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Sphere recognition lies in NP

Saul Schleimer

Abstract. We prove that the three-sphere recognition problem lies in NP.
Rubinstein [Haifa, 1992] and Thompson [Math. Res. Let., 1994] showed that
the problem is decidable. Our result relies on Casson’s version [MSRI, 1997] of
their algorithm and recent results of Agol, Hass, and Thurston [STOC, 2002].

1. Introduction

The three-sphere recognition problem asks: given a triangulation T , is the
underlying space |T | homeomorphic to the three-sphere? To solve this problem,
Rubinstein [R92] introduced almost normal two-spheres (see Section 4). Thomp-
son [T94] greatly simplified Rubinstein’s proof using Gabai’s technique of thin
position [G87].

Theorem 1.1 (Rubinstein [R92], Thompson [T94]). The three-sphere recog-
nition problem lies in EXPTIME.

Casson [C97] then introduced the novel idea of crushing triangulations along
normal two-spheres (see Section 13). This reduced the space complexity.

Theorem 14.1 (Casson [C97]). The three-sphere recognition problem lies in
PSPACE.

Following Casson’s algorithm and work of Agol, Hass, and Thurston [AHT02]
(see Theorem 4.6) we show the following.

Theorem 15.1. The three-sphere recognition problem lies in NP.

That is, any triangulation T of the three-sphere admits a polynomial-sized cer-
tificate: a proof that T is indeed a triangulation of the three-sphere (see Section 3).
Theorem 15.1 has an immediate corollary.

Corollary 1.2. The three-ball recognition problem lies in NP.

Proof. Theorem 3.4 gives a polynomial-time algorithm to verify that |T | is
a three-manifold. Suppose that T is a triangulation of the three-ball. First verify
that that S = ∂|T | is a two-sphere by checking connectedness and Euler charac-
teristic. Next, build D(T ): the triangulation obtained by doubling across S. Next,
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Theorem 15.1 gives a certificate that |D(T )| is a three-sphere. Finally, Alexander’s
Theorem [H01, Theorem 1.1] implies that the two-sphere S bounds a three-ball in
|D(T )|. !

A surface vector v(S) is the vector of normal coordinates of S with respect to
the triangulation T (Section 4.1). Here is a result closely related to Corollary 1.2.

Corollary 1.3. The following problem lies in NP: given a triangulation T of
a three-manifold and a surface vector v(S), decide if S bounds a three-ball in |T |.

Proof. Using Lemma 4.5 to compute the Euler characteristic and using The-
orem 4.6 to check connectedness, verify that S is a two-sphere. Crush the triangu-
lation T along the surface S to obtain a triangulation T ′ (Section 13). Theorem 5.9
of Jaco and Rubinstein’s paper [JR03] tells us that the connect sum of the compo-
nents of |T ′| is homeomorphic to |T |, up to keeping track of lens space summands.

Following Casson, Barchechat’s thesis [B03, page 50] gives a polynomial-time
algorithm that reassembles these lens spaces and the components of |T ′|, recovering
|T |. Thus we only need to check that these lens spaces and the components of |T ′|,
arising as submanifolds of the ball bounded by S, are three-spheres. The former
are dealt with as in [B03]. The latter are certified using Theorem 15.1. !

We next state a technical result, involved in the proof of Theorem 15.1, that
may be of independent interest.

Theorem 12.1. There is a polynomial-time algorithm that, given a triangula-
tion T of an oriented three-manifold and v(S) where S is a transversely oriented
almost normal surface, produces as output v(norm(S)), the vector for the normal-
ization of S.

Corollary 1.3, Theorem 12.1, and the bounds given by [S01, Chapter 6] result
in the following.

Corollary 1.4. The following problem lies in NP: given a triangulation T
of a closed orientable irreducible atoroidal three-manifold, decide if |T | is a surface
bundle over the circle. !

Corollary 1.4, unfortunately, is very far from proving that bundle recognition
lies in NP; certifying irreducibility or atoroidality are interesting and difficult open
questions. Note that certifying zero-efficiency would in turn certify irreducibility.
Corollary 1.4 is similar to a earlier result of Ivanov [Iv01]. He shows that recognition
of the three-sphere, amongst the class of zero-efficient triangulations (there called
irreducible Q–triangulations), lies in NP.

There are other problems in three-manifold topology lying in NP. Hass, La-
garias, and Pippenger [HLP99] have shown that the unknotting problem, first
solved by Haken, lies in NP. Agol [A] has given a proof, using sutured manifold hier-
archies, that the recognition of Haken manifolds lies in NP (see also [JO84]). Agol’s
algorithm requires, as the base case, some version of Corollary 1.3. Agol deduces
that the unknotting problem lies in co-NP. Agol, Hass and Thurston [AHT02]
have shown that the 3-manifold knot genus problem is NP-complete. For a discus-
sion of algorithmic three-manifold topology we refer the reader to [HLP99] or to
Matveev’s book [M03].
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Historical note. Three-sphere recognition (Theorem 1.1) is a fundamental re-
sult in low-dimensional topology. Accordingly, many expositions exist. A solution
to the problem was first presented by Rubinstein [R92] in a series of lectures in
Haifa, Israel, in 1992. Thompson [T94] gave a different proof, relying on Gabai’s
technique of thin position [G87] soon after. Rubinstein’s papers [R95, R97] lay
out his original ideas on the problem. Shortly after Thompson’s paper appeared,
Matveev [M95] gave an exposition of her algorithm using handle decompositions in-
stead of triangulations; his paper gives a particularly elegant version of the lightbulb
trick, replacing Thompson’s “fluorescent light bulb trick” [T94, Section 3.1]. Next,
Casson [C97], in lectures at MSRI, California, introduced the idea of crushing tri-
angulations along normal two-spheres. An exposition of the Rubinstein-Thompson
algorithm was given by Ivanov [Iv01], stated in the language of Q–triangulations.
Barchechat’s thesis [B03, Chapter 6.1] gives an exposition of Casson’s algorithm;
it has been implemented by Burton in his computer program Regina [Bu99].

Regarding the present work: the material in Sections 7 to 10 had its genesis
as Chapter 4 of my thesis [S01], supervised by Andrew Casson; this material has
not been otherwise published. Ian Agol, when we were both at the University of
Illinois, Chicago, suggested that those techniques might bear on the computational
complexity of three-sphere recognition. This paper, first posted to the arXiv in
2004, is the result. Another novelty, also introduced here, is to use the Agol-Hass-
Thurston machinery [AHT02] to produce a normalization algorithm that runs in
polynomial time (Theorem 12.1).

In 2008, Sergei Ivanov [Iv08] published a different proof of Theorem 15.1. As
in this paper, his argument closely follows Casson’s algorithm. Our polynomial-
time normalization is, in his paper, replaced by a discussion of vertex fundamental
surfaces (following Hass-Lagarias-Pippinger [HLP99]) together with the intriguing
idea of crushing along almost normal two-spheres. It is an interesting question
whether his method is more efficient than ours. His paper also shows that the
problem of recognizing manifolds with compressible boundary lies in NP.

Acknowledgments. I thank both Andrew Casson and Ian Agol for many
enlightening mathematical conversations. I thank the mathematics department at
UIC for its support during the writing of this paper. I thank the referees for their
comments and corrections.

2. Sketch of the proof of the main theorem

We closely follow Casson’s algorithm [C97] for recognizing the three-sphere.
Fix T , a triangulation of S3. Produce a certificate {(Ti, v(Si))}n

i=0 as follows: The
triangulation T0 is equal to T . For every i, Lemma 4.13 provides Si, a normal
two-sphere in Ti that is not vertex-linking, if such exists. If T is zero-efficient then
Lemma 4.13 provides Si, an almost normal two-sphere in Ti. Definitions are given
in Section 4.

If Si is normal apply Theorem 13.1: Ti+1 is obtained from Ti by crushing Ti

along Si. Briefly, we cut |Ti| along Si, cone the resulting two-sphere boundary com-
ponents to points, and collapse non-tetrahedral cells of the resulting cell structure
to obtain the triangulation Ti+1. This is discussed in Section 13, below.

If Si is almost normal then obtain Ti+1 from Ti by deleting the component of
|Ti| that contains Si. Finally, the last triangulation Tn is empty, as is Sn.
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That completes the construction of the certificate. We now turn to the proce-
dure for checking a given certificate; we cite a series of polynomial-time algorithms
that verify each part of the certificate. Begin by checking that T is a triangulation
of a three-manifold that is a homology three-sphere, using Theorems 3.4 and 3.5.
Next, check if T = T0 using Lemma 3.1. For general i, verify that Si is a two-sphere
by checking its Euler characteristic (Lemma 4.5) and checking that it is connected
(Theorem 4.6). Next, if Si is normal verify that the triangulation Ti+1 is identical
to the triangulation obtained by crushing Ti along Si. To do this in polynomial
time requires Theorem 13.1 and Lemma 3.1. If Si is almost normal then check
that the component T ′ of Ti containing Si satisfies |T ′| ∼= S3 using Theorems 12.1
and 10.3.

Finally, by Theorem 13.2, for every i we have that #|Ti| ∼= #|Ti+1| where the
connect sum on the left hand side ranges over the components of |Ti| while the right
hand side ranges over the components of |Ti+1|. By definition the empty connect
sum is S3, and this finishes the verification of the certificate.

3. Definitions

Complexity theory. Please consult [GJ79, P94] for more thorough treat-
ments.

