic to a disk and such thet N S= y. SinceSis essentialy bounds a cut
surfaceE ¢ S. SurgeringS along E’ produces two surfaces, isotopic EoU E’
andS = (S— E) U E’. SupposeS is not essential. Ley’ bound a compression
C for S. As E’ is homeomorphic to a disk we may properly isotggeoff of E’'.
The curvey’ is now onS, and bounds the cut surfae By Lemma 4.3there is a
compressiorC’ for S, a contradiction. O

Lemma 4.5. Let K be a knot in @-manifold M which is in bridge position with
respect to a Heegaard surface F and let S be an essential surface inliMve
surger S along a cut surface then at least one of the remaining components i
essentiglunless dK, F) = 0.

Proof. By assumption there is a curgeC S which bounds a cut surfade’ such
thatE’' N S= y. SinceSis essentialy bounds a cut surfacE in S. SurgeringS
alongE’ then produces two surfaces, isotopicBa E' andS = (S— E)U E'.

By Lemma 4.4ve may assumg’ is an annulus. B{zemma 4.2ve may assume
E is also an annulus. [E U E’ is essential, we are done. Otherwise there must be
a compressing bigoB for E U E’ (since the core loop dE U E’ is not essential).
SurgeringE U E’ along B gives a diskD with 9D ¢ d Mk bounding a diskD’ C
dMg. If the sphereD U D’ is essential, the proof is complete bgmma 4.1
Otherwise we conclude th& U E’, together with an annulus &M, bounds a
solid torus. If the interior of the solid torus is disjoint froBithen S’ is properly
isotopic toS and we are done. I8 meets the interior of the solid torus we may
push it entirely into the solid torus. Now considBm S. Some component of
B — Sis then a cut surface fdd. This cut surface is either a disk or a bigon. By
Lemma 4.4we may surgelS along this cut surface and obtain another essential
surface that meetB fewer times. Continuing in this way we obtain an essential
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surface inside the solid torus that misd&sand is hence contained in a ball. This
is impossible. O

5. Proof of the Main Theorem

We recall the statement.

Theorem 5.1. Let K be a knot in a closedrientable3-manifold M which is in
bridge position with respect to a Heegaard surfacellet S be a properly embed-
ded orientable essential surface in M. Then the distance of K with respect to F
is bounded above by twice the genus of S HS}.

We now begin the proof. Throughout we assume tht, F) > 0 to avoid the
special cases of the lemmas fr@ection 4 Let g and X1 denote spines of the
handlebodies bounded By. Leth: M — | denote a height function oM such
thath—1(0) = o andh—1(1) = =1. We require that for everye (0, 1) the surface
h=L(t) is parallel toF = h—l(%). Becausk is in bridge position with respect t©
we may isotopeK so that each arc d — F has one critical point with respect to
h. Now pull each minimum down t& and each maximum up tBy. If M = S°
andF is a sphere we may assume tiKahas at least two maxima and at least two
minima. In this cas& and X; are edges, and we assume that the vertices
coincide with two minima oK and the verticed§ ; coincide with two maxima.

SetF(t) = h~(t) N M. Let H(t) be the closure of the component i —
F(t) that containsZg. Let H(t) be the closure oMk — H (t). Let ¢g be chosen
just larger than the radius & (K), but small enough so th& meetsH (¢p) and
H’(1— ¢p) in compressions foF (¢p) and F(1— ¢g). Then the surfacé-(t) is
homeomorphic tdcx = F N Mg for every value oft € [¢g, 1— ¢p]. Hence, the
submanifoIdUtl;jg F(t) is homeomorphic td-x x [eg, 1— €o]. Let w denote the
composition of such a homeomorphism with projection onto the first factor. Hence,
if ¥ is a curve onF(t) for somet € [¢g, 1— ¢g], thenz (y) is a curve onFg.

