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Abstract
We present a structure theorem for the subsurface projections of train-track splitting
sequences. For the proof we introduce induced tracks, efficient position, and wide
curves. As a consequence of the structure theorem, we prove that train-track sliding
and splitting sequences give quasi-geodesics in the train-track graph; this generalizes
a result of Hamenstädt.
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1. Introduction
Thurston, in his revolution of geometric topology, introduced train tracks to the study
of surface diffeomorphisms and hyperbolic 3-manifolds. The geometry and combina-
torics of individual tracks have been carefully studied (see [20], [21], [25]). Equally
important is the dynamical idea of splitting a train track. This leads to a deep connec-
tion between splitting sequences of tracks and the curves they carry on the one hand,
and Teichmüller geodesics and measured foliations on the other.

Another notion that has recently proved useful, for example, in the resolution of
the ending lamination conjecture (see [3], [19]), is subsurface projection. A combi-
natorial or geometric object � in a surface S has a projection �X .�/ contained in
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the given essential subsurface X � S . Subsurface projection arises naturally in the
study of the metric properties of entities such as the marking graph and the pants
graph (see [16]) and also when obtaining coarse control over Teichmüller geodesics
(see [22], [23]).

In this light, it becomes important to understand how a splitting sequence of
tracks ¹�iº interacts with the subsurface projection map �X . We give a structure theo-
rem (Theorem 5.3) that explains this interaction in great detail. As a consequence we
obtain the following.

THEOREM 5.5
For any surface S with �.S/ � 1, there is a constant Q DQ.S/ with the following
property. For any sliding and splitting sequence ¹�iºNiD0 of birecurrent train tracks
in S and for any essential subsurface X � S , if �X .�N / ¤ ;, then the sequence
¹�X .�i /º

N
iD0 is a Q-unparameterized quasi-geodesic in the curve complex C.X/.

Using the structure theorem we also generalize, via a very different proof, a result
of Hamenstädt.

THEOREM 6.2 ([10, Corollary 3])
For any surface S with �.S/ � 1, there is a constant Q DQ.S/ with the following
property. If ¹�iºNiD0 is a sliding and splitting sequence in the train-track graph T .S/,
injective on slide subsequences, then ¹�iº is a Q-quasi-geodesic.

Our techniques have further applications. Theorem 5.5 is used in Masur and
Schleimer’s proof (see [18]) that the disk complex is Gromov-hyperbolic. Maher and
Schleimer [14] use our structure theorem and the local finiteness of the train-track
graph to prove the stability of disk sets in the curve complex. As a consequence, they
prove that the graph of handlebodies has infinite diameter, and they also produce,
in every genus, a pseudo-Anosov map so that no nontrivial power extends over any
nontrivial compression body. Additionally, our notion of efficient position is used by
Gadre [7] to show that harmonic measures on P MF .S/ for distributions with finite
support on MCG .S/ are singular with respect to Lebesgue measure on P MF .S/.

For the proof of Theorem 5.3 we introduce induced tracks, efficient position, and
wide curves. For any essential subsurface X � S and track � � S there is an induced
track � jX . Induced tracks generalize the notion of subsurface projection of curves.
Efficient position of a curve with respect to a track � is a simultaneous generalization
of curves carried by � and curves dual to � (called hitting � efficiently in [21]). Effi-
cient position of @X allows us to pin down the location of the induced track � jX . Wide
curves are our combinatorial analogue of curves of definite modulus in a Riemann sur-
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face. The structure theorem (Theorem 5.3) then implies Theorem 5.5; this, together
with subsurface projection, controls the motion of a splitting sequence through the
complex of curves C.X/.

The quasi-geodesic behavior of splitting sequences in the train-track graph (The-
orem 6.2) is a direct consequence of Theorem 6.1. Note that Theorem 6.1 requires a
delicate induction, conceptually similar to the hierarchy machine developed in [16].
We do not deduce Theorem 6.1 directly from the results of [16]; in particular, it is not
known if splitting sequences fellow-travel resolutions of hierarchies.

After this work was submitted, we discovered a paper of Takarajima [24] intro-
ducing quasi-transverse curves. Quasi-transversality and efficient position (Defini-
tion 2.3) are equivalent concepts for simple curves. Takarajima goes on to give an
intricate proof that the quasi-transverse position exists, relying on a lexicographic
ordering of various combinatorial geodesic curvatures; this also implies the existence
statement of our Theorem 4.1. We give a completely independent and somewhat sim-
pler proof. Note, however, that Takarajima’s existence proof is in principle construc-
tive, while ours is not.

2. Background
We provide the definitions needed for Theorem 5.3 and its corollaries.

2.1. Coarse geometry
Suppose that Q � 1 is a real number. For real numbers r; s we write r �Q s if r �
Qs CQ, and we say that r is quasi-bounded by s. We write r DQ s if r �Q s and
s �Q r ; this is called a quasi-equality.

For a metric space .X; dX/ and finite diameter subsets A;B �X, define dX.A;
B/D diamX.A[B/. Following Gromov [8], a relation f W X! Y of metric spaces
is a Q-quasi-isometric embedding if, for all x;y 2 X, we have dX.x; y/ DQ
dY.f .x/; f .y//. (Here f .x/ � Y is the set of points related to x.) If, additionally,
the Q-neighborhood of f .X/ equals Y, then f is a Q-quasi-isometry and X and Y

are quasi-isometric.
If Œm;n� is an interval in Z and if f W Œm;n�! Y is a quasi-isometric embedding,

then f is a Q-quasi-geodesic. Now suppose that Q � 1 is a real number, that Œm;n�
and Œp; q� are intervals in Z, and that f W Œm;n�! Y is a relation. Then f is a Q-
unparameterized quasi-geodesic if there is a strictly increasing function � W Œp; q�!
Œm;n� so that f ı � is a Q-quasi-geodesic and, for all i 2 Œp; q � 1�, the diameter of
f .Œ�.i/; �.i C 1/�/ is at most Q.