A problem P is a function from a set of finite binary strings, the instances, to
another set of finite binary strings, the answers. If T is an instance we use size(T )
to denote the length of T . A problem P is a decision problem if the range of P is
the set {0, 1}. A solution for P is a Turing machine M that, given an instance T
on its tape, computes and then halts with only the answer P (T ) on its tape. We
will engage in the usual abuse of calling such a Turing machine an algorithm (or
procedure) that solves the problem P .

An algorithm M runs in polynomial time if there is a polynomial q so that, for
any instance T , the machine M halts in time at most q(size(T )). Computing q
precisely, or even its degree, is a delicate question and sensitive to the exact model
of computation. Thus one simply says that a decision problem lies in P if it has
some polynomial-time solution.

A decision problem P lies in NP if there is a polynomial q with the following
property: For all instances T with P (T ) = 1 there is a proof of length at most
q(size(T )) that P (T ) = 1. Such a polynomial-length proof is a certificate for T .
More concretely: Suppose that there is a polynomial q′ and a Turing machine M′

so that, for every instance T with P (T ) = 1, there is a string C where M′ run on
(T, C) outputs the desired proof that P (T ) = 1 in time less than q′(size(T )). Then,
again, the problem P is in NP and we again call C a certificate for T .

A decision problem lies in PSPACE if there is a polynomial q so that on every
instance T and for every step of the computation the distance between the first and
last non-blank squares of the tape of M is at most q(size(T )).

A decision problem lies in EXPTIME if there is a polynomial q so that that
the Turing machine M halts in time at most exp(q(size(T ))) on every instance T .
Note that P ⊂ NP ⊂ PSPACE ⊂ EXPTIME. At least one of these inclusions
is strict as P ̸= EXPTIME.

Triangulations. A model tetrahedron τ is a copy of the regular Euclidean
tetrahedron of side length one with vertices labeled by 0, 1, 2, and 3. See Figure 1
for a picture. Label the six edges by their vertices (0, 1), (0, 2), and so on. Label
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the four faces by the number of the vertex they do not contain. The standard
orientation on R3 induces an orientation on the model tetrahedron which in turn
induces orientations on the faces.

3

0

2

1

Figure 1. A regular Euclidean tetrahedron with all side-lengths
equal to one.

A labeled triangulation T , of size n, is a collection of n model tetrahedra {τi}n
i=1,

each with a unique name, and a collection of face pairings.
Here a face pairing is a triple (i, j,σ) specifying a pair of tetrahedra τi and τj

as well as an isometry σ from a face of τi to a face of τj . We will omit the labelings
when they are clear from the context.

A triangulation is not required to be a simplicial complex. However every face
must appear in exactly two face pairings or in none. We do allow face pairings of
the form (i, i,σ) but, as a matter of convenience, we do not allow a face to be glued
to itself.

Lemma 3.1. There is a polynomial-time algorithm that, given triangulations T
and T ′, decides whether or not T is identical to T ′.

Proof. Recall that T and T ′ are labeled: all of the tetrahedra come equipped
with names. To check for isomorphism check that every name appearing in T also
appears in T ′ and that all of the face pairings in T and T ′ agree. !

Remark 3.2. Note that, for unlabeled triangulations, there is still a quadratic
algorithm that determines isomorphism of triangulations. This is because an iso-
morphism is determined by the image of a single tetrahedron.

Let |T | be the underlying topological space; the space obtained from the disjoint
union of the model tetrahedra by taking the quotient by the face pairings. Notice
that |T | is not, in general, a manifold.

At this point we should fix an encoding scheme which translates triangulations
into binary strings. However we will not bother to do more than remark that there
are schemes which require about n log(n) bits to specify a triangulation with n
tetrahedra. (This blow-up in length is due to the necessity of giving the tetrahedra
unique names.) Thus we will abuse notation and write size(T ) = n even though
the representation of T as a binary string is somewhat longer.

Topology. Recall that the three-sphere is the three-manifold

S3 = {x ∈ R4 | ∥x∥ = 1}.
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The connect sum M#N of two connected oriented three-manifolds M and N is
obtained by removing an open three-ball from the interior of each of M and N and
gluing the resulting two-sphere boundary components with an orientation reversing
homeomorphism. The connect sum naturally extends to a collection of connected,
oriented three-manifolds; if M is the disjoint union of connected three-manifolds
then #M denotes their connect sum.

Note that Alexander’s Theorem [H01, Theorem 1.1] implies that M#S3 is
homeomorphic to M , for any three-manifold M . We adopt the convention that the
empty connect sum yields the three-sphere.

Definition 3.3. Suppose that T is a triangulation and suppose that p ∈ |T |.
Fix ϵ, sufficiently small, and take ϵ–neighborhoods about the preimages of p in the
model tetrahedra. Each is a cone on a subsurface of the sphere. These fit together
to form a cone on a two-complex Sp, the link of p. If p ∈ T 0 then Sp is called a
vertex link.

We now relate several algorithms which take triangulations and check topolog-
ical properties. See [HLP99, JT95, M03] for in-depth discussions.

Theorem 3.4. There is a polynomial-time algorithm that, given a triangulation
T , decides whether or not |T | is a three-manifold.

Proof. The underlying space |T | is a quotient of a disjoint union of finitely
many model tetrahedra. Furthermore, the face pairings are isometries. It follows
that |T | is second-countable and Hausdorff.

It remains only to verify that every point p ∈ |T | has a neighborhood home-
omorphic to a three-ball. Equivalently, every point p has link Sp being a sphere
or a disk. This is automatic for points lying in the interior of tetrahedra. Since
faces cannot be glued to themselves, any point in the interior of a face also has the
desired link.

Now suppose that p lies in the interior of an edge. The link Sp is a union of
spherical lunes. Thus Sp is D2, S2, or RP2. The latter may happen only at the
midpoint of an edge.

Finally, suppose that p is a vertex. Now Sp is a union of spherical triangles.
Again, p has the desired three-ball neighborhood if and only if Sp is a sphere or a
disk.

Thus the algorithm need only check how tetrahedra are glued around an edge
and the topology of each vertex link. In terms of size(T ) there are at most linearly
many edges and vertices. Checking each edge and each vertex link takes at most
polynomial time. This is because there are at most 6·size(T ) tetrahedra around any
edge. Also, each vertex link is a union of at most 4 · size(T ) spherical triangles. !

Recall that a three-manifold M is a homology three-sphere if it has the same
homology groups as S3.

Theorem 3.5. There is a polynomial-time algorithm that, given a triangulation
T of a three-manifold, decides whether or not |T | is a homology three-sphere.

Proof. The homology groups H∗(|T |, Z) may be read off from the Smith nor-
mal forms of the chain boundary maps: we refer the reader to [DC91, Section 2] for
an accessible overview of algorithmic computation of homology. Finally, the Smith
normal form of an integer matrix may be computed in polynomial time [Il89]. !
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We record a few consequences of the homology three-sphere assumption.

Lemma 3.6. If M3 is a homology three-sphere then M is connected, closed,
and orientable. Every closed, embedded surface in M is orientable and separating.
Every connect summand of M is also a homology three-sphere. !

It follows that if N is a connect summand of a homology three-sphere and N
is a lens space then N ∼= S3.

4. Normal and almost normal surfaces

In order to study triangulations we first discuss Haken’s theory of normal sur-
faces. See [HLP99] for a detailed discussion, including references to the founda-
tional work of Haken and Schubert. Other references on normal surfaces include
[JR03, B03].

Definition 4.1. An isotopy H : |T | × I → |T | is a normal isotopy if, for all
s ∈ I and for every simplex σ in T , Hs(σ) = σ.

We make the same definition for faces, model tetrahedra, and subcomplexes of
the triangulation. Two subsets of such are normally isotopic if there is a normal
isotopy taking one to the other.

For example, suppose that f is a face of a model tetrahedron τ . There are three
normal isotopy classes of properly embedded arcs with end points in distinct edges
of f . Any such arc in f is called a normal arc. A simple closed curve α ⊂ ∂τ is a
normal curve if α is transverse to the one-skeleton of τ and α is a union of normal
arcs. The length of a normal curve α is the number of normal arcs it contains. A
normal curve α is called short if it has length three or four.

Lemma 4.2. Suppose that α ⊂ ∂τ is a connected normal curve. The following
are equivalent:

• α is short.
• α meets every edge of τ1 at most once.
• α misses some edge of τ1.

Proof. To see this, let {vij | 0 ≤ i < j ≤ 3} be the number of intersections
of α with each of the six edges of τ . There are twelve inequalities v01 ≤ v12 + v02,
and so on. Additionally there are six congruences v01 + v12 + v02 ≡ 0, and so on,
all modulo two. An easy argument now gives the desired results. !

In a model tetrahedron there are seven normal isotopy classes (or types) of
normal disk, corresponding to the seven distinct short normal curves in ∂τ . See
Figure 2. These are the four normal triangles and three normal quads. The triangles
are of type 0, 1, 2, or 3 depending on which vertex they cut off of the model
tetrahedron, τ . The quads are of type 1, 2, or 3 depending on which vertex is with
0 when τ is cut by the quad.

Definition 4.3. A surface S, properly embedded in |T |, is normal if for every
model tetrahedron τ ∈ T the preimage of S in τ is a collection of normal disks.

There is also the almost normal octagon and almost normal annulus, defined
by Rubinstein [R97]. See Figure 3 for examples. An octagon is a disk in the model
tetrahedron bounded by a normal curve of length eight. An annulus is obtained by
taking two disjoint normal disks and tubing them together along an arc parallel to
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Figure 2. Two of the four triangles and one of the three quads.

an edge of the model tetrahedron. A surface S properly embedded in |T | is almost
normal if the preimage of S in τ is a collection of normal disks for every tetrahedron
τ ∈ T , except one. In the exceptional tetrahedron there is a collection of normal
disks and exactly one almost normal piece.

