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Waldhausen’s Theorem

SAUL SCHLEIMER

This note is an exposition of Waldhausen’s proof of Waldhausen’s Theorem: the
three-sphere has a single Heegaard splitting, up to isotopy, in every genus. As a
necessary step we also give a sketch of the Reidemeister–Singer Theorem.

57M40, 57N10; 57Q15

1 Introduction

Waldhausen’s Theorem [36] tells us that Heegaard splittings of the three-sphere are
unique up to isotopy. This is an important tool in low-dimensional topology and
there are several modern proofs (Jaco and Rubinstein [16], Rieck [28] Rubinstein and
Scharlemann [31] and Scharlemann and Thompson [33]). Additionally, at least two
survey articles on Heegaard splittings (Johnson [17] and Scharlemann [32]) include
proofs of Waldhausen’s Theorem.

This note is intended as an exposition of Waldhausen’s original proof, as his techniques
are still of interest. See, for example, Bartolini and Rubinstein’s [3] classification of
one-sided splittings of RP3 .

In Section 2 we recall foundational material, set out the necessary definitions and give a
precise statement of Waldhausen’s Theorem. Section 3 is devoted to stable equivalence
of splittings and a proof of the Reidemeister–Singer Theorem. In Section 4 we discuss
Waldhausen’s good and great systems of meridian disks. Section 5 gives the proof of
Waldhausen’s Theorem. Finally, Section 6 is a brief account of the work-to-date on the
questions raised by Waldhausen in Section 4 of his paper.
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2 Foundations

The books by Hempel [15] and Rolfsen [29] and also Hatcher’s notes [14] are excellent
references on three-manifolds. Moise’s book [24] additionally covers foundational
issues in PL topology, as does the book by Rourke and Sanderson [30].

We will use M to represent a connected compact orientable three-manifold. We say M

is closed if the boundary @M is empty. A triangulation of M is a simplicial complex
K so that the underlying space jjKjj is homeomorphic to M . When no confusion can
arise, we will regard the cells of jjKjj as being subsets of M .

Example 2.1 The three-sphere is given by

S3
D f.z; w/ 2 C2

j jzj2Cjwj2 D 2g:

The boundary of the four-simplex gives a five-tetrahedron triangulation of S3 .

Requiring that M be given with a triangulation is not a restriction:

Theorem 2.2 (Triangulation) Every compact three-manifold M admits a trian-
gulation.

Furthermore, in dimension three there is only one PL structure:

Theorem 2.3 (Hauptvermutung) Any two triangulations of M are related by a PL
homeomorphism that is isotopic to the identity in M .

These theorems are due to Moise [23]. An alternative proof is given by Bing [4]. Our
version of the Hauptvermutung may be found in Hamilton [12].

We now return to notational issues. We will use F to represent a closed connected
orientable surface embedded in M . A simple closed curve ˛ � F is essential if ˛
does not bound a disk in F .
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For any X �M we use U.X / to denote a regular open neighborhood of X , taken in
M . This neighborhood is assumed to be small with respect to everything relevant. If
X is a topological space, we use jX j to denote the number of components of X .

A handlebody, usually denoted by V or W , is a homeomorph of a closed regular
neighborhood of a finite, connected graph embedded in R3 . The genus of V agrees
with the genus of @V . Notice that if K is a triangulation of M then a closed regular
neighborhood of the one-skeleton of jjKjj is a handlebody embedded in M .

A disk v0 is properly embedded in a handlebody V if v0\ @V D @v0 ; this definition
generalizes naturally to surfaces and arcs contained in bounded three-manifolds and
also to arcs contained in bounded surfaces.

A Heegaard splitting is a pair .M;F / where M is a closed oriented three-manifold,
F is an oriented closed surface embedded in M , and MXU.F / is a disjoint union of
handlebodies.

Example 2.4 There is an equatorial two-sphere S2 � S3 :

S2
D f.z; w/ 2 S3

j Im.w/D 0g:

Note that S2 bounds a three-ball on each side. We call .S3;S2/ the standard splitting
of genus zero.

The Alexander trick proves that any three-manifold with a splitting of genus zero is
homeomorphic to the three-sphere. Furthermore, we have:

Theorem 2.5 (Alexander [1]) Every PL two-sphere in S3 bounds three-balls on both
sides.