We make two types of assumptions on the position of the essential siBface
Any surface whose position satisfies these assumptions we will saptarndard
position The first concerns hov meetso Mk and the second is a genericity
assumption on the interior &. Near the boundary d6 we assume the following:

e Meridional boundary components are “level”; that is,Sfthas meridional
boundary, there exists for each boundary compofieot Sat € (eg, 1— €p)
such thatC c dF(t). We considet a critical value forS if some boundary
component ofSis contained i F(t).

¢ If Sdoes not have meridional boundary then for geneaicd each component
y of 3S—F () the endpoints of lie on distinct boundary componentsieft).
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F(t+e) \

F(t—e¢) /

Figure 2. A piece of S between levelsF(t — ¢) and F(t + ¢),
before and after a meridional boundary componént,

These stipulations are possible siric®is not null-homotopic ord Mk . In the
interior of Mk we assume the position &is generic in the following sense:

o All critical points ofh|s are maxima, minima, or saddles. We will refer to any
such critical point whose height is betwegrand 1- ¢y and to any meridional
boundary component ascaitical submanifold(of S).

e The heights of any two critical submanifolds $fare distinct.

e Suppose a meridional boundary comporemf Shappens at height Let P
denote the closure of the componentf F (t +¢) that hasC as a boundary
component. Ther® is a once-punctured annulus with one boundary compo-
nent on each oF (t — ¢) andF (t + ¢) (seeFigure 3. (This uses the fact that
dMg is connected.)

Claim 5.2. For each te [¢g, 1— €g] the submanifolds Kt) and H'(t) of Mk do
not contain any essential surfaces

Proof. Choose a basia of compressing disks and bigonsli(t) that cut it into

a ball. Suppos® € A. Let D’ be a cut surface component bf— Q, whereQ is

some essential surfacelih(t). By Lemma 4.4 compressing) alongD’ yields an

essential surface that meddsfewer times. Continuing in this way we produce an

essential surface iAl (t) disjoint from A, and hence in a ball. This is impossible.
O

Definition 5.3. Let tg be the supremum dfe [¢g, 1— €g] such that some curve in
SN F(t) bounds a compression fét(t) in H(t). (The compression foF (t) need
not be a subsurface @) Definet; likewise with infimum instead of supremum
andH’(t) instead ofH (t).
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Claim 5.4. The valuesgand t are well definedand ¢ > «g.

Proof. To establish the claim it is enough to show that for some sealkg there
are curves inSN F(e) and SN F(1— ¢) that bound compressions fér(¢) and
F(1—¢)in H(e) andH’(1— ¢), respectively.

There are essentially two cases. Suppose first the essential stirfaddesed, or
has meridional boundary. BN o = @ then S can be properly isotoped entirely
into H'(¢), violating Claim 5.2 We conclude thaBN g # @. F(¢) N Sthen
contains a loop that bounds a compressiorH @) in H(¢). On the other hand, if
Shas nonempty, nonmeridional boundary tikgfa) N S contains an arc that bounds
a bigon compression iAl (¢). This proves thaty is well defined andg > € > «o.

A symmetric argument shows is well defined. a

Claim 5.5. The value ofgis less tharl — «o.

Proof. Supposdg = 1— ¢p. Lete > ¢g be small enough that2 ¢ is greater than
the height of the highest critical submanifold. Bs= 1— ¢g there is a curver of
F(1—¢) N Sthat is essential i (1 — ¢) but bounds a compression k(1 — ).
Recall that the boundary &has been isotoped into standard position. It follows
that the components &N H'(1 — ¢) are all disks and bigons. Hence bounds
compressions foF (1 — ¢) on both sides and(K, F) =0. O

Claim5.6.lIftgp=t; <1—¢pgthendK, F) = 1.