Figure 3. One of the three octagons and one of the 25 annuli.

Remark 4.4. Following Jaco and Rubinstein [JR03, page 74] we do not allow,
as an almost normal surface, parallel normal surfaces connected by an almost nor-
mal annulus contained in the product region between them. We also remark that in
many cases of interest the almost normal annulus can be removed from the theory.
For example, see the proof of Proposition 5.12 in [JR03].

4.1. Weight and Euler characteristic. For any surface S ⊂ |T |, transverse
to the skeleta, define its weight to be the number of intersections between S and the
one-skeleton T 1: weight(S) = |S ∩ T 1|. We record a normal surface S as a surface
vector v(S) ∈ Z7·size(T ). The first 4 · size(T ) coordinates describe the number of
normal triangles of each type while the last 3 · size(T ) coordinates describe the
number of normal quads of each type. At least two-thirds of these last 3 · size(T )
coordinates are zero as an embedded surface has only one type of normal quad in
each tetrahedron.

For an almost normal surface S we again record the vector v(S) of normal disks,
as well as the type of the almost normal piece and the name of the tetrahedron
containing it. (There is a small issue when the almost normal piece is an annulus
obtained by tubing a pair of normal disks of the same type. Then v(S) has length
7 · size(T ) + 1 as one parallel collection of normal disks may be interrupted by the
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almost normal piece.) Note that two normal (or almost normal) surfaces have the
same vector if and only if they are normally isotopic.

We now have a few results concerning normal and almost normal surfaces. We
assume throughout that the triangulation T has underlying space a three-manifold.
We first reproduce Algorithm 9.1 from [JT95]. See the end of Section 5 in [AHT02]
for a similar treatment.

Lemma 4.5. There is a polynomial-time algorithm that, given a triangulation
T and a normal or almost normal surface vector v(S), computes the weight of S
and the Euler characteristic of S.

Proof. To find the weight of S on a single edge e of T 1 count the number
of normal disks meeting e (with multiplicity depending on how many times the
containing tetrahedron meets e) and divide by the valency of e in T 2, the two-
skeleton.

For the Euler characteristic simply use the formula χ(S) = F −E + V and the
cell structure on S coming from its being a normal surface. (If S contains an almost
normal annulus then we must add a single edge running between the two boundary
components of the annulus.) The number of faces is the sum of the coordinates
of v(S). The number of edges is 3/2 times the sum of the triangle coordinates
plus twice the sum of the quad coordinates. The number of vertices of S can be
computed from v(S) and the degrees of the edges in T 1. Small corrections are
necessary when S is almost normal. !

Theorem 4.6 (Agol-Hass-Thurston [AHT02]). There is a polynomial-time
algorithm that, given a triangulation T and a normal or almost normal surface
vector v(S), produces integers ni and surface vectors v(Fi) so that

• v(S) =
∑

ni · v(Fi),
• if i ̸= j then Fi ∩ Fj = ∅, and
• if i ̸= j then v(Fi) ̸= v(Fj).

Proof. This is one application of the “extended counting algorithm” given
in [AHT02]. See the proof of Corollary 17 of that paper. !

4.2. Haken sums. Suppose S, F, G are three non-empty normal surfaces with
v(S) = v(F )+v(G). Then we say that F and G are compatible: in every tetrahedron
where both F or G have quads, these quads are of the same type. After a normal
isotopy of F and G we find that S is the Haken sum of F and G; there is a cut-
and-paste of F and G constructing S. It follows that χ(S) = χ(F ) + χ(G).

Likewise, suppose S and F are almost normal with identical almost normal
piece, G is normal, the quads of G are disjoint from the almost normal piece of F ,
and the normal coordinates add: v(S) = v(F ) + v(G). Again we say that S is a
Haken sum. If F contains an octagon then we may normally isotope G so that no
normal triangle of G meets the octagon. If F contains an annulus we may normally
isotope G so that no triangle of G meets the annulus in a meridian of the tube. In
either case we may perform cut-and-paste and find χ(S) = χ(F ) + χ(G).

When S is a Haken sum as above we write S = F + G. If S is not a Haken
sum then S is fundamental.

Lemma 4.7. If S = F +G, where G is a vertex link, then S is not connected. !
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Lemma 4.8. If S ⊂ |T | is a fundamental normal or almost normal surface then
the largest entry of v(S) is at most exp(size(T )).

Proof. There is a constant c (not depending on T or S) such that the largest
entry of v(S) is less than 2c·size(T ). This lemma is proved for normal surfaces
in [HLP99, Lemma 6.1]. In the almost normal case, when the almost normal
piece is an octagon, we obtain similar bounds using the system of linear equations
provided by [T94, Section 5]. The case of the annulus is similar. !

Lemma 4.9. Suppose T is a triangulation of a homology three-sphere. Suppose
T contains a non-vertex-linking normal two-sphere. Then T contains a fundamental
non-vertex-linking normal two-sphere.

Proof. This is similar to work of Haken and Schubert; our statement follows
directly from Proposition 5.7 of [JR03]. The essential points are that Euler char-
acteristic is additive under Haken sum, that T does not contain any normal RP2 or
D2 (by Lemma 3.6), and that no summand is vertex-linking (by Lemma 4.7). !

Definition 4.10. Fix a triangulation T so that |T | is a three-manifold. If every
normal two-sphere is vertex linking then, following Jaco and Rubinstein [JR03], we
say that T is zero-efficient.

Lemma 4.11. Suppose T is a zero-efficient triangulation of a homology three-
sphere. Suppose T contains an almost normal two-sphere. Then T contains a
fundamental almost normal two-sphere.

Proof. This is identical to the proof of Lemma 4.9, except that S cannot have
a normal two-sphere summand as T is zero-efficient. !

Of a much different level of difficulty is the following.

Theorem 4.12 (Rubinstein [R92], Thompson [T94]). If |T | ∼= S3 then T
contains an almost normal two-sphere. !

We end this section with a useful lemma.

Lemma 4.13. There is an exponential-time algorithm that, given a triangulation
T of a closed three-manifold

• produces the surface vector of a fundamental non-vertex-linking normal
two-sphere or, if none exists,

• produces the surface vector of a fundamental almost normal two-sphere or,
if neither exists,

• reports that |T | is not homeomorphic to the three-sphere.

Proof. We only sketch a proof – the interested reader should consult [HLP99],
[JR03, page 66] or [B03, page 83]. If T admits a non-vertex-linking normal two-
sphere or an almost normal two-sphere then, by Lemmas 4.9 and 4.11 there is
a fundamental such surface. This surface can now be found by enumerating all
fundamental surfaces (a finite list, by work of Haken) and checking Euler charac-
teristics (Lemma 4.5). On the other hand, if no almost normal two-sphere exists
then Theorem 4.12 implies that |T | is not the three-sphere.
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As presented the running time of the algorithm is unclear. The time depends
on the number of fundamental surfaces. However, in both cases (normal or al-
most normal) fundamental solutions may be replaced by vertex fundamental sur-
faces [JT95, C97]. This gives an algorithm with running-time at most a polynomial
multiplied by 3size(T ). !

5. Blocked submanifolds

Normal (and almost normal) surfaces cut a triangulated manifold into pieces.
These submanifolds have natural polyhedral structures which we now investigate.

Let τ be a model tetrahedron, and suppose that S ⊂ τ is a embedded collection
of normal disks and at most one almost normal piece. Let B be the closure of any
component of τ − S. We call B a block. See Figure 4.

Figure 4. The tetrahedron τ cut along S. Note that in this ex-
ample there are two blocks of the form “normal disk cross interval”.

A block cobounded by two normally isotopic normal disks is called a product
block. All other blocks are called core blocks. Note that there are only seven
classes (or types) of product block, corresponding to the seven types of normal
disks. Likewise there is a bounded number of core blocks. Five such are shown
in Figure 4, but many more are possible. Most of these meet an almost normal
annulus.

Suppose that B is a block. The components of ∂B meeting S are the horizontal
boundary components of B, denoted ∂hB. All other faces of B (the faces of B which
lie in the two-skeleton) are ∂vB, the vertical boundary.

Suppose now that T is a triangulation of a three-manifold and S ⊂ |T | is a
normal or almost normal surface. For simplicity, suppose that S is transversely
oriented and separating. Let NS be the closure of the component of |T |−S pointed
at by the transverse orientation.

We call NS a blocked submanifold of |T |. Let N̂P be the union of all product
blocks in NS and let N̂C be the union of all core blocks in NS .

Remark 5.1. In any blocked submanifold the number of core blocks is at most
linear in size(T ). In fact there are at most six in each tetrahedron plus possibly
two more coming from the almost normal annulus.

Note that N̂P and N̂C need not be submanifolds of |T |. To produce submani-
folds let NP be a closed regular neighborhood of N̂P , taken inside of NS . Also, take
NC to be the closure of NS − NP . Note the asymmetry between the definitions of
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NP and NC : we have N̂P ⊂ NP while NC ⊂ N̂C . As above define ∂hNP = NP ∩S
and ∂vNP = ∂NP − ∂hNP . The horizontal and vertical boundaries ∂hNC and
∂vNC are defined similarly.