See Hatcher [14] for a detailed proof. It follows that every PL two-sphere gives a
Heegaard splitting of S3 .

Example 2.6 There is a torus T � S3 :

T D f.z; w/ 2 S3
j jzj D jwj D 1g:

It is an exercise to check that T bounds a solid torus (D2�S1 ) on each side. We call
.S3;T / the standard splitting of S3 of genus one.

The three-manifolds admitting splittings of genus one are S3 , S2�S1 and the lens
spaces. As an easy exercise from the definitions we have:
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Lemma 2.7 Suppose K is a triangulation of a closed orientable manifold M . Suppose
that F is the boundary of a closed regular neighborhood of the one-skeleton of jjKjj.
Then .M;F / is a Heegaard splitting.

See, for example, Rolfsen [29, page 241]. The splitting .M;F / so given is the splitting
associated to the triangulation K . As an immediate consequence of the Triangulation
Theorem (2.2) and Lemma 2.7 we find that every closed three-manifold has infinitely
many Heegaard splittings. To control this extravagance of examples we make:

Definition 2.8 A pair of Heegaard splittings .M;F / and .M;F 0/ are equivalent,
written .M;F /� .M;F 0/, if there is a homeomorphism hW M !M such that

� h is isotopic to the identity and

� hjF is an orientation preserving homeomorphism from F to F 0 .

It is an important visualization exercise to show that .S3;T / is equivalent to
�
S3;�T

�
.

Here �T is the torus T equipped with the opposite orientation. We now have another
foundational theorem:

Theorem 2.9 (Gugenheim [10]) If B and B0 are PL three-balls in a three-manifold
M then there is an isotopy of M carrying B to B0 .

See Theorem 3.34 of Rourke and Sanderson [30] for a discussion. They also give as
Theorem 4.20 a relative version. In any case, it follows that all genus zero splittings of
S3 are equivalent to the standard one, so justifying the name.

Exercise 2.10 Show that any genus one splitting of S3 is isotopic to the standard one.
(Corollary 4.16 of [30] may be useful.)

Waldhausen’s Theorem generalizes this result to every genus:

Theorem 5.1 If F and F 0 are Heegaard splittings of S3 of the same genus then
.S3;F / is equivalent to .S3;F 0/.

Remark 2.11 Waldhausen’s original statement is even simpler:

Wir zeigen, daß es nur die bekannten gibt.

That is: “We show that only the well-known [splittings of S3 ] exist.”
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3 Stabilization and the Reidemeister–Singer Theorem

A key step in Waldhausen’s proof is the Reidemeister–Singer Theorem (Theorem 3.6,
below). In this section we lay out the necessary definitions and sketch a proof of the
Reidemeister–Singer Theorem. Most approaches to Reidemeister–Singer, including
ours, are via piecewise linear topology. Bonahon in an unpublished manuscript has
given a proof relying on Morse theory.

For further details and the history of the problem we refer the reader to the original
papers of Reidemeister and Singer [27; 35] as well as the more modern treatment by
Craggs [7]. A version of Craggs’ proof is also given by Fomenko [9, Theorem 5.2]. Note
also that Lei [20], in an amusing reversal, gives a very short proof of the Reidemeister–
Singer Theorem by assuming Waldhausen’s Theorem.

We begin by stating the basic definitions and then the theorem.

Definition 3.1 Suppose that V is a handlebody. A properly embedded arc ˛ � V is
unknotted if there is an arc ˇ � @V and an embedded disk B � V so that @˛ D @ˇ
and @B D ˛[ˇ .

Definition 3.2 Suppose that .M;F / is a Heegaard splitting with handlebodies V and
W . Let ˛ be an unknotted arc in V . Let F 0D@.V XU.˛//D .V XU.˛//\.W [U.˛//.
Then the pair .M;F 0/ is a stabilization of F in M . Also, the pair .M;F / is a
destabilization of .M;F 0/.

Observe that .S3;T / is isotopic to a stabilization of .S3;S2/. It is an exercise to
prove, using the relative version of Theorem 2.9 and Exercise 2.10, that if .M;F 0/ and
.M;F 00/ are stabilizations of .M;F /, then .M;F 0/� .M;F 00/. On the other hand,
as discussed below, destabilization need not be a unique operation.

