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GEODESIC IDEAL TRIANGULATIONS EXIST VIRTUALLY

FENG LUO, SAUL SCHLEIMER, AND STEPHAN TILLMANN

(Communicated by Daniel Ruberman)

Abstract. It is shown that every non-compact hyperbolic manifold of finite
volume has a finite cover admitting a geodesic ideal triangulation. Also, every
hyperbolic manifold of finite volume with non-empty, totally geodesic bound-
ary has a finite regular cover which has a geodesic partially truncated tri-
angulation. The proofs use an extension of a result due to Long and Niblo
concerning the separability of peripheral subgroups.

Epstein and Penner [2] used a convex hull construction in Lorentzian space to
show that every non-compact hyperbolic manifold of finite volume has a canonical
subdivision into convex geodesic polyhedra all of whose vertices lie on the sphere at
infinity of hyperbolic space. In general, one cannot expect to further subdivide these
polyhedra into ideal geodesic simplices such that the result is an ideal triangulation.
That this is possible after lifting the cell decomposition to an appropriate finite
cover is the first main result of this paper. A cell decomposition of a hyperbolic n–
manifold into ideal geodesic n–simplices all of which are embedded will be referred
to as an embedded geodesic ideal triangulation.

Theorem 1. Any non-compact hyperbolic manifold of finite volume has a finite
regular cover which admits an embedded geodesic ideal triangulation.

The study of geodesic ideal triangulations of hyperbolic 3–manifolds goes back
to Thurston [13]. They are known to have nice properties through, for instance,
work by Neumann and Zagier [10] and Choi [1]. Petronio and Porti [11] discuss the
question of whether every non-compact hyperbolic 3–manifold of finite volume has
a geodesic ideal triangulation. This question still remains unanswered.

Kojima [6] extended the construction by Epstein and Penner to obtain a canon-
ical decomposition into partially truncated polyhedra of any hyperbolic manifold
with totally geodesic boundary components. A cell decomposition of a hyperbolic
n–manifold with totally geodesic boundary into geodesic partially truncated n–
simplices all of which are embedded will be referred to as an embedded geodesic
partially truncated triangulation.
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Theorem 2. Any finite-volume hyperbolic manifold with non-empty, totally geo-
desic boundary has a finite regular cover which admits an embedded geodesic par-
tially truncated triangulation.

An ideal polyhedron will be viewed as a special instance of a partially truncated
one, which allows a unified proof of Theorems 1 and 2. They are proved by showing
that any cell decomposition lifts to some finite regular cover where it can be sub-
divided consistently. In particular, one has the following application. Kojima [5]
shows that any 3–dimensional finite-volume hyperbolic manifold with non-empty,
totally geodesic boundary has a decomposition into geodesic partially truncated
polyhedra each of which has at most one ideal vertex. Frigerio [3] conjectures that
such a decomposition exists where each polyhedron is a tetrahedron; a virtually
affirmative answer is an immediate consequence of the proof of Theorem 2:

Corollary 3. Any 3-dimensional finite-volume hyperbolic manifold with non-empty,
totally geodesic boundary has a finite regular cover which admits a decomposition
into partially truncated geodesic tetrahedra each of which has at most one ideal
vertex.

The key result used in the proof of Theorem 2 is the following theorem, which
follows easily from work by Long and Niblo [8]. A subgroup H of a group G is
separable in G if given any element γ ∈ G \ H, there is a finite index subgroup
K ≤ G that contains H but g /∈ K. If M is a hyperbolic manifold of finite volume
with (possibly empty) totally geodesic boundary, then a subgroup of π1(M) is
termed peripheral if it is either conjugate to the fundamental group of a totally
geodesic boundary component or to the fundamental group of a cusp or ∂–cusp.

Theorem 4 (Long–Niblo). Let M be a hyperbolic manifold of finite volume with
(possibly empty) totally geodesic boundary. Then every peripheral subgroup of M is
separable in π1(M).

1. Subgroup separability

Let M be a finite-volume hyperbolic n–manifold with non-empty totally geo-
desic boundary. Following Kojima [6], the periphery of M is made up of three
parts: first, ∂M consisting of totally geodesic closed or non-compact hyperbolic
(n − 1)–manifolds; second, (internal) cusps modelled on closed Euclidean (n− 1)–
manifolds; and third, ∂–cusps modelled on compact Euclidean (n − 1)–manifolds
with geodesic boundary. The boundary of ∂–cusps is contained on non-compact
geodesic boundary components.

For the remainder of this paper, M denotes a finite-volume hyperbolic manifold
which is either non-compact or has non-empty totally geodesic boundary. Without
loss of generality, it may be assumed that M is orientable. Note that either M̃ = H

n

or it can be viewed as the complement of an infinite set of hyperplanes in H
n; in

either case there is an identification π1(M) = Γ ≤ Isom+(Hn).

Proposition 5 (Long–Niblo). Let X be a totally geodesic component of ∂M.
Choose a basepoint x ∈ X. Then π1(X, x) is a separable subgroup of π1(M, x).