2.2. Surfaces, arcs, and curves
Let S D Sg;n be a compact, connected, orientable surface of genus g with n boundary
components. The complexity of S is �.S/D 3g�3Cn. A curve in S is an embedding
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of the circle into S . An arc in S is a proper embedding of the interval Œ0; 1� into S . A
curve or arc ˛ � S is trivial if ˛ separates S and one component of S � ˛ is a disk;
otherwise, ˛ is essential. A curve ˛ is peripheral if ˛ separates S and one component
of S �˛ is an annulus; otherwise, ˛ is nonperipheral. A connected subsurfaceX � S
is essential if every component of @X is essential in S and if X is neither a pair
of pants (S0;3) nor a peripheral annulus (the core curve is peripheral). Note that X
inherits an orientation from S . This, in turn, induces an orientation on @X so that X
is to the left of @X .

Define C.S/ to be the set of isotopy classes of essential, nonperipheral curves
in S . Define A.S/ to be the set of proper isotopy classes of essential arcs in S . Let
AC.S/D C.S/ [A.S/. If ˛;ˇ 2AC.S/, then the geometric intersection number
(see [5, p. 46]) of ˛ and ˇ is

i.˛;ˇ/Dmin
®
ja\ bj W a 2 ˛; b 2 ˇ

¯
:

A finite subset ��AC.S/ is a multicurve if i.˛;ˇ/D 0 for all ˛;ˇ 2�.
If T � S is a subsurface with @T a union of smooth arcs, meeting perpendicularly

at their endpoints, then define

index.T /D �.T /�
cC.T /

4
C
c�.T /

4
;

where c˙.T / is the number of outward (inward) corners of @T . Note that index is
additive: index.T [ T 0/D index.T /C index.T 0/ as long as the interiors of T and T 0

are disjoint.

2.3. Train tracks
For a detailed discussion of train tracks, see [21], [25], and [20]. A pretrack � � S
is a properly embedded graph in S with additional structure. The vertices of � are
called switches; every switch x is equipped with a tangent vx 2 T 1x S . We require
every switch to have valence 3 (higher valence is dealt with in [21]). The edges of �
are called branches. All branches are smoothly embedded in S . All branches incident
to a fixed switch x have derivative ˙vx at x.

An immersion � W R! S is a train-route (or simply a route) if
� �.R/� � , and
� �.n/ is a switch if and only if n 2 Z.
The restriction �jŒ0;1/ is a half-route. If � factors through R=mZ, then � is a train-
loop. We require, for every branch b, a train-route travelling along b.

For each branch b and each point p in the interior of b, a component b0 of b�¹pº
is a half-branch. Two half-branches b0; b00 � b are equivalent if b0 \ b00 is again a
half-branch. Every switch divides the three incident half-branches into a pair of small
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Figure 1. Top: a large branch admits a left, central, or right splitting. Bottom: a mixed branch
admits a slide.

half-branches on one side and a single large half-branch on the other. A branch b is
large (small) if all of its half-branches are large (small); if b has a large and a small
half-branch, then b is called mixed.

Let B DB.�/ be the set of branches of � . A function w W B! R�0 is a trans-
verse measure on � if w satisfies the switch conditions: for every switch x 2 � we
have w.a/ C w.b/ D w.c/, where a0; b0 are the small half-branches and where c0

is the large half-branch meeting x. Let P.�/ be the projectivization of the cone of
transverse measures; define V.�/ to be the vertices of the polyhedron P.�/.

We may split a pretrack along a large branch or slide it along a mixed branch
(see Figure 1). (Slides are called shifts in [21].) The inverse of a split or slide is called
a fold. Note that the inverse of a slide may be obtained via a slide followed by an
isotopy.

Suppose that � � S is a pretrack. Let N D N.�/ � S be a tie neighborhood of
� ; so N is a union of rectangles ¹Rb j b 2Bº foliated by vertical intervals (the ties).
At a switch, the upper and lower thirds of the vertical side of the large rectangle are
identified with the vertical side of the small rectangles, as shown in Figure 2. Since N
is a union of rectangles, it follows that index.N /D 0. The horizontal boundary @hN
is the union of @hRb , for b 2B, while the vertical boundary is @vN D @N � @hN .

Let N D N.�/ be a tie neighborhood. Let T be a complementary region of � : a
component of the closure of S �N . Define the horizontal and vertical boundary of T
to be @hT D @T \@hN and @vT D @T \@vN . Note that all corners of T are outward,
so index.T /D �.T /� .1=4/j@@hT j.

Suppose that � � S is a pretrack. The subsurface filled by � is the union of N
with all complementary regions T of � that are disks or peripheral annuli.



1618 MASUR, MOSHER, and SCHLEIMER

Figure 2. The local model for N.�/ near a switch, with horizontal and vertical boundary in the
correct orientation. The dotted lines are ties.

Definition 2.1
Suppose that � � S is a pretrack and thatN DN.�/. We say that � is a train track if �
is compact, every component of @N has at least one corner, and every complementary
region T of � has negative index.

Definition 2.2
In a sliding and splitting sequence ¹�iº of train tracks, each �iC1 is obtained from �i

by a slide or a split.

2.4. Carrying, duality, and efficient position
Suppose that � � S is a train track. If 	 is also a track, contained in N D N.�/ and
transverse to the ties, then we write 	 � � and say that 	 is carried by � . For example,
if � is a fold of 	 , then 	 is carried by � .

A properly embedded arc or curve ˇ �N is carried by � if ˇ is transverse to the
ties and @ˇ \ @hN D ;. Thus if ˇ is carried, then @ˇ � @vN . Again, we write ˇ � �
for carried arcs and curves.

Definition 2.3
Suppose that ˛ � S is a properly embedded arc or curve. Then ˛ is in efficient position
with respect to � , denoted ˛ a � , if
� every component of ˛ \N is a tie or is carried by � , and
� every region of S � .N [ ˛/ has negative index or is a rectangle.