Recall that the connect sum M #N is obtained by removing the interior of a ball from
each of M and N and then identifying the resulting boundary components via an
orientation reversal.

Definition 3.3 Let .M;F / be a Heegaard splitting. Let .S3;T / be the standard genus
one splitting of S3 . Pick embedded three-balls meeting F �M and T � S3 in disks.
The connect sum of the splittings is the connect sum of pairs: .M;F /#.S3;T / D

.M #S3;F#T /.

Again, this operation is unique and the proof is similar to that of uniqueness of stabi-
lization. This is not a surprise, as stabilization and connect sum with .S3;T / produce
equivalent splittings. Thus we do not distinguish between them notationally.
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Remark 3.4 Fix a manifold M . We may construct a graph †.M / where vertices are
equivalence classes of splittings and edges correspond to stabilizations. From Theorem
2.2 it follows that †.M / is nonempty. The uniqueness of stabilization implies that
†.M / has no cycles and so is a forest. Finally, †.M / is infinite because splittings of
differing genera cannot be isotopic.

Define .M;F /#n.S
3;T /D ..M;F /#n�1.S

3;T //#.S3;T /.

Definition 3.5 Two splittings, .M;F / and .M;F 0/, are stably equivalent if there are
m; n 2 N so that .M;F /#m.S

3;T /� .M;F 0/#n.S
3;T /.

We now may state:

Theorem 3.6 (Reidemeister–Singer) Suppose that M is a closed, connected, ori-
entable three-manifold. Then any two Heegaard splittings of M are stably equivalent.

Remark 3.7 The theorem may be restated as follows: †.M / is connected. Since
Remark 3.4 shows that †.M / is a forest, it is a tree.

We say that .M;F / is unstabilized if it is not equivalent to a stabilized splitting.
Waldhausen calls such splittings “minimal”. However modern authors reserve “minimal”
to mean minimal genus. This is because there are manifolds containing unstabilized
splittings that are not of minimal genus. For examples, see Sedgwick’s discussion of
splittings of Seifert fibered spaces [34]. Note that unstabilized splittings correspond to
leaves of the tree †.M /.

Finally, there are fixed manifolds that contain unstabilized splittings of arbitrarily large
genus. The first such examples are due to Casson and Gordon [6]. The papers of
Kobayashi [18], Lustig and Moriah [22] and Moriah [25] contain generalizations.

We now set out the tools necessary for our proof of Theorem 3.6. A pseudo-triangulation
T D f�ig of a three-manifold M is a collection of tetrahedra together with face
identifications. We require that the resulting quotient space jjT jj be homeomorphic to
M and that every open cell of T embeds. We do not require that T be a simplicial
complex. It is a pleasant exercise to find all pseudo-triangulations of S3 consisting of
a single tetrahedron.

As with triangulations, if T is a pseudo-triangulation of M then the boundary of a
closed regular neighborhood of the one-skeleton of jjT jj is a Heegaard splitting of M .
Notice that the second barycentric subdivision of T is a triangulation of M .
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Lemma 3.8 For any splitting .M;F / there is an n 2N and a triangulation K of M

so that .M;F /#n.S
3;T / is associated to K .

Proof We may assume, stabilizing if necessary, that F has genus at least one. Now, F

cuts M into a pair of handlebodies V and W , both of genus g . Choose g disks fvig

properly embedded in V so that the vi cut V into a ball. Choose fwj g in W similarly.
After a proper isotopy of the vi inside of V we may assume that all components
of FX� are disks. Here � D F \ ..[vi/ [ .[wj // is the Heegaard diagram of
.F; vi ; wj /.

We build a pseudo-triangulation T of M , with exactly two vertices, by taking the dual
of the two-complex F [ .[vi/[ .[wj /. It follows that T has a tetrahedron for every
vertex of � , a face for every edge of � , an edge for every face of � , an edge for each
of the 2g disks and exactly two vertices.