Proof. Let D denote the manifold obtained by doubling M along X. Then D is
hyperbolic with (possibly empty) totally geodesic boundary, and hence π1(D) ≤
Isom+(Hn) is residually finite due to a result by Mal′cev [9]. The proof in §2 of
Long and Niblo [8] now applies to this setup. �
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Proposition 6. Let X be a horospherical cross section of a cusp or ∂–cusp of M.
Choose a basepoint x ∈ X. Then π1(X, x) is a separable subgroup of π1(M, x).

Proof. This follows from the well-known result that a maximal abelian subgroup of
a residually finite group Γ is separable in Γ (see Ratcliffe [12]). �

Proof of Theorem 4 . First note that if ϕ : G1 → G2 is an isomorphism and H ≤
G1 is separable in G1, then ϕ(H) ≤ G2 is separable in G2. In particular, the
reference to basepoints can be omitted. Next, note that if H ≤ Γ is separable, so
is γ−1Hγ for any γ ∈ Γ. Thus, Theorem 4 follows from the above propositions for
orientable manifolds. If M is non-orientable, denote by Γ0 a subgroup of index two
of Γ corresponding to the fundamental group of the orientable double cover. Then
any subgroup H ≤ Γ is separable in Γ if and only if H ∩Γ0 is separable in Γ0. Now
if H is a peripheral subgroup of Γ, then H ∩Γ0 is a peripheral subgroup of Γ0. �

2. Partially truncated polyhedra

Certain convex geodesic polyhedra in H
n are termed geodesic partially truncated

polyhedra and can be described intrinsically. However, reference to the projec-
tive ball model Bn ⊂ RPn will be made here, and H

n will be identified with Bn

throughout.
Let P̂ be an n–dimensional convex affine polyhedron in RPn such that (1) each

vertex is either called ideal or hyperideal, (2) its ideal vertices are contained on
∂Bn, (3) its hyperideal vertices are contained in RPn \ B

n
, and (4) each face of

codimension two meets B
n
. Then a convex geodesic polyhedron P ⊂ Bn is obtained

by truncating P̂ along hyperplanes canonically associated to its hyperideal vertices
as follows. If v ∈ RPn is a hyperideal vertex, then the associated hyperplane H(v)
is the hyperplane parallel to the orthogonal complement of v which meets ∂Bn

in the set of all points x with the property that there is a tangent line to ∂Bn

passing through x and v. The polyhedron P is termed a geodesic partially truncated
polyhedron, and P̂ the affine fellow of P. Combinatorially, P is obtained from P̂
by removing disjoint open stars of all the hyperideal vertices as well as all the ideal
vertices.

If a codimension-one face of P is contained in a face of P̂ , then it is called
lateral ; otherwise it is a truncation face. Lateral faces and truncation faces meet
at right angles. If P has no truncation faces, then it is also termed a geodesic ideal
polyhedron.

Any subdivision of P̂ into n–simplices without introducing new vertices uniquely
determines a subdivision of P into geodesic partially truncated n–simplices.

3. The pulling construction

Let (C, Φ) be a geodesic partially truncated cell decomposition of M, that is, C
is a disjoint union of geodesic partially truncated polyhedra, each element in Φ is
an isometric face pairing, and M = C/Φ. Then (C, Φ) pulls back to a Γ–equivariant
cell decomposition of M̃ ⊆ Bn, and for each P ∈ C one may choose an isometric
lift P̃ to Bn and hence an affine fellow P̂ ⊂ RPn. The hyperideal vertices of P̂
correspond to totally geodesic boundary components of M, the ideal vertices of P̂
to internal cusps, and the intersection of codimension-two faces of P̂ with ∂Bn to
∂–cusps.
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Let Ĉ =
⋃
{P̂} be the finite disjoint union of the affine fellows, and view P ⊂ P̂ .

The cell decomposition of M induces face pairings Φ̂ such that M is obtained from
the pseudo-manifold M̂ = Ĉ/Φ̂ by deleting the ideal vertices and open stars of the
hyperideal vertices, and each element of Φ̂ restricts to an element of Φ.

The following subdivision procedure is akin to Lemma 1.4 in Hudson [4] and
constructions found in Section 17.2 of Lee [7].

Lemma 7 (Pulling construction). Suppose that no polyhedron in Ĉ has two distinct
vertices identified in M̂. Then M has an embedded geodesic partially truncated
triangulation.

Proof. It suffices to show that there is a subdivision of (Ĉ, Φ̂) such that (1) each
polyhedron in Ĉ is simplicially subdivided into straight affine n–simplices with-
out introducing new vertices, and (2) the elements of Φ̂ restrict to simplicial face
pairings with respect to the subdivision.

Choose an ordering of the cusps and totally geodesic boundary components of
M. This determines a well-defined, unique ordering of the 0–skeleton of M̂ and, by
assumption, of the vertices of each polyhedron in Ĉ. One thus obtains the following
unique subdivision of each polyhedron.