We now give an efficient encoding of a component N ⊂ NP , similar to the
surface vectors v(S). As usual, two blocks B, B′ of N are of the same type if there
is a normal isotopy of the model tetrahedron sending B to B′. A stack k is all blocks
of N of a fixed type. The size of k is the number of blocks it contains. Orienting k
gives positions to the blocks in k. The block vector v(N) = (vk(N)) is a vector in
Z7·size(T ) recording the size of each stack.

We also record the vertical boundary of N ; note that ∂vN , as it is the boundary
of a regular neighborhood of N̂ , is subdivided into a linear number of vertical
rectangles (Remark 5.1). Along with the annuli ∂vN we record the position of
every block (or position) in every stack giving rise to a rectangle in ∂vN . Taken all
together, the block vector, the vertical boundary, the positions in the stacks, and
the matching equations suffice to recover N up to normal isotopy.

Theorem 5.2. There is a polynomial-time algorithm that, given a triangulation
T and a surface vector v(S) for a transversely oriented S, produces the block vector
v(N), the vertical boundary ∂vN , and the stack positions for every connected com-
ponent N ⊂ NP ⊂ NS . In addition, for every N , every stack k, and every position
p in k (not necessarily coming from N) the algorithm computes how p partitions
the number vk(N).

Proof. When S is not separating replace S by the horizontal boundary of a
regular neighborhood S × I ⊂ |T |, with transverse orientation pointing outward.
Take NS equal to the closure of |T | − (S × [0, 1]). In what follows we assume that
S is separating.

By Remark 5.1 we may explicitly build the core NC for NS . The vertical
boundary of NC is the desired collection of annuli.

Every normal disk meets an edge (0i) of the containing model tetrahedron,
minimizing i. The transverse orientation on S is equivalent to a bit vector (ϵk) ∈
{0, 1}7·size(T ), as follows. The disk (of type k in S) closest to the vertex 0 has
transverse orientation pointing away from 0 if and only if ϵk = 0. The transverse
orientation of the mth disk of type k now depends only on the parity of m. Verifying
that (ϵk) gives a consistent transverse orientation on the whole of S is a polynomial
number of parity calculations.

Recall that the transverse orientation points into NS . Let v(NP ) be the block
vector. If vk(S) is odd then vk(NP ) = (vk(S) − 1)/2. If vk(S) is even then
vk(NP ) = (vk(S) − 2ϵk)/2. We may now label every rectangle in ∂vNP by its
position in the corresponding stack. As in Theorem 4.6 use the extended counting
algorithm [AHT02] to split v(NP ) as a sum of block vectors together with vertical
boundaries. For any component N of NP the counting algorithm can also detect
how any position p in any stack k partitions the number vk(N). We do this by
modifying the weight vector to record partitions instead of just weights. See the
second paragraph of the proof of Corollary 17 in [AHT02]. !

Remark 5.3. If S is connected then the number of connected components of
NP is at most a linear in size(T ). This is because ∂vNP = ∂vNC and the latter has
at most linearly many components. (See Remark 5.1.) This is in pleasant contrast
to Theorem 4.6.
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6. Normalizing slowly

In this section we discuss a restricted version of Haken’s normalization proce-
dure for producing normal surfaces. This material appeared first in an unpublished
preprint of mine and later in my thesis [S01]. I thank Danny Calegari for reading
an early version of this work. I also thank Bus Jaco for several enlightening conver-
sations regarding barrier surfaces. For example Lemma 8.1 can also be deduced, via
a careful induction argument, from Lemma 3.1 of [JR03]. In addition to Jaco and
Rubinstein [JR03], other authors have independently produced versions of these
ideas such as King [K01] and Barchechat [B03].

Definition 6.1. Take S a closed orientable surface. Let C0 = S×[0, 1]. Choose
a disjoint collection of simple closed curves in some component of S × {0} and
attach two-handles in the usual fashion along these curves. Cap off some (but
not necessarily all) of any resulting two-sphere boundary components with three-
handles. The final result, C, is a compression body. Set ∂+C = S × {1} and set
∂−C = ∂C − ∂+C.

Our definition differs from others (for example [CG87]) in that two-sphere
components in ∂−C are allowed. The reasons for this are explained in Remark 9.3.

Fix T a triangulation of a closed, orientable, connected three-manifold. Let
S ⊂ |T | be a transversely oriented, almost normal surface.

Definition 6.2. A compression body CS ⊂ |T | is associated to S if ∂+CS = S,
∂−CS is normal, the transverse orientation points into CS, and any normal surface
S′ disjoint from S may be normally isotoped to be disjoint from CS .

As a bit of notation take norm(S) = ∂−CS and call this the normalization of
S. This is well-defined by the following.

Theorem 10.1. Given a transversely oriented almost normal surface S there
exists an associated compression body CS and it is unique up to normal isotopy.
Furthermore there is a algorithm that, given the triangulation T and the surface
vector v(S), computes the surface vector v(norm(S)).

Remark 6.3. As in Theorem 5.2, when S is not separating we add a parallel
copy S′ and transversely orient away from the parallel region between S and S′.
Henceforth, we will assume that S is in fact separating.

The proof of Theorem 10.1 spans Sections 7 to 10. We here give the necessary
definitions. In Section 7 we discuss the tightening procedure. In Section 8 we show
that the tightening procedure gives an embedded isotopy. We discuss the capping
off procedure in Section 9. The proof is finished in Section 10.

6.1. Non-normal surfaces. Let S be a surface properly embedded in a tri-
angulated three-manifold |T | and suppose that S is transverse to the skeleta of T .
Denote the i-skeleton of T by T i.

We characterize some of the ways S can fail to be normal. A facial curve of S is
a simple closed curve of intersection between S and the interior of some triangular
face f ∈ T 2. A bent arc of S is a properly embedded arc of intersection between
S and the interior of some triangular face f ∈ T 2 with both endpoints of the arc
contained in a single edge of f . Both of these are drawn in Figure 5.
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Figure 5. A facial curve and a bent arc.

6.2. Surgery and tightening disks.

Definition 6.4. An embedded disk D ⊂ |T | is a surgery disk for S if

• D ∩ S = ∂D,
• D ⊂ T 2 or D ∩ T 2 = ∅, and
• D ∩ T 1 = ∅.

There is a surgery of S along D: Remove a small neighborhood of ∂D from S
and cap off the boundaries thus created with disjoint, parallel copies of D. Note
that we do not require ∂D to be essential in S. A facial curve of S∩T 2 is innermost
if it is the boundary of a surgery disk embedded in a triangle of T 2.

A bigon is an disk D with given subarcs α,β ⊂ ∂D so that α ∪ β = ∂D and
α ∩ β = ∂α = ∂β.

Definition 6.5. An embedded bigon D ⊂ |T | is a tightening disk for S if

• D ∩ S = α,
• D ⊂ T 2 or D ∩ T 2 = β,
• D ∩ T 1 = β, and
• D ∩ T 0 = ∅.

There is a tightening isotopy of S across D: Push α along D, via ambient
isotopy of S supported in a small neighborhood of D, until α moves past β. This
procedure reduces weight(S) by exactly two. A bent arc of S is outermost if it lies
on the boundary of a tightening disk embedded in a triangle of T 2.

Suppose S contains an almost normal octagon, A ⊂ τ . Then there are two
tightening disks on opposite sides of A both giving tightening isotopies of S to
possibly non-normal surfaces of lesser weight. To see these disks, consult the left-
hand side of Figure 3. Notice there are two edges of τ , say e and e′, so that
|A ∩ e| = |A ∩ e′| = 2. The first tightening disk has boundary running along e
between the points of intersection with A; then the boundary runs along an arc in
the interior of A. The second disk similarly meets e′. We arrange matters so that
the tightening disks lying in the interior of τ meet each other in a single point.

The above disks are the exceptional tightening disks associated to A. If S
contains an almost normal annulus then the tube is parallel to at least one edge
of the containing tetrahedron. See the right-hand side of Figure 3. For every such
edge there is an exceptional tightening disk. Also, the disk which surgers the almost
normal annulus will be called the exceptional surgery disk.
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7. Tightening

This section discusses the tightening procedure which will yield an embedded
isotopy. This is proved in Lemma 8.1 below. Fix T is a triangulation of a three-
manifold. Suppose that S ⊂ |T | is a transversely orientable separating almost
normal surface. We wish to isotope S off of itself while steadily reducing the weight
of S.

Suppose that D is an exceptional tightening disk for S. Choose the transverse
orientation for S which points into the component of |T | − S which meets D. The
F -tightening procedure constructs a map F : S × [0, n] → |T | as follows:

(1) Let F0 = S. Take F0 : S × {0} → |T | to be projection to the first factor.
Let D0 = D.

(2) Do a small normal isotopy of F0 in the transverse direction while tighten-
ing F0 along D0. This extends F0 to a map F1 : S × [0, 1] → |T |, with
Ft = F1(S × {t}). Note that the surface F1 inherits a transverse orienta-
tion from F0. Arrange matters so that F 1

2
is the only level which is not

transverse to T 2. Furthermore F 1
2

only has a single tangency with T 1 and

this tangency occurs in the middle of ∂D0 ∩ T 1.
(3) Suppose, at step k ≥ 1, that Fk has an outermost bent arc α with the

transverse orientation of Fk pointing into the tightening disk Dk. So Dk

is cut out of T 2 by α. Extend Fk to Fk+1 : S × [0, k + 1] → |T | by doing
a small normal isotopy of Fk in the transverse direction while tightening
Fk across Dk, the kth tightening disk. So Fk = Fk+1|S × [0, k] and Ft =
Fk+1(S×{t}). Note that the surface Fk+1 inherits a transverse orientation
from Fk. Arrange matters so that Fk+ 1

2
is the k + 1th level which is not

transverse to T 2. Furthermore Fk+ 1
2

only has a single tangency with T 1

and this tangency occurs in the middle of ∂Dk ∩ T 1.
(4) Suppose, at step k ≥ 1, that there is no outermost bent arc α ⊂ Fk. Set

n = k and halt.