Let TV be the union of the edges of T dual to the disks vi . Define TW similarly. Let
e be any edge of T connecting the two vertices of T 0 . Notice that F is isotopic to the
boundary of a regular neighborhood of TV . After g stabilizations of F we obtain a
surface F 0 that is isotopic to the boundary of a regular neighborhood of TV [ e[ TW .
Now a further sequence of stabilizations of F 0 gives the splitting associated to T . We
end with an easy exercise: if a splitting .M;G/ is associated to a pseudo-triangulation
T then some stabilization of G is associated to the second barycentric subdivision of
T .

We now describe the 1=4 and 2=3 bistellar flips in dimension three. These are also
often called Pachner moves. In any triangulation, the 1=4 flip replaces one tetrahedron
by four; add a vertex at the center of the chosen tetrahedron and cone to the faces.
Similarly the 2=3 flip replaces a pair of distinct tetrahedra, adjacent along a face, by
three; remove the face, replace it by a dual edge, and add three faces. The 4=1 and
3=2 flips are the reverses. See Figure 1 for illustrations of the 1=3 and 2=2 flips in
dimension two.

Suppose that .M;F / and .M;F 0/ are associated to triangulations K and K0 . Now,
if K0 is obtained from K via a 2=3 bistellar flip then .M;F 0/ is the stabilization of
.M;F /. When a 1=4 flip is used then .M;F 0/ is the third stabilization of .M;F /.

We may now state an important corollary of the Hauptvermutung (2.3), due to Pach-
ner [26].

Theorem 3.9 Suppose that M is a closed three-manifold and K;K0 are triangulations
of M . Then there is a sequence of isotopies and bistellar flips that transforms K into
K0 .

Geometry & Topology Monographs, Volume 12 (2007)



306 Saul Schleimer

Figure 1: The 1=3 and 2=2 bistellar flips

Lickorish’s article [21] gives a discussion of Pachner’s Theorem and its application to
the construction of three-manifold invariants. Now we have:

Proof of Theorem 3.6 Suppose that .M;F / and .M;F 0/ are a pair of splittings.
Using Lemma 3.8 stabilize each to obtain splittings, again called F and F 0 , which
are associated to triangulations. By Pachner’s Theorem (3.9) these triangulations are
related by a sequence of bistellar flips and isotopy. Consecutive splittings along the
sequence are related by stabilization or destabilization. The uniqueness of stabilization
now implies that .M;F / and .M;F 0/ are stably equivalent.

4 Meridian disks

We carefully study meridian disks of handlebodies before diving into the proof proper
of Waldhausen’s Theorem (5.1).

Meridianal pairs

If V is a handlebody and v0 � V is a properly embedded disk, with @v0 essential
in @V , then we call v0 a meridianal disk of V . Fix now a splitting .M;F /. Let V

and W be the handlebodies that are the closures of the components of MXF . So
V \W D F .
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Definition 4.1 Suppose that v0 and w0 are meridianal disks of V and W . Suppose
that @v0 and @w0 meet exactly once, transversely. Then we call fv0; w0g a meridianal
pair for .M;F /.

Note that fv0; w0g is often called a destabilizing pair. To explain this terminology,
one must check that V 0 D V XU.v0/ and W 0 DW [U.v0/ are both handlebodies.
Thus, taking F 0 D @V 0 D @W 0 , we find that .M;F 0/ is a Heegaard splitting and that
.M;F /� .M;F 0/#.S3;T /.

Remark 4.2 If fv1; w1g; : : : ; fvn; wng are pairwise disjoint meridianal pairs then
V 0 D V XU.[ivi/ is ambient isotopic to V 00 D V [U.[iwi/. When nD 1 this is a
pleasant exercise and the general case then follows from disjointness.

Furthermore, in this situation V 0 D V XU.[ivi/ and W 0 D W [U.[ivi/ are han-
dlebodies. So F 0 D @V 0 D @W 0 gives a splitting .M;F 0/ and we have .M;F / D

.M;F 0/#n.S
3;T /.

Conversely, fix a splitting equivalent to .M;F /#n.S
3;T /. There is a natural choice of

pairwise disjoint meridianal pairs fv1; w1g; : : : ; fvn; wng so that the above construction
recovers .M;F /. As we shall see, the choice of pairs is not unique. This leads to the
non-uniqueness of destabilization.