Suppose that ˛ a � . If ˛ �N , then ˛ is carried, ˛ � � . If no component of ˛\N
is carried, then ˛ is dual to � and we write ˛ � � . If��AC.S/ is a multicurve, then
we write�� � ,� � � , or� a � if all elements of� are disjointly and simultaneously
carried, dual, or in efficient position, respectively.
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Remark 2.4
Duality here is called hitting efficiently by Penner and Harer [21, p. 19]. Note that
˛ � � if and only if ˛ is carried by some extension of the dual track ��, also defined
in [21]. Likewise, if ˛ a � and ˛ \ N consists of carried arcs, then ˛ is carried by
some extension of � .

An index argument proves the following.

LEMMA 2.5
If ˛ is a properly embedded curve or arc in efficient position with respect to a train-
track � � S , then ˛ is essential and nonperipheral in S .

One of the goals of this paper is to prove the converse of Lemma 2.5; this is
done in Theorem 4.1. Following Lemma 2.5, we may define C.�/ D ¹˛ j ˛ � �º

and C�.�/ D ¹˛ j ˛ � �º. Notice that if 	 � � are tracks, then C.	/ � C.�/ and
C�.�/� C�.	/.

A branch b 2B.�/ is recurrent if there is some ˛ � � that meets Rb . The track �
is recurrent if every branch is recurrent. Transverse recurrence is defined by replacing
carrying by duality (see [21, p. 20]). The track � is birecurrent if � is recurrent and
transversely recurrent (see [21, Section 1.3]). In a slight departure from Penner and
Harer’s terminology (see [21, p. 27]), we will call a birecurrent track � complete if all
complementary regions have index �1=2. (When S D S1;1, there is, instead, a single
complementary region with index �1.)

LEMMA 2.6
Suppose that 	 � S is a birecurrent track. Then C�.	/ has infinite diameter inside
of C.S/.

Proof
Let � be a complete track extending 	 (see [21, Corollary 1.4.2]). Section 3.4 of [21]
and a dimension count give a lamination 
 � � so that i.
;˛/¤ 0 for all ˛ 2 C.S/.
Now an argument of Kobayashi [13], refined by Luo [15, p. 124], implies that
C�.�/� C�.	/ has infinite diameter.

2.5. Vertex cycles
When ˛ � � is a curve there is a transverse measure w˛ defined by taking w˛.b/D
j˛ \ t j, where t is any tie of the rectangle Rb . Conversely, for any integral transverse
measure w there is a multicurve ˛w—take w.b/-many horizontal arcs in Rb and glue
endpoints as dictated by the switch conditions.
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Figure 3. Above: arcs of � \Rb to the right of each other. The vertical dotted line are ties; the
heavy horizontal lines are arcs of @hN . Below: arcs meeting the complementary region T , all to
the right of each other.

Note that if v 2 V.�/, then there is a minimal integral measure w projecting to v.
Since v is an extreme point of P.�/, deduce that ˛w is an embedded curve. We call
˛w a vertex cycle of � and henceforth use V.�/ to denote the set of vertex cycles.

2.6. Wide curves
Let N DN.�/ be a tie neighborhood.

Definition 2.7
A multicurve� a � is wide if there is an orientation of the components of� such that
� for every b 2B.�/, all arcs of �\Rb are to the right of each other (see the

top of Figure 3), and
� for every complementary region T of � , all arcs of �\ T are to the right of

each other (see the bottom of Figure 3).

It follows from the definition that if � a � is wide, then for any branch b 2B.�/

the intersection �\Rb has at most two components.

LEMMA 2.8
Every vertex cycle ˛ 2 V.�/ is wide.

For an even more precise characterization of vertex cycles, see [20, Lemma
3.11.3]. The proof employs curve surgery, a technique used several times in the paper.
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Figure 4. Surgery when adjacent intersections have the same sign.

Figure 5. Surgery when the three intersections have alternating sign.

Proof of Lemma 2.8
We prove the contrapositive. Suppose that ˛ is not wide. Each of the two orientations
of ˛ leads to three possible cases.

Suppose that there is a branch b � � and an oriented tie t � Rb , where x and y
are consecutive (along t ) points of ˛ \ t such that the signs of intersection at x and
y are equal. Let Œx; y� be the subarc of t bounded by x and y. Surger ˛ along Œx; y�
to form curves ˇ;� � � , as in Figure 4. Thus w˛ D wˇ Cw� , and ˛ is not a vertex
cycle.

Suppose instead that x;y; z are consecutive (along t ) points of ˛ \ t with alter-
nating sign. In this case there is again a surgery along Œx; z� producing curves ˇ
and � . See Figure 5 for one of the possible arrangements of ˛, ˇ and � . Again,
w˛ Dwˇ Cw� is a nontrivial sum and ˛ is not a vertex cycle.

In the remaining case w˛.a/ � 2 for all a 2B, and there are branches b; c 2B

where the arcs of ˛\Rb are to the right of each other while the arcs of ˛\Rc are to
the left of each other. (See Figure 6 for the two ways ˛ may be carried by � .)
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Figure 6. The curve ˛ meets Rb and Rc twice.

If ˛ is carried as in the top line of Figure 6, then surger ˛ in both rectangles Rb
and Rc as in Figure 4. This shows that w˛ is a nontrivial sum and so ˛ is not a vertex
cycle. Now suppose that ˛ is carried as in the bottom line of Figure 6. Note that the
closure of ˛�.Rb[Rc/ is a union of four arcs. Two of these, ˇ0 and � 0, meet bothRb
and Rc . Since S is orientable, no tie-preserving isotopy of N throws ˇ0 onto � 0. Let
˛0 [ ˛00 D ˛ � .ˇ0 [ � 0/. Create an embedded curve ˇ by taking two parallel copies
of ˇ0 and joining them to ˛0 and ˛00. Similarly create � by joining two parallel copies
of � 0 to the arcs ˛0 and ˛00. It follows that wˇ ¤w� . Since 2w˛ Dwˇ Cw� , again, ˛
is not a vertex cycle.