Remark 7.1. As weight(Fk+1) = weight(Fk) − 2 this tightening procedure
terminates after at most weight(S) step. Note also that Fn is far from unique – at
any stage in the procedure there may be many tightening disks to choose from.

We will show in Lemma 8.1 that the map Fn : S × [0, n] → M is an embedding.
Note that, by construction, S = F0 = Fn(S×{0}) and in general Ft = Fn(S×{t}).
To simplify notation set F = Fn.

8. Tracking the isotopy

Let S ⊂ |T |, F , Fk, and Ft be as defined in Section 7. Suppose that f is any
face of any model tetrahedron τ ∈ T . In this section we analyze how the preimage
(in τ ) of the image of Fk (in |T |) intersect f . We will abuse notation by writing
f ∩ Fk for this intersection.

Lemma 8.1. For every k, the map Fk is an embedding. Furthermore, for k > 0
and for every face f ∈ T 2, the connected components of f ∩ Fk are given, up to
symmetry, by Figures 6 and 7.

Before proceeding to the proof note that the normal arcs, bent arcs, and fa-
cial curves bounding the components shown Figures 6 and 7 inherit a transverse
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S = F0

Fk

Critical Temporary

Terminal with a hole Terminal

Figure 6. The rectangles

Critical Temporary

Terminal with a hole Terminal

Figure 7. The hexagons

orientation from S or Fk. In all cases the transverse orientation on S points into
the intersection f ∩ Fk while the transverse orientation on Fk points away. The
components of intersection containing a normal arc of Fk are called critical. Those
with a single bent arc of Fk are called temporary. Any component containing a sin-
gle facial curve of Fk is called terminal with a hole. Finally, components of f ∩ Fk

which are completely disjoint from Fk are simply called terminal. Again, refer to
Figures 6 and 7.
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The tightening procedure combines the critical components in various ways.
However, a temporary component always results in a terminal (possibly with a
hole) and these are stable. Note also that there is a second critical rectangle with
the opposite transverse orientation. The non-critical components may be foliated
by the levels of Fk in multiple ways, depending on the order of the tightening
isotopies.

Proof of Lemma 8.1. We induct on k; both claims are trivial for k = 0.
Now to deal with k = 1. The exceptional tightening disk D0 has interior disjoint
from S = F0. It follows that F1 is an embedding. To verify the second claim
for k = 1 note that the image of F1|S × [0, ϵ] intersects all faces f ∈ T 2 only in
critical rectangles. Up to t = 1

2 the image of F1|S × [0, t] intersected with f is
combinatorially constant. Crossing t = 1

2 adds a regular neighborhood of D0 to
the image. This only intersects f in a regular neighborhood of ∂D0 ∩ T 1. So the
pieces of f ∩F1 are unions of critical rectangles connected by small neighborhoods
of sub-arcs of T 1. Also these sub-arcs only meet the Ft side of the critical rectangles.
As each critical rectangle meets two edges of the face f it follows that at most three
critical rectangles are joined together to form a component of f ∩ F1. We list all
possible cases – consulting Figures 6 and 7 will be helpful:

(1) Two critical rectangles in f combine to produce a temporary rectangle, a
terminal rectangle with a hole, or a critical hexagon.

(2) Three critical rectangles in f combine to produce a temporary hexagon
or a terminal hexagon with a hole.

Now to deal with the general case: Suppose that both hypotheses hold at stage
k. Suppose that α ⊂ Fk is the bent arc on the boundary of Dk ⊂ f ∈ T 2, the next
tightening disk in the sequence. Suppose that interior(Dk) meets image(Fk). By
the second induction hypothesis there is a component, C, of f ∩ Fk which meets
interior(Dk) and appears among those listed in Figures 6 and 7. Observe that each
component of f ∩ Fk, and hence C, meets at least two edges of f . The bent arc α
meets only one edge of f . It follows that the interior of C must meet α. Thus Fk

was not an embedding, a contradiction.
It follows that Dk ∩ image(Fk) = α. Since the k + 1th stage of the isotopy is

supported in a small neighborhood of Fk ∪Dk it follows that Fk+1 is an embedding.
Now, the transverse orientation on Fk gives rise to a transverse orientation on

Fk+1. To verify the second hypothesis we again list the possible cases:

(1) Two critical rectangles in f combine to produce a temporary rectangle, a
terminal rectangle with a hole, or a critical hexagon.

(2) Three critical rectangles f combine to produce a temporary hexagon or a
terminal hexagon with a hole.

(3) A critical rectangle and critical hexagon in f combine to produce a tem-
porary hexagon or a terminal hexagon with a hole.

(4) A temporary component leads to a terminal one (possibly with a hole).

This completes the induction. !

Remark 8.2. By maximality of F , the surface Fn = F(S × {n}) has no outer-
most bent arcs with outward orientation. A bent arc with inward orientation would
violate the second induction hypothesis of Lemma 8.1. So Fn contains no bent arcs.
Fn may contain facial curves, but the second induction hypotheses shows that all
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of these are innermost with transverse orientation pointing toward the bounded
surgery disk.

If we replace S in Lemma 8.1 by a disjoint union of S with a collection of
normal surfaces we obtain the following corollary.

Corollary 8.3. If S′ is any normal surface in |T | which does not intersect S
then F ∩ S′ = ∅, perhaps after a normal isotopy of S′ (rel S). !

Suppose that τ is a model tetrahedron in the given triangulation T . We again
abuse notation, writing τ − Fk for the complement of the preimage (in τ ) of the
image of Fk (in |T |).

Lemma 8.4. For all k ≥ 1, τ − Fk is a disjoint collection of balls.

Proof. Our induction hypothesis is as follows: τ − Fk is a disjoint collection
of balls, unless k = 0 and τ contains the almost normal annulus of S. In that
exceptional case τ − F0 is a disjoint collection of balls and one solid torus.

The base case is trivial. Suppose B is a component of τ − Fk. There are now
two cases to consider. Either B is cut by an exceptional tightening disk or it is not.
Assume the latter. Then B is a three-ball by induction and after the k + 1th stage
of the isotopy B ∩Fk+1 is a regular neighborhood (in B) of a collection of disjoint
arcs and disks in ∂B. Hence B − Fk+1 is still a ball.

If B is adjacent to the almost normal piece of F0 then let D0 be the exceptional
tightening disk. Set Bϵ = B − neigh(D0). Each component of Bϵ is a ball, and
the argument of the above paragraph shows that they persist in the complement of
F1. !

Recall that ∂Fk = S ∪Fk. As usual, for a model tetrahedron τ we write τ ∩Fk

for the preimage of Fk in τ . A corollary of Lemma 8.4 is the following.

Corollary 8.5. For all k, the connected components of τ ∩Fk are planar. !
The connected components of τ ∩ Fn warrant closer attention.

Lemma 8.6. If n ≥ 1 then each component of τ ∩ Fn has at most one normal
curve boundary component. This normal curve must be short.

Proof. Let τ ∈ T be a tetrahedron. Let P be a connected component of
τ ∩Fn. By Lemma 8.1 the boundary ∂P is a collection of facial curves and normal
curves in ∂τ . Let α be any normal curve in ∂P . Let {αj} be the normal arcs of α.

Claim. α has length three or four.

Proof of Claim. Call the collection of critical rectangles and hexagons in
∂τ ∩ F that meet α the support of α. To prove the claim we have two cases. First
suppose that only critical rectangles support α. So α is normally isotopic to a
normal curve β ⊂ ∂τ ∩ S. The first step of the tightening procedure prevents β
from being a boundary of the almost normal piece of S. It follows that α must be
short.

Otherwise α1, a normal subarc of α, is on the boundary of a critical hexagon
h ⊂ f . Let β be a normal curve of S meeting h and let β1 ⊂ β be one of the normal
arcs in ∂h. Let e be the edge of f which α1 does not meet. This edge is partitioned
into three pieces; eh ⊂ h, e′, and e′′. We may assume that β1 separates eh from e′.
See Figure 8.
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β1 h

α1

e′′

eh

e′

Figure 8. The normal arcs α1 and β1 are on the boundary of the
critical hexagon h. Note that β does not meet e′ or interior(h).

Note that a normal curve of length ≤ 8 has no parallel normal arcs in a single
face. Thus β meets e′ exactly once at an endpoint of e′. Since α and β do not cross
it follows that β separates α from e′ in ∂τ .

Similarly, α is separated from e′′. Thus α does not meet e at all. By Lemma 4.2
the normal curve α is short. This finishes the proof of the claim. !

Claim. The component P ⊂ τ ∩ Fn has at most one boundary component
which is a normal curve.

Proving this will complete the lemma. So suppose that ∂P contains two normal
curves: α and β. Let A be the annulus cobounded by α and β in ∂τ , the boundary
of the model tetrahedron.

Suppose now that the transverse orientation, that α inherits from Fn, points
away from A. Thus A and the support of α intersect. There are several cases to
examine, depending on the length of α and the components of the support of α.

(1) Suppose α has length three:
(a) If only critical rectangles support α then a normal triangle of S sep-

arates α and β.
(b) If one critical hexagon and two critical rectangles support α then the

almost normal octagon and the exceptional tightening disk together
separate α and β. See left hand side of Figure 9.