Suppose now that we have two splittings .M;F / and .M;G/ that we must show
are equivalent. By the Reidemeister–Singer Theorem above we may stabilize to
obtain equivalent splittings .M;F 0/� .M;G0/. So .M;F 0/ admits two collections
of pairwise disjoint meridianal pairs. These record the handles of F 0 that must be
cut to recover F or G . If, under suitable conditions, we can make our collections
similar enough then we can deduce that the original splittings .M;F / and .M;G/ are
equivalent. Unfortunately, our process for modifying collections of meridianal pairs
does not preserve pairwise disjointness. To deal with this Waldhausen introduces the
notions of good and great systems of meridianal disks.

Good and great systems

Fix a splitting .M;F / with handlebodies V and W . Fix an ordered collection v D
fv1; : : : ; vng of disjoint meridian disks of V .

Definition 4.3 We say v is a good system if there is an ordered collection w D

fw1; : : : ; wng of disjoint meridian disks of W so that

� fvi ; wig is a meridianal pair for all i and
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� vi \wj D∅ whenever i > j .

If the latter condition holds whenever i ¤ j then we call v a great system. In either
case we call w a v–determined system.

Both conditions can be understood via the intersection matrix AD jvi \wj j. For v to
be a good system we must find a system w so that A is upper-triangular, with ones on
the diagonal. For v to be great A must be the identity matrix.

Lemma 4.4 (Waldhausen 2.2, part 1) Every good system is great.

Proof Suppose that v D fv1; : : : ; vng is good and w D fw1; : : : ; wng is the given
v–determined system. We may assume that w has been isotoped to minimize jv\wj.
If v is also great with respect to w then we are done.

Supposing otherwise, let k be the smallest index so that vk \w is not a single point. It
follows that v\wk is a single point. Let ˛ be a subarc of @vk so that @˛ is contained
in @w , one point of @˛ lies in @wk , and the interior of ˛ is disjoint from w .

It follows that the other endpoint of ˛ lies in @wl for some l > k . Let N D

U.wk [˛[wl/ be a closed regular neighborhood of the indicated union. Then @N\W

consists of three essential disks, two of which are parallel to wk and wl . Let w0
l

be
the remaining disk. Let w0 D .wXfwlg/[ fw

0
l
g. It follows that v is still good with

respect to w0 and the total intersection number has been decreased. By induction, we
are done.

Remark 4.5 The last step of the proof may be phrased as follows: obtain a new disk
w0

l
via a handle-slide of wl over wk along the arc ˛ . The hypotheses tell us that the

chosen slide does not destroy “goodness.”

Lemma 4.6 (Waldhausen 2.2, part 2) Suppose that v is a good system with respect
to w . Then V XU.v/ and V [U.w/ are ambient isotopic in M .

Proof By Remark 4.2 the lemma holds when w makes v a great system. Thus, by
the proof of Lemma 4.4 all we need check is that V [U.w/ is isotopic to V [U.w0/,
where w and w0 are assumed to differ by a single handle-slide. This verification is an
easy exercise.
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Reduction of .M; F / by v

Let v be a good system with respect to w . Since v does not separate V the difference
V XU.v/ is a handlebody, as is W XU.w/. By Lemma 4.6 the unions V [U.w/ and
W [U.v/ are also handlebodies. Let F.v/ be the boundary of V XU.v/. It follows
that .M;F.v// is a Heegaard splitting. We will call this the reduction of .M;F / along
v . Taking F.w/ equal to the boundary of W XU.w/ we likewise find that .M;F.w//

is a splitting. With the induced orientations, we find that .M;F.v//� .M;F.w//. We
immediately deduce:

Lemma 4.7 (Waldhausen 2.4) If v and v0 are both good systems with respect to w
then .M;F.v//� .M;F.v0//.

From the Reidemeister–Singer Theorem and the definitions we have:

Lemma 4.8 (Waldhausen 2.5, part 1) Suppose that .M;F1/ and .M;F2/ have a
common stabilization .M;F /. Then there is a system v � V good with respect to
w�W and a system x�V good with respect to y�W so that .M;F.v//� .M;F1/

and .M;F.x//� .M;F2/.

Remark 4.9 We now have one decomposition and two sets of instructions for reducing
(cutting open trivial handles). If we knew, for example, that y was a v–determined
system then we would be done; but this is more than we actually need.