Proof. If tg = t1 < 1— ¢ then for all sufficiently smalk there is a curve of
SNF (to+¢) bounding a compression K’ (t) and a curve o8N F (tp—¢) bounding
a compression it (t). But for e sufficiently small the curves of (SN F (tg+¢))
can be made disjoint from the curvesm(Sm F(tg — e)), becausd- and S are
orientable. This is basically identical t&fbai 1987Lemma 4.4]. O

Henceforth we assume thaf < tg < t; < 1— €.

Claim 5.7. If t, € (tp, t1) is a critical value then for sufficiently smailithe curves of
7 (F(t,—e)NS) are at a distance of at most one from the curves @ (t,+¢)NYS).

Proof. As in the proof ofClaim 5.6 the curves oft (SNF (t.+¢)), for € sufficiently
small, can be made disjoint from the curvesr@SN F (t, —¢)). The result follows
unless either of these are collections of inessential curves, and hence are not rept
sented i (Fg ). However, if this is the case then all curvesSifi F (t, + ¢) (say)

are inessential o8. By Lemma 4.5a sequence of surgeries produces an essential
surface disjoint fronF (t, + ¢), contradictingClaim 5.2 O

Claim 5.8. A component of R) N S that is inessential on () is inessential on S

Proof. This follows directly fromLemma 4.3 g
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Now lett € [eg, 1 — €0] be a regular value ofi|s. Pick a componeny of
F() N S. The curvey is mutually essentiaif it is essential on both-(t) and S,
mutually inessentidf it is inessential on both anchutualif it is mutually essential
or mutually inessential. Finally; is specialif it is inessential ors but essential on
F(t). There are three kinds of special curves: loops that bound disig; loops
that cobound (wittd S) annuli in S, and arcs isotopic (via bigons) inté®s.

Claim 5.9. Suppose t is a regular value ofdin [tg, t1]. Every curve of Ft)N'S
is mutual

Proof. Pick a regular valuee [¢g, 1— €p]. By Claim 5.8we may assume that there
is a special curve in F (t)NS. By definition,y is essential ori- (t) but inessential
on S. It follows that a componeri of S—y is a cut surface. Bizemma 4.3here

is a curve ofENF (t) that bounds a compression fB(t). This compression either
liesin H(t) orin H'(t). SinceEN F(t) Cc SN F(t) we conclude ¢ [to, t1]. O

Claim 5.10. If « is an arc component of ) NS and Ha) =t € (tp, t1) thena is
mutually essential

Proof. By Claim 5.9the only other possibility is that is mutually inessential. In
this cased« is the boundary of some agcof 3S— F(t). Also, 3y = da lies on
the same component 6f(t). This violates our assumption th&tis in standard
position. O

In h=1([tg, t1]) we see the usual four types of critical submanifolds$omax-
ima, minima, saddles, and meridional boundary components. Suppose a critice
submanifold happening at heighis a saddle or meridional boundary component.
Let P be the closure of the component®f F (t £¢) that contains the critical sub-
manifold. We callP ahorizontal neighborhoodin S) of the critical submanifold.
LetaLP = PN F(t £¢). We say the critical submanifold atis specialif there
is some component df. P that is special. If the critical submanifold &is not
special, we say it ilmessentialf some component of the closure $f P is a disk
andessentialbtherwise. If the critical submanifold atis inessentialClaim 5.10
implies that there is a mutually inessential loop componert.d&¥ that bounds a
diskin S.

Claim 5.11. Suppose,te [to, t1]. If there is a special critical submanifold af t
thent =tgort.

Proof. By definition, if a special critical submanifold happens.ahere is a special
curvea in SNF(t, —¢) or SN F(t, +¢). Assuming the formeiClaim 5.9implies
t, — e ¢ [to, t1]. Hencet, = to. If, on the other handy C F(t, + ¢), we deduce
t, =t1. O
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Figure 3. ConstructingS from S. On the left two new critical
values are created. On the right four are created.

Lemma 5.12. Let t and t. be regular values irjtg, t;] such that every saddle
and every meridional boundary component of STA_, t,) is inessential Then
r(F@to)NnS andx(F(ty)N'S) share a vertex il (Fg).