(c) If two critical hexagons and one critical rectangle support α then a
normal triangle or a normal quad of S separates α from β. See right
hand side of Figure 9.

(d) If only critical hexagons support α then a normal triangle of S sepa-
rates α and β.

(2) Suppose α has length four:
(a) If only critical rectangles support α then a normal quad of S separates

α and β.
(b) If one critical hexagon and three critical rectangles support α then S

could not have been an almost normal surface. See left hand side of
Figure 10.

(c) If two critical hexagons and two critical rectangles support α then
a normal triangle of S separates α and β. See right hand side of
Figure 10.
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α

One hexagon Two hexagons

Figure 9. Diagrams for cases (1b) and (1c).

α

One hexagon Two hexagons

Figure 10. Diagrams for cases (2b) and (2c).

When α has length four it cannot be supported by more than two critical
hexagons.

To recap: in all cases except 1(b) and 2(b), the support of α (possibly together
with a terminal rectangle or hexagon) closes up, implying the existence of a normal
disk of S with boundary a core curve of the annulus A. As this disk lies in S
observe that S ∩ P ̸= ∅ and thus S ∩ Fn ̸= ∅. This contradicts the fact that F
is an embedding (Lemma 8.1). Case 1(b) is similar, except that the support of α
meets other critical or terminal components to form the octagon piece of S. So P
must intersect either S or the exceptional tightening disk, again a contradiction of
Lemma 8.1. Lastly, in case 2(b), S could not have been almost normal.

So deduce that the transverse orientation that α inherits from Fn must point
toward A. Thus A and the support of α are disjoint. Let γ be an arc which runs
along P from α to β. Let α′ be a push-off of α along A, towards β. This push-off
bounds a disk in one of the components of τ−F , by Lemma 8.4. This disk does not
intersect P ⊂ Fn ⊂ F and hence fails to intersect γ. This is a contradiction. !

Remark 8.7. By Lemma 8.1 all facial curves of Fi are innermost. It follows
that the “tubes” analyzed in Lemma 8.6 do not run through each other.

9. Capping off

Here we construct our candidate for CS , the compression body associated to
S.

202



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

SPHERE RECOGNITION LIES IN NP 21

Let F ⊂ |T | be the image of the map constructed above. Recall that ∂F =
S ∪ Fn where S is the almost normal surface we started with and Fn is the surface
obtained by “tightening” S. Note that, since F is the embedded image of S× [0, n],
in fact Fn is isotopic to S in |T |. They are not normally isotopic as weight(Fn) <
weight(S).

Definition 9.1. A two-sphere which is embedded in |T | but disjoint from T 2

is called a bubble.

From Lemma 8.6, Corollary 8.5, and Remark 8.7 we deduce:

Corollary 9.2. Let F ′
n be the surface obtained by surgering all facial curves

of Fn. Then F ′
n is a disjoint collection of bubbles and normal surfaces. Each bubble

bounds a ball with interior disjoint from T 2 ∩ F ′
n. !

Construct CS as follows: For every facial curve α of Fn attach a two-handle to
F along α. Attach so that the core of the two-handle is the subdisk of T 2 cut out
by α. Call this F ′. As noted in Remark 8.7 all facial curves of Fn are innermost.
So F ′ is an embedded compression body. At this point there may be components
of ∂−F ′ which are not normal. By Corollary 9.2 all of these are bubbles bounding
a ball disjoint from all of the other bubbles. Cap off each bubble to obtain CS . Set
norm(S) = ∂−CS . The next section proves that v(norm(S)) does not depend on
the choices made in the construction of F .

Remark 9.3. Normal two-spheres may appear in the normalization procedure.
In particular, if S is an almost normal two-sphere then, for one of the two possi-
ble transverse orientations, there will always be a normal two-sphere appearing in
norm(S). This is why two-spheres are permitted in ∂−C in Definition 6.1.

10. Proof of the normalization theorem

Suppose that S is almost normal and equipped with a transverse orientation.
Recall from Definition 6.2 that CS , a compression body in |T |, is associated to S if
∂+CS = S, ∂−CS is normal, the transverse orientation on S points into CS , and any
normal surface S′ ⊂ |T | disjoint from S may be normally isotoped to one disjoint
from CS .

We now have the following.

Theorem 10.1. Given a transversely oriented almost normal surface S there
exists a compression body CS associated to S and CS is unique (up to normal
isotopy). Furthermore there is a algorithm that, given the triangulation T and the
surface vector v(S), computes the surface vector of norm(S) = ∂−CS.

Proof. We proceed in several steps.

Claim. There exists a compression body CS associated to S.

Proof. There are two cases. Either the transverse orientation for S points at
the exceptional surgery disk (implying that S contained an almost normal annulus)
or the transverse orientation points at an exceptional tightening disk.

In the first case, CS is obtained by thickening S slightly and adding a regular
neighborhood of the exceptional surgery disk. It is clear that CS is a compression
body, ∂+CS = S, and ∂−CS is normal. Suppose that S′ is any normal surface in
T which is disjoint from S. Then, perhaps after a normal isotopy of S′ (rel S), we
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have that S′ is disjoint from the exceptional surgery disk for S. It follows that S′

may be isotoped out of CS .
In the second case the transverse orientation of S points at an exceptional

tightening disk of S. As in Section 7 form F with ∂F = S ∪ Fn. As in Section 9
attach two-handles to F along the facial curves of Fn to obtain F ′. Cap off the
bubbles with their three-balls to obtain CS. Again, CS is a compression body with
∂+CS = S.

Suppose now that S′ is some normal surface in T which is disjoint from S.
Then, by Corollary 8.3, the surface S′ is disjoint from F , perhaps after a normal
isotopy of S′ (rel S). Since S′ is normal it cannot meet any of the disks (in T 2)
bounded by facial curves of Fn. So S′ ∩ F ′ = ∅ as well. Finally, suppose that A is
a bubble component of ∂−F ′. Let B be the three-ball which A bounds (such that
B ∩ T 2 = ∅). Then no component of S′ meets B as S′ ∩ A = ∅ and S′ is normal.
Deduce that S′ ∩ CS = ∅. This finishes the claim. !

Claim. The associated compression body CS is unique (up to normal isotopy).

Proof. Suppose that CS and C ′
S are both associated to S. Let A = ∂−CS

and A′ = ∂−C ′
S . Then A and A′ are normal surfaces, both disjoint from S. It

follows that there exists a normal isotopy H which moves A′ out of CS (rel S) and
another normal isotopy H′ which moves A out of C ′

S (rel S).
Consider any face f ∈ T 2 and any normal arc α ⊂ f∩S. Let X ⊂ f∩CS be the

component containing α. Take X ′ to be the component of f ∩ C ′
S which contains

α. We must show that X and X ′ have the same combinatorial type. Suppose not.
After possibly interchanging X and X ′ there are only six situations to consider:

(1) X is a critical rectangle and X ′ is a terminal rectangle.
(2) X is a critical rectangle and X ′ is a critical hexagon.
(3) X is a critical rectangle and X ′ is a terminal hexagon.
(4) X is a critical hexagon and X ′ is a terminal hexagon.

In any of these four cases let δ be the normal arc of A = ∂−CS on the boundary
of X. Note that ∂X ′ contains α (as does ∂X) and also another normal arc β ⊂ f∩S
which does not meet X (as S = ∂+CS). Now note that it is impossible for H′ to
normally isotope δ out of X ′ while keeping S fixed pointwise (as δ would have to
cross β).

(5) X is a terminal rectangle and X ′ is a critical hexagon.
(6) X is a terminal rectangle and X ′ is a terminal hexagon.

In either of these cases let β be the other normal arc of S ∩ ∂X. Then β
intersects the interior of X ′, a contradiction. This proves the claim. !

Claim. There is a algorithm that, given the triangulation T and the surface
vector v(S), computes the surface vector of ∂−CS = norm(S).

Proof. We follow the proof of Lemma 8.1: We keep track of the intersection
f ∩Fk for every face f of every model tetrahedron τ . The intersection is a union of
components, with all allowable types shown (up to symmetry) in Figures 6 and 7.
There is at most one hexagon in each face and perhaps many rectangles, arranged
in three families, one for each vertex of f . At stage n there are no bent arcs
remaining. Now delete all facial curves of Fn and all normal arcs of S. The normal
arcs left completely determine norm(S) and from this we may find the surface vector
v(norm(S)). This proves the claim. !
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Thus we are done with the proof of Theorem 10.1. !

The algorithm just given is inefficient. It depends polynomially on size(T )
and weight(S). In the next section we improve this to a algorithm which depends
polynomially on size(T ) and log(weight(S)).

As a corollary of Theorem 10.1:

Corollary 10.2. If S ⊂ |T | is a transversely oriented almost normal two-
sphere then CS is a three-ball, possibly with some open three-balls removed from its
interior. These have closures disjoint from each other and from S. !

Now an orientable surface in an orientable three-manifold may be transversely
oriented in exactly two ways. By Theorem 10.1, if S is an almost normal surface,
for each transverse orientation there is a associated compression body. Call these
C+

S and C−
S .

From Corollary 10.2 deduce:

Theorem 10.3. If S ⊂ |T | is an almost normal two-sphere and both ∂C+
S − S

and ∂C−
S − S are (possibly empty) collections of vertex-linking two-spheres, then

|T | is the three-sphere.