Getting along with your neighbors

Lemma 4.10 (Waldhausen 2.5, part 2) In the preceding lemma, F , v , x , w , y can
be chosen so that v\x D w\y D∅.

Proof We proceed in several steps.

Step 1 Apply a small isotopy to ensure:

� .x\y/\ .v[w/D∅D .v\w/\ .x[y/.

� v\x and w\y are collections of pairwise disjoint simple closed curves and
arcs.

� v\x\F D @.v\x/ and w\y \F D @.w\y/.
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Step 2 Now we eliminate all simple closed curves of intersection between v and x .
Suppose that v\ x contains a simple closed curve. Then there is an innermost disk
D � v so that D \ x D @D . Use D to perform a disk surgery on x : since x is a
union of disks, @D bounds a disk, say D0 � x . Let x0 be a copy of .xXD0/[D , after
a small isotopy supported in U.D/. Arrange matters so that jv \ x0j � jv \ xj. By
Lemma 4.7, .M;F.x//� .M;F.x0//. Proceeding in this fashion, remove all simple
closed curves of v\x . Apply the same procedure to remove all simple closed curves
of w\y .

Step 3 Now we eliminate all arcs of intersection between v and x . To do this, we
will replace F , and the various systems, by highly stabilized versions. Let k be an arc
of vi \xj . Let v0i and v00i be the two components of viXU.k/. These are both disks.
Similarly, let x0j and x00j be the two components of xjXU.k/. Choose notation so that
jv0i \wi j D 1, jv00i \wi j D 0, and similarly for x0j and x00j . Let w and y be disjoint
spanning disks of the cylinder U.k/\V . Take F 0 D @.V XU.k//.

Observe that

� .M;F 0/ is a Heegaard splitting and is a stabilization of .M;F /.

� The system

v0 D fv1; : : : ; vi�1; v
0
i ; v
00
i ; viC1; : : : ; vng

is good with respect to the system

w0 D fw1; : : : ; wi ; w;wiC1; : : : ; wng:

� The same holds for x0 and y0 .

� .M;F 0.w0//� .M;F.w// and .M;F 0.y0//� .M;F.y//.

� jv0\x0j< jv\xj and jw0\y0j D jw\yj.

Repeated stabilization in this fashion removes all arcs of intersection and so proves the
lemma.

5 The proof of Waldhausen’s Theorem

We may now begin the proof of:

Theorem 5.1 (Waldhausen 3.1) Suppose that .S3;G/ is an unstabilized Heegaard
splitting. Then .S3;G/� .S3;S2/.
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This, and the uniqueness of stabilization, immediately implies our earlier version of
the theorem: up to isotopy, the three-sphere has a unique splitting of every genus.

Let .S3;G/ be an unstabilized splitting. By Lemmas 4.8 and 4.10 there is a splitting
.S3;F / that is a common stabilization of .S3;G/ and .S3;S2/ with several useful
properties. First, let V;W denote handlebodies so that V [W DS3 , V \W DF . Next,
note that genus.F /�genus.G/. Letting nDgenus.F / and mDgenus.F /�genus.G/
we assume that;

� There are good systems v D fv1; : : : ; vng and x D fx1; : : : ;xmg in V .

� There is a v–determined system wDfw1; : : : ; wng and an x–determined system
y D fy1; : : : ;ymg in W .

� .S3;S2/� .S3;F.v// and .S3;G/� .S3;F.x//.

� x\ v D∅D y \w .

Suppose that the surface F is also chosen with minimal possible genus. We shall show,
via contradiction, that genus.F /D 0. Since F was a stabilization of G it will follow
that genus.G/D 0, as desired. So assume for the remainder of the proof that n> 0.

Lemma 5.2 (Waldhausen 3.2) Altering y only we can ensure that jy \ vnj � 1.

Proof There are two possible cases.

Case 1 Suppose some element of y hits vn in at least two points. Let C DW XU.w/.
(This is a three-ball with spots.) Note that y is a collection of disjoint disks in C . Thus
the disks y cut C into a collection of three-balls. Note that w\ @vn is a single point.
Hence 
 D @vn\ @C is a single arc with interior disjoint from the spots of @C . Since
some element of y hits @vn twice there is an element yj 2 y and a subarc ˛ contained
in the interior of 
 so that ˛\U.w/D∅, @˛ � yj , and interior.˛/\y D∅.