Proof. Let {tj} be the critical values ofi|s lying in [t_, t,]. Chooser; slightly
greater than thg and letR={r;} U {t_ + ¢}.

For everyr € R surgerSin the following way. IfSN F(r) contains mutually
inessential curves, some such curve bounds a cut surfde@ n SurgerS along
this cut surface. After a sequence of such surgeries we obtainS@surface that
meetsF (r) only in mutually essential curves, for alle R.

SetM’ = h~([t_, t,.]). Let S be the intersection of the surgered surface with
M’. Note thath|g, the height function restricted t8, has either two or four new
critical values for every surgery performed. Jagure 3

We say a surfac¥ is verticalin M’ if V =7 ~1(«) " M’, wherex is a properly
embedded one-manifold Rk . A vertical surfaceV is either a disk or an annulus.
We need the following claim to prove the lemma:

Claim 5.13. Each component"Sf S is either

e a sphere or a meridional annulusr
e properly isotopic into Ft_) or F(t,), or
e properly isotopic to a vertical surface V with(V) essential in k.

Proof. If h|g has no critical valuesS’ is isotopic to a vertical annulus or disk.
In this caseS’ N 9M’ must be essential by the construction®f Note that this
kind of situation is the desired conclusion of the lemma at hand|df has only
critical values of even index (and no meridional boundary components)3hin
a boundary parallel disk or a sphere.
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We now assume the®’ contains a critical submanifold which is not a max or
min. The componen$’ either contains a saddle or meridional boundary compo-
nent ofS, or it does not. Suppose the latter. It follows ti84ts either a meridional
annulus or a boundary parallel annulus (with one boundary componériviQn.

Now suppose tha8’ contains a saddle or meridional boundary compone#& of
at heightt,.. Let P be the closure of the component$f— F (t, £ ¢) that contains
this critical submanifold. (Note tha® is also a subsurface @ sincee is very
small.) Recall thaf is the horizontal neighborhood of the critical submanifold.
LetdL P =PNF(t,+e). Since every critical submanifold & M’ is inessential,
at least one loop component®f P bounds a disk its (see the comment preceding
Claim 5.19).

Now suppose tha” contains a meridional boundary componensait height
t.. Let P be the corresponding horizontal neighborhood. &eP = C; U Cy,
whereC, bounds a diskD in S. Hence,D U P ¢ Sis a cut annulus and we see
thatC, is also inessential its. By Claim 5.9theC; are inessential i (t, £¢). It
now follows fromLemma 4.2hatC; bounds a disk ir (t, = ¢) while C, bounds
a cut annulus irF (t, F €). ThusS” is a meridional annulus.

We now assume th&’ contains no meridional boundary componentSoénd
hence contains a saddle. Suppose some such saddle has a horizontal neighborh
P such that two components 8f P are inessential. It follows that all three com-
ponents are inessential. If two bound disks, all three do. Therefolegrioyna 4.2
S’ is a sphere. If one bounds a disk and the other two bound cut annul&thisn
a meridional annulus.

Finally, we assume tha®’ contains no meridional boundary components and
that every saddl& has a horizontal neighborhod?} with exactly one component
yx Of 9. Py inessential, bounding a disk i (seeFigure 4. By Claim 5.9and
Lemma 4.2it follows that yx bounds a disk ir§’. HenceS’ is either a union of
disks or a union of annuli. In the first ca&¥ is isotopic to a vertical disk. In

Figure 4. Surgery near a saddle whose horizontal neighborhood
has exactly one inessential boundary component.
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the latter case&s’ is either isotopic to a vertical annulus or is a boundary parallel
annulus. 0

To complete the proof of theemma 5.12 suppose no component 8f meets
both boundary components bf’. By Claim 5.13 every component o8 meeting
F(t_) isboundary parallel ié’. IsotopeF (t_) across these boundary parallelisms
to obtain a surfacd=’ that intersects the surfac® only in mutually inessential
curves. Some component & — Sis then a cut surface, which we may use to
surgerS. By Lemma 4.5we obtain an essential surface that meetsn fewer
curves. Continuing in this fashion we obtain an essential surface disjointffom
violating Claim 5.2

We conclude that there is a compon&itc S meeting bothF(t_) andF(t,).