2.7. Combing
Suppose that ˛ � � has w˛.b/ � 1 for every branch b � � . Orient and transversely
orient ˛ to agree with the orientation of the surface S . We think of the orientation as
pointing in the x-direction and the transverse orientation pointing in the y-direction.
A half-branch b � � , with ˛ \ b being a single switch, twists to the right if any
train-route through b locally has positive slope. Otherwise b twists to the left. If all
branches on one side of ˛ twist to the right, then that side of ˛ has a right-combing,
and similarly for a left-combing (see Figure 8 for an example where both sides are
combed to the left).

2.8. Curve complexes and subsurface projection
For more information on the curve complex, see [15] and [16]. Impose a simplicial
structure on AC.S/, where � � AC.S/ is a simplex if and only if � is a multic-
urve. The complex of curves C.S/ and the arc complex A.S/ are the subcomplexes
spanned by curves and arcs, respectively. Note that if the complexity �.S/ is at least
2, then C.S/ is connected (see [11, Proposition 2]). For surfaces of lower complexity,
we alter the simplicial structure of C.S/.
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Define the Farey tessellation F to have vertex set Q [ ¹1º. A collection of
slopes �� F spans a simplex if ps � rq D˙1 for all p=q; r=s 2�. If S D S1;1 or
S0;4, then we take C.S/D F ; that is, there is an edge between curves that intersect
in exactly one point (for S1;1) or two points (for S0;4). Note that for surfaces with
�.S/� 1, the inclusion of C.S/ into AC.S/ is a quasi-isometry.

Suppose now that X Š S0;2 is an annulus. Define A.X/ to be the set of all essen-
tial arcs in X , up to isotopy fixing @X pointwise. For ˛;ˇ 2A.X/, define

i.˛;ˇ/Dmin
®
j.a\ b/� @X j W a 2 ˛; b 2 ˇ

¯
:

As usual, multicurves give simplices for A.X/.
If ˛;ˇ are vertices of C.S/, A.S/, or AC.S/, then define dS .˛;ˇ/ to be the

minimal number of edges in a path, in the 1-skeleton, connecting ˛ to ˇ; the contain-
ing complex will be clear from context. Note that if ˛ ˇ are distinct arcs of A.X/,
when X is an annulus, then dX .˛;ˇ/D 1C i.˛;ˇ/ (see [16, (2.3)]).

As usual, suppose that �.S/� 1. Fix an essential subsurface X � S with �.X/ <
�.S/. We suppose that X is either a nonperipheral annulus or a surface of complexity
at least 1. (The case of an essential annulus inside of S1 is excluded.) Following [16],
we will define the subsurface projection relation �X W AC.S/!AC.X/. Let SX be
the cover of S corresponding to the inclusion �1.X/ < �1.S/. The surface SX is not
compact; however, there is a canonical (up to isotopy) homeomorphism between X
and the Gromov compactification of SX . This identifies the arc and curve complexes
of X with those of SX . Fix ˛ 2AC.S/. Let ˛X be the preimage of ˛ in SX .

Place every nonperipheral curve and essential arc of ˛X into the set �X .˛/ �
AC.X/. If there are none such, then �X .˛/ D ;, and we say that ˛ misses X . If
�X .˛/¤;, then ˛ cuts X .

Suppose that ˛;ˇ 2 C.S/. If �X .˛/ and �X .ˇ/ are nonempty, define

dX .˛;ˇ/D diamX

�
�X .˛/[ �X .ˇ/

�
:

Likewise define the distance dX .A;B/ between finite sets A;B � C.S/. When � is a
track, we use the shorthand �X .�/ for the set �X .V .�//. If 	 is also a track, we write
dX .�; 	/ for the distance dX .�X .�/;�X .	//.

We end with a lemma connecting the subsurface projection of carried (or dual)
curves to the behavior of wide curves.

LEMMA 2.9
Suppose thatX � S is an essential surface and that � is a track. If some ˛ � � (˛ � � )
cuts X , then there is a vertex cycle ˇ � � (wide dual ˇ � � ) cutting X .

Proof
Some multiple of ˛ � � is a sum of vertices: m � w˛ D

P
niwi , where wi is the
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integral transverse measure for the vertex ˇi 2 V.�/. Via a sequence of tie-preserving
isotopies of N , we may arrange for all of the ˇi to realize their geometric intersection
with each other. Note that there is an isotopy representative of ˛ contained inside a
small neighborhood of the union B D

S
ˇi .

To prove the contrapositive, suppose that none of the ˇi cut X . It follows that X
may be isotoped in S to be disjoint from B . Thus ˛ misses X , as desired. A similar
discussion applies when one has ˛ � � .

3. Induced tracks
Suppose that � � S is a train track. Suppose that X � S is an essential subsurface
with �.X/ < �.S/. Let SX be the corresponding cover of S . Let �X be the preimage
of � in SX (note that the pretrack �X satisfies all of the axioms of a train track except
compactness).

Define AC.�X / to be the set of essential arcs and essential, nonperipheral curves
properly embedded in the Gromov compactification of SX with interior a train-route
or train-loop carried by �X . A bit of caution is required here—inessential arcs and
peripheral curves may be carried by �X but these are not admitted into AC.�X /.
Define A.�X /;C.�X /�AC.�X / to be the subsets of arcs and curves, respectively.
Define AC�.�X / to be the set of dual essential arcs and dual essential, nonperipheral
curves, up to isotopies fixing �X setwise.

3.1. Induced tracks for nonannuli
If X is not an annulus, define � jX , the induced track, to be the union of the branches
of �X crossed by an element of C.�X /.

LEMMA 3.1
If X is not an annulus, then the induced track � jX is compact.

Proof
Note that train-routes in �X that are mapped properly to SX are uniform quasi-
geodesics in SX (see [20, Proposition 3.3.3]). Thus there is a compact core X 0 � SX ,
homeomorphic to X , such that any route meeting SX �X 0 has one endpoint on the
Gromov boundary of SX . It follows that � jX �X 0.