Choose an arc ˇ , properly embedded in yj , so that @ˇ D @˛ . Then ˛[ˇ bounds a
disk D � C so that D\ @C D ˛ and D\y D ˇ . Again, this is true because CXy is
a collection of three-balls. (The disk D is called a bigon.) Let E be the component of
yjXˇ that meets xj exactly once. Let y0j DD[E . (The modern language is that y0j
is obtained from yj via bigon surgery along D .)

Since v\xD∅ it follows that ˛\xj D∅. Thus y0j meets xj exactly once, xi\y0j D∅
for all i > j , and yi \ y0j D ∅ for all i ¤ j . Thus y0 D .yXfyj g/[ fy

0
j g is an x–

determined system. Furthermore y0 \w D ∅ and y0 meets vn fewer times than y

does.
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Case 2 Suppose every disk in y meets vn in at most one point, and jy \ vnj � 2.
Define C DW XU.w/ as above. There is an arc ˛ � .@vn/\ @C so that ˛\y D @˛ .
We may assume that one point of @˛ lies in yi while the other lies in yj , for i < j .
Let y0j be the disk obtained by doing a handle-slide of yj over yi along the arc ˛ .
As indicated in Remark 4.5, the system y0 D .yXfyj g/[ fy

0
j g has all of the desired

properties, and also reduces intersection with vn .

Finally, iterating Case 1 and then Case 2 proves the lemma.

Proof of Theorem 5.1 (Waldhausen 3.3)

Case 1 If y\vn¤∅ then by the above lemma we can assume that y\vn is a single
point. Suppose that yj meets vn .

Define
x0 D fx1; : : : ;xj�1;xjC1; : : : ;xm; vng;

y0 D fy1; : : : ;yj�1;yjC1; : : : ;ym;yj g;

and notice that x0 is good with respect to y0 . Lemma 4.7 implies that .S3;F.y0//�

.S3;F.x0// and .S3;F.y//�.S3;G/. Since y and y0 are equal as sets .S3;F.y0//�

.S3;F.y//. So .S3;F.x0//� .S3;G/.

Now we replace y0 by another x0–determined system y00 by replacing y0m by wn .
That is, define

y00 D fy01; : : : ;y
0
m�1; wng:

The meridianal pair .vn; wn/D .x
0
m;y

00
m/ represents the first trivial handle cut off in

the process of transforming .S3;F / into .S3;F.v// or .S3;F.x0//. So the first step
in the process of transforming .S3;F / into .S3;F.x0// � .S3;G/ is the same as
the first step in going from .S3;F / to .S3;F.v//� .S3;S2/. Let .S3;F 0/ be the
Heegaard decomposition obtained from .S3;F / by cutting off this trivial handle. Then
.S3;F 0/ has the same properties as .S3;F / but F 0 has lower genus than F . This
contradicts the minimality of F .

Case 2 If y \ vn D∅ then we enlarge x and y to x� and y� by adding vn and wn .
That is, we define

x� D fx1; : : : ;xm; vng

and y� D fy1; : : : ;ym; wng:

Suppose in .S3;F / we cut off the trivial handles of .x�;y�/, obtaining .S3;F.x�//.
Then we effectively cut off all the trivial handles of .x;y/, obtaining .S3;F.x//�

.S3;G/ and additionally cut off the trivial handle represented by .vn; wn/.
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So .S3;F.x�// is obtained from .S3;G/ by removing a trivial handle. That is,
.S3;G/� .S3;F.x//� .S3;F.x�//#.S3;T /. Thus G is a stabilized splitting. This
is a contradiction.

6 Remarks

Doubling a handlebody

Suppose that T � S2�S1 is the torus obtained by taking the product of the equator of
the two-sphere and the S1 factor. Let .Mg;Fg/D #g.S

2�S1;T /. Notice that Mg

may also be obtained by forming doubling a genus g handlebody across its boundary.

Waldhausen appears to claim the following:

Theorem 6.1 (Waldhausen 4.1) Fg is the unique unstabilized splitting of Mg , up to
isotopy.