By Claim 5.13 this S” must be isotopic to a vertical annulus or vertical disk with
essential boundary. The lemma is thus proved. O

We now complete the proof cfheorem 5.1 Note that whert € [tg, t1] is a
regular valueyr (F(t) N S) is a properly embedded 1-manifold Fx (recall that
Fk = FNMg). The distance between the loops and arcs@f (tp—¢)N'S) and of
m(F(t14+¢€)NS) in T'(Fk) is an upper bound for the distandeK, F). By Lemma
5.12 and Claim 5.7 this number is bounded by the number of essential critical
submanifoldsg, plus the number of special critical submanifolds. Gjaim 5.11
this latter number is at most two. We therefore concldd€, F) <e+ 2.

We now bound the Euler characteristic&f Suppose an essential critical sub-
manifold happens &t and letP be its horizontal neighborhood i Note that
in all casesy (P) = —1. (WhenP has vertical boundary compute its Euler char-
acteristic by doubling across the vertical boundary and taking half of the Euler
characteristic of the resulting surface. See, for example, the surface on the left i
Figure 4) By the definition of an essential critical submaniféld — 9 Sis essential
in S. We conclude thag (S) < —e.

Putting these facts together we conclude that

dK,F) <e+2<—x(9+2=—-2-29(5—10S))+2 = 29(S +(3S].

6. Applications

We now present a few quick corollariesTheorem 5.1

Corollary 6.1. Suppose K is a knot in3Svhose distance is@, F) with respect
to a bridge sphere FThen the genus of K is at leas(d (K, F) — 1).

Proof. The genus oK is defined to be the smallest genus of all orientable spanning
surfaces folK. Such a spanning surface is essential and has exactly one boundar
component. Hence, an immediate applicatiod béorem 5.impliesd(K, F) <
29(K)+1. O
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Corollary 6.2. If K is a knot whose distance is at le@with respect to some
Heegaard surfacghe complement of K is hyperbolic of finite volume

Proof. If the distance is greater than twilk is irreducible, atoroidal, anannular,
and has incompressible boundary. It follows from Thurston’s geometrization the-
orem for Haken manifolds thailk is hyperbolic of finite volume. O

Definition 6.3. SupposeM is obtained by removing a neighborhood of a kKot
in S% and gluing in a new solid torus to the resulting boundary component. Then
we say thatM was obtained bypehn surgeryon K.

Corollary 6.4. Suppose K is a knot in3Svhose distance is@, F) with respect
to a bridge sphere FIf a manifold M obtained by Dehn surgery on K contains an
incompressible torus Tthen|d(T N Mk )| is at least dK, F) — 2.

Proof. ChooseT so as to minimizéT NK|in M. Let Tx =T N M. follows from
the minimality assumption thdik is essentialTheorem 5.1says that(K, F) is
bounded above by twice the genuslaf plus|d Tk |. But T is a torus, so the genus
of Tk is one. O

Corollary 6.5. Suppose K is a knot in®Svhose distance with respect to some
bridge sphere is greater than its bridge numb&hen a minimal bridge presenta-
tion for K is thin

Proof. Let F be a bridge sphere for whial(K, F) > |[K N F|[. If thin position
for K does not equal bridge position then Byhpmpson 199Jrthere is a planar,
meridional, essential surfa&in the complement oK with fewer boundary com-
ponents thanK N F|. Hence, byTheorem 5.1the distancal(K, F) is at most
0S| < |[KNF. O
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