Note that � jX may not be a train track;N DN.� jX/may have smooth boundary
components and complementary regions with nonnegative index. However, since all
complementary regions of �X have negative index, it follows that if a complementary
region T of � jX has nonnegative index, then T is a peripheral annulus meeting a
smooth component of @N .
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The definition of � jX implies that � jX is recurrent. Carrying, duality, efficient
position, and wideness with respect to an induced track are defined as in Section 2.4.
Define C.� jX/ � C.X/, the subset of curves carried by � jX . Note that C.� jX/D

C.�X /. Define AC�.� jX/�AC.X/ to be the subset of arcs and curves dual to � jX .
Note that AC�.� jX/�AC�.�X /.

Now, � jX fails to be transversely recurrent exactly when it carries a peripheral
curve. We say that a branch b � � jX is transversely recurrent with respect to arcs
and curves if there is ˛ 2AC�.� jX/ meeting b. Then � jX is transversely recurrent
with respect to arcs and curves if every branch b is.

LEMMA 3.2
Suppose that � is transversely recurrent in S . Then � jX is transversely recurrent
with respect to arcs and curves in X . Furthermore, suppose that � jX is transversely
recurrent with respect to arcs and curves in X . If 	 � � jX is a train track, then 	 is
transversely recurrent in X .

Proof
The first claim follows from the definitions. An index argument proves the second
claim.

Here is our second curve surgery argument.

LEMMA 3.3
Suppose that � is a track and that X � S is an essential subsurface, yet not an annu-
lus. For every ˛ 2A.�X /, at least one of the following holds.
� There is an arc ˇ 2A.�X / such that ˇ is wide and i.˛;ˇ/D 0.
� There is a curve � 2 C.� jX/ such that i.˛; �/� 2.
The statement also holds replacing A;C by A�;C�.

Proof
The proof is modeled on that of Lemma 2.8. If ˛ � �X is wide, we are done. If not, as
˛ is a quasi-geodesic (see [20, Proposition 3.3.3]), orient ˛ so that ˛ is wide outside
of a compact core for SX . Now we induct on the total number of arcs of intersection
between ˛ and rectangles Rb �N.�X / meeting the compact core.

Let t be a tie of Rb . Orient t . Suppose that x;y are consecutive (along t ) points
of ˛ \ t . Suppose that the sign of intersection at x equals the sign at y. Let Œx; y� be
the subarc of t bounded by x and y. As in Lemma 2.8, surger ˛ along Œx; y� to form
an arc ˇ0 and a curve � . (See Figure 4 with ˇ0 substituted for ˇ.)
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Note that � is essential in SX by an index argument. If � is nonperipheral, then
the second conclusion holds. So suppose that � is peripheral. Then ˛ is obtained by
Dehn twisting ˇ0 about � . So ˇ0 is properly isotopic to ˛ and has smaller intersection
with Rb ; thus we are done by induction.

Suppose instead that x;y; z are consecutive (along t ) points of ˛ \ t , with alter-
nating sign. Surger ˛ along Œx; z� to form an arc ˇ0 and a curve � . (See Figure 5, with
ˇ0 substituted for ˇ, for one of the possible arrangements of ˛, ˇ0, and � .) Again, �
is essential. If � is nonperipheral, then the second conclusion holds and we are done.
If � is peripheral, then, as ˛ and ˇ0 differ by a half-twist about � , we find that ˇ0

is properly isotopic to ˛. Since ˇ0 has smaller intersection with Rb , we are done by
induction.

All that remains is the case that ˛ meets every rectangle Rb in at most a pair of
arcs of opposite orientation. For every branch b where ˛ meets Rb twice, choose a
subarc tb of a tie in Rb so that ˛ \ tb D @tb . We call tb a chord for ˛. For every tb
there is a subarc ˛b � ˛ such that @tb D @˛b . A chord tb is innermost if there is no
chord tc with ˛c strictly contained in ˛b . Let tb be the first innermost chord. Let ˛0

be the component of ˛�˛b before ˛b . Build a route ˇ by taking two copies of ˛0 and
joining them to ˛b . Since tb is the first innermost chord, the intersection ˇ \Rc is a
single arc or a pair of arcs depending on whether it is ˛b or ˛0 that meets Rc . Thus
ˇ is wide. Also, ˇ is essential; otherwise, tb [ ˛b bounds a disk with index 1=2, a
contradiction. By construction, i.˛;ˇ/D 0 and Lemma 3.3 is proved.

3.2. Induced tracks for annuli
Suppose that X � S is an annulus. Define � jX to be the union of branches b � �X

so that some element of A.�X / travels along b. (Note that � jX , if nonempty, is not
compact.) Define A.� jX/DA.�X / and also the duals A�.� jX/�A�.�X /.

Define V.� jX/ in A.� jX/ to be the set of wide carried arcs. Define V �.� jX/
dually.

LEMMA 3.4
Suppose that X � S is an essential annulus. If A.�/.� jX/ is nonempty, then V .�/.� j
X/ is nonempty. Let N D N.� jX/. If � a � jX is a wide essential arc, then � meets
each rectangle of N and each region of SX �N in at most a single arc.

For example, if � � � jX is a wide essential arc, then � embeds into � jX .

Proof of Lemma 3.4
We prove the second conclusion; the first is similar. Suppose that R is either a rectan-
gle or a region such that � \R is a pair of arcs to the right of each other. Let ı be an
arc embedded in the interior of R such that
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Figure 7. Pieces of N are shown, with vertical and horizontal boundary in the correct orientation;
the dotted lines are ties. The left and right pictures show a vertical and horizontal rectangle swap,
respectively.

� ı \ � D @ı, and
� ı meets both components of � \R.
Let � 0 be the component of � � @ı such that @� 0 D @ı. If � 0 [ ı bounds a disk in SX ,
then this disk has index 1=2 and we contradict efficient position. If � 0 [ ı bounds an
annulus, then � was not essential, another contradiction.

Suppose that ˛ is the core curve of the annulus X .

LEMMA 3.5
If ˛ is not carried by � jX , then V.� jX/ D A.� jX/. If ˛ is not dual to � jX , then
V �.� jX/DA�.� jX/.