His actual sentence is:

Hieraus und aus [Theorem 5.1] folgt, daß auch die Mannigfaltigkeiten
[Mg ] nur die bekannten Heegaard-Zerlegungen besitzen.

(Brackets added.) This indicates that Theorem 6.1 follows from Haken’s Lemma [11]
and Theorem 5.1. It is clear that Haken’s Lemma can be used to prove that Fg is
unique up to homeomorphism. It is not clear to this writer how to obtain Theorem 6.1
by following Waldhausen’s remark.

It seems that no proof of Theorem 6.1 appears in the literature until the recent work
of Carvalho and Oertel on automorphisms of handlebodies. See Theorem 1.10 of
their paper [5]. A similar proof may be given using Hatcher’s normal form for sphere
systems (Proposition 1.1 of [13]). Carvalho and Oertel also give an alternative proof,
deducing Theorem 6.1 from work of Laudenbach [19].

Compression bodies

Definition 6.2 (Waldhausen 4.2) Suppose that V is a handlebody and D is a (perhaps
empty) system of meridianal disks properly embedded in V . Let N be a closed regular
neighborhood of D[ @V , taken in V . Then N is a compression body.

Note that @N is disconnected and contains @V as a component. This component is
called the positive boundary of N and is denoted by @CN . The negative boundary is
@�N D @NX@CN . Most modern authors disallow copies of S2 appearing in @�N .
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Now suppose M is an orientable three-manifold and F �M is a orientable closed
surface in the interior of M . If F cuts M into two pieces V and W , where each
of V and W is a handlebody or a compression body, and where F D @CV D @CW

then we say that .M;F / is a Heegaard splitting of M with respect to the partition
.V \@M;W \@M /. Equivalence (up to isotopy), stabilization, and stable equivalence
with respect to a fixed partition may all be defined as above. The Reidemeister–Singer
Theorem can then be extended: any two Heegaard splittings of M giving the same
partition of @M are stably equivalent.

Haken’s Lemma in compression bodies

Haken’s Lemma also applies to Heegaard splittings respecting a partition. Similarly,
suppose that .M;F / is a Heegaard splitting respecting a partition and D �M is a
properly embedded disk so that @D is essential in @M . Then there is another such
disk meeting F is a single curve. Using this and Theorem 5.1 we have:

Theorem 6.3 (Waldhausen 4.3) If V is a handlebody and .V;F / is an unstabilized
splitting then F is parallel to @V .

Lens spaces

As noted above, in addition to equivalence up to isotopy, we may define another equiv-
alence relation on splittings .M;F /; namely equivalence up to orientation-preserving
homeomorphism of pairs. If @M ¤∅ then we also require that the partition of @M
be respected. Notice that these two equivalence relations do not generally agree,
for example in the presence of incompressible tori. For a modern discussion, with
references, see Bachman and Derby-Talbot [2].

Waldhausen notes that connect sum makes either set of equivalence classes into a
commutative and associative monoid. This monoid is not cancellative. Suppose that
.M;F / is a genus one splitting of a lens space, not equal to the three-sphere. Then
.M;F / is characterized, up to homeomorphism, by a pair of relatively prime integers
.p; q/ with 0 < q < p . Now, letting �F represent F with the opposite orientation,
we find that .M;�F / is characterized by .p; q0/ where

q � q0 D 1 .mod p / :

It follows that .M;F / and .M;�F / are generally not equivalent. On the other
hand, .M;F /#.S3;T / and .M;�F /#.S3;T / are always equivalent. For suppose
that D � F is a small disk, N is a closed regular neighborhood of FXinterior.D/,
and G D @N . Then G is the desired common stabilization.
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Waldhausen ends by suggesting that the pairs .M;F / characterized by .5; 2/ and .7; 2/,
and their orientation reverses (namely .5; 3/ and .7; 4/), have interesting connect
sums. He wonders how many distinct equivalence classes, up to isotopy or up to
homeomorphism, are represented by the four sums

.5; 2/#.7; 2/; .5; 2/#.7; 4/; .5; 3/#.7; 2/; .5; 3/#.7; 4/:

This question was answered by Engmann [8]; no pair of the suggested genus two
splittings are homeomorphic.
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