Let P ∈ C, and label its vertices v0, v1, ..., vk such that vi > vj if i < j. Subdivide
P̂ by coning to v0 each element of its i–skeleton, 0 ≤ i ≤ n − 1, that does not
contain v0. The result is a collection of polyhedra, P0, together with well-defined
face pairings Φ0 such that the identification space P0/Φ0 is P̂ . One now proceeds
inductively. Given Pj and Φj , subdivide each polyhedron in Pj containing vj+1 by
coning to vj+1 each element of its i–skeleton, 0 ≤ i ≤ n − 1, that does not contain
vj+1. This gives Pj+1, together with well-defined face pairings Φj+1 such that the
identification space Pj+1/Φj+1 is P̂ .

It needs to be shown that the set Pk is a collection of n–simplices. Indeed, let
Q ∈ Pk, and assume that vh is its smallest vertex. Then Q is the cone to vh of
an (n− 1)–dimensional face Fn−1 not containing vh. The face Fn−1 is the cone to
its smallest vertex of an (n− 2)–dimensional face Fn−2 not containing that vertex,
and it follows inductively that Q has exactly n + 1 vertices.

Let P̂ , P̂ ′ ∈ Ĉ with top-dimensional faces F̂ , F̂ ′ such that there is a face pairing
ϕ ∈ Φ̂ with ϕ(F̂ ) = F̂ ′. The respective subdivisions of F̂ and F̂ ′ into ideal (n− 1)–
simplices depend uniquely on the ordering of their vertices, whence ϕ is simplicial
with respect to the subdivisions, and restricts to a simplicial face pairing for each n–
simplex in the subdivision. Moreover, the resulting decomposition of M̂ is simplicial
since any n–simplex has no two vertices identified, and hence must be embedded
in M̂. �

4. Proof of the main results

The strategy of the proof is to create a finite regular cover N of M with the
property that Lemma 7 can be applied to the pull-back of C. The notation of the
previous sections will be used. Recall that for each P ∈ C, there is the fixed affine
fellow P̂ ⊂ RPn. The action of Γ on B

n
extends to RPn \ B

n
via the action on

the associated hyperplanes. In particular, if v ∈ P̂ is a vertex, then the subgroup
StabΓ(v) ≤ Γ is peripheral.
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Let D(M) be the following set of pairs of points in RPn : (v, w) ∈ D(M) if and
only if there is some P ∈ C such that v and w are distinct vertices of P̂ . Note that
D(M) is finite; its elements are termed diagonals for M. A diagonal (v, w) is said to
be returning if there is γ ∈ Γ such that γv = w. Note that the pulling construction
can be applied to Ĉ if no diagonal is returning. Hence assume that this is not the
case.

If p : N → M is a finite cover, then the cell decomposition (C, Φ) pulls back to
a cell decomposition of N, and there is a corresponding set of diagonals for N. If
P ∈ C pulls back to P1, ..., Pk, then (up to relabelling) one may choose P̂ = P̂1. In
particular, it may be assumed that D(M) ⊂ D(N); any other element of D(N) is
of the form γ · (v, w) = (γv, γw) for some γ ∈ Γ and (v, w) ∈ D(M). This choice
will be made throughout. If (v, w) ∈ D(M) is not a returning diagonal for M, then
it is also not a returning diagonal for N.

Assume that (v, w) ∈ D(M) is a returning diagonal.

Lemma 8. There is a finite (possibly not regular) cover p : N(v,w) → M such that
(v, w) ∈ D(N) is not a returning diagonal.

Proof. Since (v, w) is a returning diagonal for M, there is γ ∈ Γ such that γv = w.
In particular, γ /∈ StabΓ(v) because v and w are distinct. Since StabΓ(v) is a pe-
ripheral subgroup, Theorem 4 yields a finite index subgroup K ≤ Γ which contains
StabΓ(v) but γ /∈ K. Denote by p : N(v,w) → M the finite cover corresponding to
the subgroup K, i.e. N(v,w) = M̃/K.

Assume that (v, w) ∈ D(N) is a returning diagonal. Then there is δ ∈ K with
the property that δv = w. Thus, γ−1δ ∈ StabΓ(v) ≤ K, which implies γ ∈ K.
But this contradicts the choice of K, whence (v, w) is not a returning diagonal for
N. �

Lemma 9. If N → M is a regular cover that factors through N(v,w), then no
element of the orbit Γ · (v, w) can be a returning diagonal for N.

Proof. If N → N(v,w) → M, where N → M is a regular cover, then (v, w) cannot
be a returning diagonal for N. If N → M is a regular cover, then no element of
the orbit Γ · (v, w) is a returning diagonal for N since the action of the group of
deck transformations is transitive and π1(N) corresponds to a normal subgroup of
π1(M). �

For each diagonal (v, w) choose a finite cover N(v,w) → M with the property that
(v, w) is not a returning diagonal for N(v,w). This gives a finite collection of covers,
and one may pass to a common finite cover N with the property that N → M
is regular. In particular, no element of the orbit of any diagonal for M can be a
returning diagonal for N. The cell decomposition (C, Φ) of M lifts to a polyhedral
cell decomposition of N, to which the pulling construction can thus be applied.
This completes the proof of Theorems 1 and 2. �
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