Proof. By hypothesis ∂C+
S − S is a collection of vertex linking spheres. For

each of these add to C+
S the corresponding vertex neighborhood. Let B+ be the

resulting submanifold of |T |. By the Alexander trick B+ is a three-ball. Do the
same to C−

S to produce B−. The Alexander trick now implies that the manifold
|T | = B+ ∪S B− is homeomorphic to the three-sphere. !

11. An example

Here we give a brief example of the normalization procedure. Let T be the one
vertex triangulation shown in Figure 11.

Figure 11. A one-tetrahedron triangulation of S3. It is straight-
forward to list all normal and almost normal surfaces in T . It is a
pleasant exercise to draw the graph T 1 as it actually sits in S3. It
is somewhat harder to draw the two-skeleton.

The front two faces (1 and 2) are glued to each other as are the back faces (0
and 3). The faces are glued to give the edge identifications shown. The surface S
depicted in T is an almost normal two-sphere with two triangles and one almost
normal octagon.
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The sphere S has two exceptional tightening disks: D meeting the edge (0, 3)
of the model tetrahedron and D′ meeting edge (1, 2).

Tightening along D gives F1 which is the vertex link. Tightening along D′ and
then along bent arcs to obtain an F–tightening sequence F ′

1, F
′
2, F

′
3. As a note of

caution: F ′
1 drawn in the model tetrahedron has four bent arcs – however F ′

1 ∩ T 2

contains only two. These are independent of each other and doing these moves in
some order gives F ′

2 and F ′
3. Then F ′

3 is a weightless two-sphere in T with a single
facial curve and no other intersection with the two-skeleton. Finally, surger the
facial curve of F ′

3 and cap off the two resulting bubbles.
Thus: on the D side of S the normalization is the vertex link. On the D′ side

the normalization is the empty set. It follows from Theorem 10.3 that |T | is the
three-sphere.

12. Normalizing quickly

The normalization procedure can be accelerated. Suppose that T is a triangu-
lation of a three-manifold and S is assumed to be a transversely oriented almost
normal surface.

Theorem 12.1. There is a polynomial-time algorithm that, given any such T
and surface vector v(S), produces as output v(norm(S)), the normalization of S.

As in Remark 6.3 we will restrict to the case where S is separating. Recall that
NS is the closure of the component of |T |−S into which the transverse orientation
points. Then N̂P is the union of all product blocks in NS and N̂C is the union of
all the core blocks. Also NP is a regular neighborhood of N̂P , taken in NS . Finally
NC = NS − NP . We will prove Theorem 12.1 by altering our original normalization
procedure three times. First we will show that the order of the tightening moves
is irrelevant. Then we will show that surgeries on facial curves and capping off
of bubbles may happen during the normalization procedure, instead of being held
until the end. Finally we show that tightening inside of NP can be done quickly.
These three modifications combine to give an efficient algorithm.

12.1. Changing the order of the tightening moves. As stated in Re-
mark 7.1 the isotopy F : S × [0, n] → M need not be unique. However the first
sentence of Theorem 10.1 implies the following.

Lemma 12.2. Any order for the tightening moves (performed in the construction
of F) gives the same surface norm(S) once the facial curves of Fn have been surgered
and bubbles have been capped off. !

12.2. Surgery on facial curves and deleting bubbles. We now alter the
tightening procedure in a more substantial fashion.

Recall that S ⊂ |T | is a transversely orientable separating almost normal sur-
face. Recall that D is the exceptional tightening disk for S. Transversely orient S
to point into the component of |T | − S which meets D. Here is the G-tightening
procedure:

(1) Let G0 = S. Let D0 = D.
(2) Do a small normal isotopy of G0 in the transverse direction while tighten-

ing G0 along D0. Call the surface so obtained G′
0. Surger all facial curves

of f ∩ G′
0 for every f ⊂ T 2 to obtain G′′

0 . Delete any bubble components
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of G′′
0 (two-sphere components which are contained in the interior of tetra-

hedra). Call the resulting surface G1. Note that G1 inherits a transverse
orientation from G0.

(3) Suppose, at step k ≥ 1, that Gk has an outermost bent arc α with the
transverse orientation of Gk pointing into the tightening disk Dk. So Dk is
cut out of T 2 by α. Perform a small normal isotopy of Gk in the transverse
direction while tightening Gk across Dk. Call the surface so obtained G′

k.
Surger all facial curves of f ∩ G′

k for every f ∈ T 2 to obtain G′′
k. Delete

any bubble components of G′′
k . Call the resulting surface Gk+1. Note that

Gk+1 inherits a transverse orientation from Gk.
(4) Suppose, at step k ≥ 1, that there is no outermost bent arc α ⊂ Gk. Set

n = k and halt.

Lemma 12.3. The surface Gn is normally isotopic to norm(S), the normaliza-
tion of S.

Proof. Recall that Lemma 8.1 gives a complete classification of the possible
components of intersection of image(Fk) with the faces of T 2. Again, see Figures 6
and 7. The only components containing a facial curve are the terminal rectangle
with hole and terminal hexagon with a hole.

Since the terminal rectangles and hexagons with a hole do not contain normal
or bent arcs of Fk they remain unchanged in the F -tightening procedure until Fn is
reached. Then all facial curves are surgered and bubbles capped off. Thus it makes
no difference to the resulting surface norm(S) if we surger facial curves and delete
bubbles as soon as they appear. !

12.3. Tightening in I–bundle regions. We now give the final modification
of the tightening procedure. Suppose that v(S) is an almost normal surface vec-
tor. Suppose also that S has a transverse orientation pointing at an exceptional
tightening disk.

Recall that NS is the blocked submanifold cut from |T | by the surface S (so
that the transverse orientation points into NS). Also, NP is the I-bundle region of
NS while NC = NS − NP is the core of NS .

We now introduce the final data structures required in the proof — core(S),
annuli(S), and product(S) — closely following Section 5 and Theorem 5.2.

Put a copy of the horizontal boundary of NC in core(S). That is, record
in core(S) all of the gluing information between edges of disks which are in the
horizontal boundary of core blocks.

Next, place copies of all components of ∂vNC into annuli(S) and record how
they meet the surfaces contained in core(S).

Finally, define product(S) to be the list {2·v(N)}. Here N ranges over the com-
ponents of NP and v(N) is the corresponding block vector found by Theorem 5.2.
We record, using positions in stacks, how the components of ∂vNP are identified
with the components of annuli(S). We also record, for each component N ⊂ NP ,
how each position partitions the numbers vk(N).

We now turn to constructing a sequence of surfaces Hk. Each Hk will be
represented by core(Hk), annuli(Hk), and product(Hk). Here is the H-tightening
procedure.
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(1) Let core(H0) = core(S), annuli(H0) = annuli(S), and product(H0) =
product(S). Let D0 = D. Suppose now that we are at step k of the
procedure and there is a tightening disk Dk for Hk.

(2) If Dk is disjoint from annuli(Hk), and so does not meet NP , then perform
the tightening move as in the G-sequence. This effects only the pieces
in core(Hk) and we use the tightening move to compute core(Hk+1). Set
annuli(Hk+1) = annuli(Hk), product(Hk+1) = product(Hk) and go to
stage k + 1.

(3) Suppose Dk meets some component of annuli(Hk). Thus Dk meets a
component of NP ; call this component N . Obtain product(Hk+1) by
deleting the vector 2·v(N) from product(HK). To get annuli(Hk+1) delete
∂vN from annuli(Hk). For each stack ℓ and positions p contained in ℓ:
update the position of p using the partition of vℓ(N) determined by p.

Set core′(Hk) = core(Hk) ∪ ∂vN . Let D′
k = Dk − N ; that is, remove

a small neighborhood of T 1 from Dk. See Figure 12. Then D′
k is a

surgery disk for core′(Hk). So surger along D′
k, surger along all facial

curves of core′(Hk), and delete all bubbles in core′(Hk). This finally yields
core(Hk+1). Go on to stage k + 1.

(4) If at stage k there is no tightening disk then set n = k. Sum the vectors
in product(Hn) and add to this vector the number of normal disks of each
type in core(Hn). Output the final sum v(Hn).

N
Dk

∂vN

Figure 12. Removing the horizontal boundary of N and adding
the vertical.

This completes the description of the H–tightening procedure.

12.4. Correctness and efficiency.

Proof of Theorem 12.1. Note that if the transverse orientation on S points
towards an exceptional surgery disk of S then the theorem is trivial. So suppose
instead that a tightening disk is pointed at.

Claim. The H-tightening procedure outputs v(norm(S)).

Proof. It suffices to show that Hn is normally isotopic to norm(S). Suppose
that we are given k, ℓ so that Gk = Hℓ, perhaps after a normal isotopy. Let D be
the given tightening disk. If D does not meet the product region then Gk+1 = Hℓ+1

and we are done.
Suppose instead that D meets the product region. Recall that ∂D = α∪β where

β ⊂ T 1. The arc β is contained in T 1 ∩ ∂vN̂P while only a small neighborhood
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of ∂α (taken in α) is contained in NP . Suppose that N is the component of NP

containing β.
We now show that we can reorder the tightening moves in the G-procedure so

that there is a k′ with Gk+k′ = Hℓ+1. It then follows from Lemma 12.3 that the H
procedure produces v(norm(S)).