LEMMA 3.6
Suppose that ˛ � � jX . One side of ˛ is combed if and only if both sides are combed in
the same direction if and only if some isotopy representative of ˛ is dual to � jX .

4. Finding efficient position
After discussing the various sources of nonuniqueness, we prove in Theorem 4.1 that
efficient position exists.

Let N D N.�/; suppose that ˛ a � . A rectangle T � S � .N [ ˛/ is vertical if
@T has a pair of opposite sides meeting ˛ and @vN , respectively. Define horizontal
rectangles similarly. Figure 7 depicts the two kinds of rectangle swap.

Now suppose that ˛ � � , that every rectangleRb �N meets ˛ in at most a single
arc, and that one side of ˛ is combed. Let A be a small regular neighborhood of ˛.
Then an annulus swap interchanges ˛ and the component of @A on the combed side
(see Figure 8).
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Figure 8. Both sides of ˛ are combed (to the left). Thus both boundary components of the annulus
shown are dual to � and both differ from the carried core curve by an annulus swap.

THEOREM 4.1
Suppose that �.S/� 1 and that � � S is a birecurrent train track. Suppose that ��
AC.S/ is a multicurve. Then efficient position for � with respect to � exists and
is unique up to rectangle swaps, annulus swaps, and isotopies of S preserving the
foliation of N.�/ by ties.

Remark 4.2
When S D S1 is a torus, [9, Lemma 14] proves the existence of efficient position for
curves with respect to Reebless bigon tracks. Uniqueness of efficient position follows
from a slight generalization of Section 4.1 using bigon swaps.

4.1. Uniqueness of efficient position
Suppose that ˛ and ˇ are isotopic curves and in efficient position with respect to � . We
induct on i.˛;ˇ/. For the base case, suppose that j˛\ˇj D 0. Then ˛ and ˇ cobound
an annulus A� S so that @A has no corners (see [4, Lemma 2.4]). Since N DN.�/
is a union of rectangles, the intersection A \ N is also a union of rectangles. Thus
index.N \A/D 0. By the hypothesis of efficient position, any region T �A�N has
nonpositive index and has all corners outwards. By the additivity of index, it follows
that index.T /D 0. It follows that each region T is either an annulus without corners
or a rectangle.

Suppose that some region T is an annulus without corners. Then we must have
T D A. For if @T meets @N , then @N has a component without corners, contrary to
assumption. Since T D A, it follows that ˛ and ˇ are isotopic in the complement of
N , and we are done.

So we may assume that all regions of A �N are rectangles. (In particular, A \
N ¤;.) Note that if a region R is a horizontal rectangle, then there is no obstruction
to doing a rectangle swap across R. After doing all such swaps, we may assume that
A�N contains no horizontal rectangles.
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We now abuse terminology slightly by assuming that the position of N deter-
mines that of � . So if A contains vertical rectangles, then there are switches of � con-
tained in A. This implies that A contains half-branches of � . Let b0 be a half-branch
in A, meeting @A. If b0 is large, then there is a vertical rectangle swap removing three
half-branches from A. After doing all such swaps, we may assume that any such b0

is small. If R is a vertical rectangle meeting @A, then R has two horizontal sides. If
neither of these meets a switch on its interior, then again there is a swap removing
three half-branches from A.

After doing all such swaps, if there are still vertical rectangles in A, then we
proceed as follows. Every vertical rectangle must have a horizontal side that properly
contains the horizontal side of another vertical rectangle. (For example, in Figure 8,
number the rectangles above the core curve R0;R1;R2 from left to right. Note that
the left horizontal side of Ri strictly contains the right horizontal side of Ri�1.) It
follows that the union of these vertical rectangles gives an annulus swap which we
perform. Thus, we are reduced to the situation where A contains no horizontal or
vertical rectangles.

If A � N , then ˛ and ˇ are both carried. For any tie t � N , any component
t 0 � t\A is an essential arc inA. (To see this, suppose that t 0 is inessential. LetB �A
be the bigon cobounded by t 0 and ˛0 � ˛, say. Since ˛ is carried, ˛0 is transverse to the
ties. We define a continuous involution on ˛0; for every tie s and for every component
s0 � s \ B , transpose the endpoints of s0. As this involution is fixed-point-free, we
have reached a contradiction.) It follows that A is foliated by subarcs of ties, and we
are done.

There is one remaining possibility in the base case of our induction: A\N ¤;,
A 6�N , and A contains no switches of � . Thus every region of A\N and of A�N
is a rectangle meeting both ˛ and ˇ. Any region R of A\N is foliated by (subarcs
of) ties and, as above, all ties meet R essentially. Thus R gives a parallelism between
(carried arcs) ties of ˛ and ˇ. It follows that A gives an isotopy between ˛ and ˇ,
sending ties to ties. This completes the proof of uniqueness when j˛ \ ˇj D 0.

For the induction step, assume that j˛ \ ˇj > 0. Since ˛ is isotopic to ˇ, the
bigon criterion (see [4, Lemma 2.5]) implies that there is a disk B � S with exactly
two outward corners x and y such that B \ .˛ [ ˇ/D @B . Suppose that x is a dual
intersection: an intersection of a tie of ˛ and a carried arc of ˇ. (See Figure 9.)

Let ˛0 D ˛\B , and let ˇ0 D ˇ\B . Orient ˇ0 away from x. Let z 2 ˛0 be imme-
diately adjacent to x. Without loss of generality, we may assume that z is to the left of
ˇ0, near x. Let � be the half-route starting at z, initially agreeing with ˇ, and turning
left at every switch. If ��B , then eventually � repeats a branch b in the same direc-
tion; it follows that there is a curve � � � contained in B contradicting Lemma 2.5.
However, if � exits B through ˛0 (ˇ0), then we contradict efficient position of ˛ (ˇ).
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Figure 9. The left corner is a dual intersection between a tie of ˛ and a carried arc of ˇ. If the
half-route � exits through ˛ or ˇ, then a bigon or nontrivial trigon is created.

It follows that the corner x either lies in S �N or is the intersection of carried
arcs of ˛ and ˇ. The same holds for y. In either case, we remove from B a small
neighborhood of x and of y: when the corner lies in N , we use a subarc of a tie to do
the cutting. The result B 0 is a rectangle with the components of @hB contained in ˛
and ˇ, respectively. As index.B 0/D 0, the argument given in the case of an annulus
gives a sequence of rectangle swaps moving ˛ across B . This reduces j˛\ˇj by two
and so completes the induction step.

The proof when ˛ and ˇ are arcs follows the above, omitting any mention of
annulus swaps.

Finally, suppose that �;� are isotopic multicurves, both in efficient position. We
may isotope � to �, as above, being careful to always use innermost bigons. This
completes the proof that efficient position is unique.

We end this section with a useful corollary.

COROLLARY 4.3
Suppose that � �AC.S/ is a finite collection of arcs and curves in efficient position.
Then we may perform a sequence of rectangle swaps to realize the pairwise geometric
intersection numbers.

Proof
Let � D ¹�iºkiD1. By induction, the curves of � 0 D � � ¹�kº realize their pairwise
geometric intersection numbers. If �k meets some �i 2 � 0 nonminimally, then by the
bigon criterion (see [5, p. 46]), there is an innermost bigon between �k and some �j 2
� 0. We now may reduce the intersection number following the proof of uniqueness of
efficient position.



ON TRAIN-TRACK SPLITTING SEQUENCES 1631

4.2. Existence of efficient position
Our hypotheses are weaker, and thus our discussion is more detailed, but the heart of
the matter is inspired by [15, pp. 122–123].

We assume that � fills S . This is because, if � did not fill, we could replace
S by the subsurface it does fill. Since � is transversely recurrent, for any 
;L > 0
there is a finite area hyperbolic metric on the interior of S and an isotopy of � with
the following property. Every branch of � has length at least L and every train-route
� � � has geodesic curvature less than 
 at every point (see [21, Theorem 1.4.3]).

Let �H be the lift of � to H D H2, the universal cover of S . Every train-route
� � �H cuts H into a pair H˙.�/ of open half-planes. Fix a route � � �H and an
integer n 2 Z. Suppose that b0 � �H is the half-branch with b0\�D �.n/. We say the
branch b, containing b0, is rising or falling with respect to � as the large half-branch
at the switch �.n/ is contained in �jŒn;1/ or contained in �j.�1; n�.

CLAIM 4.4
For any route � � �H, one side of � has infinitely many rising branches while the
other side has infinitely many falling branches.

Proof
Note that there are infinitely many half-branches on both sides of �; if not, then
@hN.�/ would have a component without corners, contrary to assumption. Suppose
that there are only finitely many rising branches along �. Then there is a curve � � �
such that w� .b/� 1 for every branch b and such that the two sides of � are combed in
opposite directions. Thus � is not recurrent, a contradiction. The same contradiction
is obtained if there are only finitely many falling branches along �.

CLAIM 4.5
For any route � � �H and for any family of half-routes ¹ˇnº, if ˇn \ �D �.n/, then
limn!1 ˇn.1/D �.1/.

Proof
Let x D �.1/ 2 @1H. Suppose that ¹ˇnº is a subsequence where the first branch
of each ˇn is falling. Let Pn D �j.�1; n� [ ˇn, oriented away from �.�1/. Note
that Pn.1/ D ˇn.1/. Recall that � and Pn are both uniformly close to geodesics
(see [21, pp. 61–62]). Thus Pn.1/! x as n!1.

Suppose instead that ¹ˇnº is a subsequence where the first branch of each ˇn is
rising. Let Pn D ˇn[�jŒn;1/, oriented towards x; so Pn.1/D x for all n. Note that
P.�1/D ˇn.1/. Since all complementary regions of �H have negative index, none
of the Pn may cross each other. It follows that either the Pn exit compact subsets of
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H, and we are done, or the Pn converge (see [21, Theorem 1.5.4]) to P , a train-route
with P.1/D x. Since P does not cross any Pn, deduce that P and � are disjoint. But
this contradicts [20, Corollary 3.3.4]: train-routes that share an endpoint must share a
half-route.

Given distinct points x;y; z 2 S1 D @1H, arranged counterclockwise, let .y; z/;
.z; y/ be the two components of S1�¹y; zº; we chose notation so that x 2 .z; y/. Let
Œy; z� be the closure of .y; z/.

CLAIM 4.6
For any distinct z; y 2 S1, there is a train-route � such that one of the intervals
@1H

˙.�/ is contained in .z; y/.

Proof
The endpoints of train-routes are dense in S1 D @1H. Fix x 2 .z; y/ so that x is the
endpoint of a train-route � . Since there are infinitely many rising branches along �
(Claim 4.4), the claim follows from the rising case of Claim 4.5.

Let Hx;y �H be the convex hull of .x; y/� @1H. Let Hx;y be the union of all
open half-planes H.�/ such that @1H.�/� .x; y/. Since train-routes have geodesic
curvature less than 
 at every point, we have the following.

CLAIM 4.7
The union Hx;y is contained in a ı-neighborhood of Hx;y , where ı may be taken as
small as desired by choosing appropriate 
;L.

A set X �H is 
0-convex if every pair of points in X can be connected by a path
in X which has geodesic curvature less than 
0 at every point.

CLAIM 4.8
H � Hx;y is closed and 
0-convex, where 
0 may be taken as small as desired by
choosing appropriate 
;L.

Proof
This is proved in detail in [15, pp. 122–123].

CLAIM 4.9
The point x is an accumulation point of @.H�Hx;y/.
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Proof
Pick a sequence of subintervals .xn; yn/ � .x; y/ such that xn; yn! x as n!1.
By Claim 4.6, for every n there is a route �n and a half-plane Hn D H.�n/ such
that @1Hn � .xn; yn/. It follows that Hn �Hx;y . Let rn be any bi-infinite geodesic
perpendicular to @Hx;y and meeting Hn. Thus rn! x as n!1. By Claim 4.7, the
intersection rn \ @.H�Hx;y/ is nonempty, and we are done.