Recall that N̂ and N are I-bundles. Let π be the bundle map crushing fibers
to a point. Let E = π(N). Let Ê = π(N̂). Note that Ê is not necessarily a surface.
However E is a surface with boundary, Ê naturally embeds in E, and there is a
small deformation retraction of E to Ê. Note that Ê and E inherit cell structures
from N̂ and N . Choose a spanning tree U for the one-skeleton Ê1 of Ê rooted at
b = π(β). Choose an ordering of the vertices of U , σ : U0 → (N ∩ [1, k′]), so that
for any vertex d with parent c we have σ(c) < σ(d). Here k′ = |U0| is the number
of vertices in U0.

We now have a sequence of tightening moves to perform in the G procedure.
At step one do the tightening move along the disk D, surger all facial curves, and
delete bubbles. At step i > 1, examine the edge e between c and d (where σ(d) = i
and c is the parent of d). Then, by induction and the fact that σ(c) < σ(d) = i
there is a bent arc of Gk+i−1 in the rectangle π−1(e) with endpoints on the segment
π−1(d) ⊂ T 1. Do this tightening move, surger facial curves, delete bubbles, and go
to step i + 1.

After k′ = |U0| steps we obtain the surface Gk+k′ which is normally isotopic to
the following: (Gk − ∂hN) ∪ ∂vN surgered along the disk D′, surgered along facial
curves, with bubbles deleted. Here D′ = D − N . So Gk+k′ agrees with Hℓ+1 and
the claim is proved. !

Claim. Precomputation for the H procedure takes time at most polynomial
in size(T ) and log(weight(S)).

Proof. This follows from Remark 5.1 and Theorem 5.2. !
Claim. The number of steps of the H procedure is at most linear in size(T ).

Proof. Each step reduces the weight of core(Hk) by two or removes a vector
from product(Hk). Since the weight of core(Hk) is at most linear (Remark 5.1),
and since there are at most a linear number of components of NP (Remark 5.3),
the claim follows. !

Claim. Performing each step of the H procedure takes time at most polynomial
in size(T ) and log(weight(S)).

Proof. If there is a tightening disk Dk contained in core(Hk) then it can be
found in polynomial time.

If Dk is disjoint from NP then we only have to alter core(Hk) in the tetrahedra
adjacent to Dk. There are at most a linear number of such tetrahedra.

If the tightening disk meets a component N ⊂ NP then updating the positions
in all stacks is at most a polynomial amount of arithmetic. As in the disjoint
case, core′(Hk) is at most linear in size. It follows that surgering facial curves and
deleting bubbles can be done in polynomial time. !

Thus we can compute the desired result, v(norm(S)), in time which is at most
a product of polynomials in size(T ) and log(weight(S)). This completes the proof
of Theorem 12.1. !
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13. Crushing: “New triangulations for old”

Crushing triangulations along normal surfaces is an important step in Cas-
son’s algorithm [C97]. As usual, we refer the reader to Jaco and Rubinstein’s
work [JR03]. The notion of crushing is also explained in detail in Chapter 3 of
Barchechat’s thesis [B03].

Let T be a triangulation of a closed three-manifold. Let τi be a model tetrahe-
dron. Fix attention on the quad in τ partitioning the vertices {0, 1, 2, 3} into {0, a}
and {b, c}. We say that the quad is of type a.

Let θ be the permutation (0a)(bc). Let {(i, js,σs)}3
s=0 be the four face pairings

with i as the first element. Here σs glues the sth face of τi to some face of τjs . Note
that {(js, i,σ−1

s )}3
s=0 are also face pairings in T .

Define a new triangulation T ′ by crushing the tetrahedron τi along the ath

quad, as follows: Delete τi from T . Delete all of the face pairings {(i, js,σs)}3
s=0.

Replace the face pairing (js, i,σ−1
s ) (if i ̸= js) with

(
js, jθ(s),σθ(s) · R(s,θ(s)) · σ−1

s

)
,

for s ∈ {0, 1, 2, 3}. Here R(s,θ(s)) is the rotation of the model tetrahedron, about
the edge with vertices {0, 1, 2, 3}−{s, θ(s)}, which takes face s to face θ(s). Finally,
no face of any model tetrahedron in T ′ is glued to itself – thus T ′ is a triangulation.

To keep track of this operation it may help to refer to the picture of a quad of
type 3 shown on the right hand side of Figure 2.

Now suppose that p is a polarization of the triangulation T ; that is, p is a map
from the set of tetrahedra to the set {0, 1, 2, 3}. Produce a new triangulation T ′

by crushing T along p: To begin with let T ′ be an exact copy of T . Now, for each
i = 1, 2, . . . , size(T ) do one of two things; If p(τi) = 0 simply go on to i + 1. If
p(τi) ̸= 0 then remove τi by crushing along the p(τi) quad, as above, and go on to
i + 1.

We now have:

Theorem 13.1. There is a polynomial-time algorithm that, given a triangu-
lation T and a polarization p, produces T ′, the triangulation of T crushed along
p. !

Crushing T along the polarization determined by a non-vertex-linking normal
surface S will be called crushing T along S.

Theorem 13.2. Suppose T is a triangulation so that the connect sum #|T | is a
homology three-sphere. Suppose S is a non-vertex-linking normal two-sphere. Then
the triangulation T ′, obtained by crushing T along S, satisfies #|T ′| ∼= #|T |.

Proof. Theorem 5.9 of Jaco and Rubinstein’s paper [JR03] essentially claims
this result for any closed, orientable three-manifold |T | with the caveat that some
connect summands of |T | homeomorphic to lens spaces may by omitted from the
crushed |T ′|. See also [B03, Theorem 3.1].

However, by Lemma 3.6 no non-trivial lens space appears as a connect sum-
mand of the homology three-sphere |T |. Finally, omitting S3 summands does not
change the connect sum. The result follows. !

14. Rubinstein and Thompson’s theorem

We use Casson’s version [C97] of the proof of Theorem 1.1. Chapter 6 of [B03]
gives a more detailed exposition of Casson’s algorithm.
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Theorem 14.1 (Casson [C97]). The three-sphere recognition problem lies in
PSPACE; there is a polynomial-space algorithm that, given a triangulation T ,
decides whether or not |T | is homeomorphic to the three-sphere.

Proof. We give only a sketch of Casson’s version of the Rubinstein-Thompson
algorithm. Begin with a triangulation T0 = T . Check, using Theorems 3.4 and 3.5,
that T0 is a homology three-sphere. Inductively we have a triangulation Ti.

If Ti is not zero-efficient then apply Lemma 4.13 to find Si ⊂ |Ti|, a fundamental
non-vertex-linking normal two-sphere. Let Ti+1 be the triangulation obtained by
crushing along Si. This requires Theorem 13.1.

If Ti is zero-efficient use Lemma 4.13 to search for almost normal two-spheres.
If some component of Ti does not contain an almost normal two-sphere then by
Theorem 13.2 and Theorem 4.12 the manifold |T | was not the three-sphere. If Si is
an almost normal two-sphere inside a component T ′ of Ti then let Ti+1 = Ti − T ′.

This completes the description of Casson’s algorithm. If Tn is non-empty, then
|T | was not the three-sphere. If Tn is empty then |T | was homeomorphic to the
three-sphere. Both of these again use Theorem 13.2.

Note that size(Ti) + i ≤ size(T ) as either crushing along a polarization or
deleting a component always reduces the number of tetrahedra by at least one.
This completes the sketch. !

15. Showing the problem lies in NP

We are now in a position to prove:

Theorem 15.1. The three-sphere recognition problem lies in NP.

Proof. Suppose that T is a triangulation of the three-sphere. The certificate
is a sequence of pairs (Ti, v(Si)) with the following properties.

• T = T0.
• Si is a normal or almost normal two-sphere, contained in |Ti|, with

weight(Si) ≤ exp(size(Ti)).

• If Si is normal then Si is not vertex linking and Ti+1 is obtained from Ti

by crushing along Si.
• if Si is almost normal then Si normalizes to vertex linking two-spheres

(or the empty set), in both directions. Also, Ti+1 is obtained from Ti by
deleting the component T ′ of Ti which contains Si.

• Finally, the last triangulation Tn is empty, as is Sn.

Note that existence of the certificate is given by our proof of Theorem 14.1.
The only task remaining is to check the certificate. There are two subtle points –
we do not verify that the Si are fundamental nor do we check that the Ti containing
almost normal two-spheres are zero-efficient.

Instead, since the Si are fundamental, they obey the weight bounds given in
Lemma 4.8; that is, weight(Si) ≤ exp(size(Ti)).

Suppose a certificate (Ti, v(Si)) is given as above, for the triangulation T .
Check, using Theorems 3.4 and 3.5, that T is a triangulation of a homology three-
sphere.

By Lemma 3.1 check that T = T0. Using Theorem 4.6 verify that Si is a
connected normal or almost normal surface. Using Lemma 4.5 compute the Euler
characteristic of Si. (Here we are using the fact that weight(Si) ≤ exp(size(Ti)) in
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order to compute Euler characteristic in time polynomial in size(Ti).) This verifies
that Si is a two-sphere.

If Si is normal, by Theorem 13.1, crush Ti along Si in time at most polynomial
in size(Ti). Then check, using Lemma 3.1, that Ti+1 agrees with the triangulation
obtained by crushing Ti.

If Si is almost normal, we need to check that T ′, the component of Ti containing
Si, has |T ′| ∼= S3. Using Theorem 12.1 normalize Si in both directions in time at
most polynomial in size(Ti). If all components of the two normalizations norm(S+

i )
and norm(S−

i ) are vertex linking two-spheres then T ′ is a triangulation of the three-
sphere, by Theorem 10.3. Finally, use Lemma 3.1 to check that the triangulation
Ti − T ′ is identical to Ti+1. !
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