The next lemma is not needed for the proof of Theorem 4.1; we state it and give
the proof in order to introduce necessary techniques and terminology.

LEMMA 4.10
For any nonparabolic point x � S1 there is a sequence of train-routes ¹�nº with
associated half-planes ¹H.�n/º forming a neighborhood basis for x.

Proof
Let y; z be arbitrary points of S1 such that x;y; z are ordered counterclockwise. It
suffices to construct a train-route separating x from .y; z/.

First, assume that x is the endpoint of a route �. Claim 4.4 implies that there
are infinitely many rising branches ¹amº on one side of � and infinitely many falling
branches ¹cnº on the other side. Run half-routes ˛m and �n through am and cn so
each half-route meets � in a single switch. By Claim 4.5, the endpoints converge:
˛m.1/; �n.1/! x. Thus sufficiently large m;n give a train-route

˛m [ �jŒm;n� [ �n

that separates x from .y; z/, as desired.
For the general case, consider

K DH� .Hz;x [Hx;y/:

Note that x is an accumulation point of K (by Claim 4.9 and because Hz;x cannot
contain points of @.H�Hx;y/). Fix any base point w 2K . By Claim 4.8, the set K

is 
0-convex. Thus there is a path r �K from w to x which has geodesic curvature
less than 
0 at every point. Since x is not a parabolic point, the projection of r to S
recurs to the thick part of S ; thus r meets infinitely many branches ¹bnº of �H.

Suppose that b is a branch of �H lying in K . If the two sides of b meet Hz;x and
Hx;y , then b is a bridge of K . If the sides of b meet neither Hz;x nor Hx;y , then b
is an interior branch of K . If exactly one side of b lies in K , then b is a boundary
branch. If both sides lie in Hz;x (or both sides lie in Hx;y), then b is an exterior
branch. (See Figure 10 for an illustration of the case z D y.)
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Figure 10. The path r runs from y to x. To simplify the figure, no interior branches are shown.

By convexity, the path r is disjoint from the exterior branches. After a small
isotopy, the path r is also disjoint from the boundary branches, meets the interior
branches transversely, and still has geodesic curvature less than 
0 at every point.

Now, if r travels along a bridge, then there are routes �˙ cutting off half-planes
H˙ lying in Hz;x and Hx;y , respectively. Then either x is the endpoint of a train-
route or a cut and paste of �˙ gives the desired route � separating x from .y; z/. In
either case, we are done.

So suppose that r only meets interior branches ¹bnº of K . Let �n be any train-
route travelling along bn. If any of the �n land at x, then we are done as above. So
suppose instead none of the �n land at x. By fixing orientations and passing to a sub-
sequence, we may assume that �n.1/! x as n!1. There are now two cases. Sup-
pose that, for infinitely many n, we find that �n.�1/ 2 Œy; z�. Then passing to a fur-
ther subsequence, we have that �n! � , where �.1/D x (see [21, Theorem 1.5.4]);
thus x is the endpoint of a train-route and we are done as above. The other possibility
is that, for some sufficiently large n, both endpoints �n.˙1/ lie in .z; y/. Since bn
is an interior branch, �n separates x from .y; z/ and Lemma 4.10 is proved.

4.3. Finding invariant efficient position
Fix ˛ 2 C.S/. (The case of ˛ 2A.S/ is dealt with in Section 4.4.) Let ˛0 be a com-
ponent of the lift of ˛ to the universal cover H. Let �1.˛/ be the cyclic subgroup (of
the deck group) preserving ˛0. Let ¹x;yº D @1˛0 � S1. We take

K DH� .Hy;x [Hx;y/:
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By construction, K is �1.˛/-invariant. By Claims 4.8 and 4.9, the set K is closed,

0-convex, and has ¹x;yº � @1K . By Lemma 4.10, the only nonparabolic points of
@1K are x and y. As in the proof of Lemma 4.10, we find a bi-infinite path r �K

connecting y to x, with geodesic curvature less than 
0 at every point. (See Figure 10.)
Let H.r/ be the open half-plane to the right of r . If we remove the union[

g2�1.˛/

g �H.r/

from H, then, as with Claim 4.8, what remains is closed and 
00-convex for some small

00. It follows that we may homotope the path r to become a �1.˛/-invariant smooth
path, contained in K and transverse to the interior branches, and avoiding the exterior
branches of K . A further equivariant isotopy ensures that r also avoids the boundary
branches of K . Orient r from y to x.

Remark 4.11
Suppose that � � �H is a train-route that separates x from y. Note that if there exists
a nonidentity element g 2 �1.˛/ such that � and g � � meet, then r is carried by �H;
thus ˛ � � , and we are done. We will henceforth assume that train-routes separating
x from y are disjoint from their nontrivial translates.

Let b be any interior branch of K , and let � be any train-route travelling along b.
Since b is interior, � must separate x from y. Orient � from Hy;x to Hx;y . (Thus if
� and r meet once, then the tangent vectors to r and � , in that order, form a positive
frame.) The orientation of � gives an orientation to b. Moreover, as b is an interior
branch, a cut-and-paste argument shows that the orientation on b is independent of our
choice of � . Orient all interior branches in this fashion, and note that these orientations
agree at interior switches.

We say that p 2 r \ b has positive or negative sign as the tangent vectors to r
and b (in that order) form a positive or negative frame. Suppose that there are N 2 N

orbits of points of negative sign, under the action of �1.˛/. We now induct on N.
Suppose that N is zero. Any bigon between r and a train-route is contained in K

and so contributes one point of positive and one point of negative sign. So if there are
no points of negative sign, then there are no bigons and r is in efficient position with
respect to �H. Recall that r is �1.˛/-invariant. So ˇ � S , the image of r under the
universal covering map, is an immersed curve in S homotopic to ˛. If ˇ is embedded,
then we are done. If not, then the bigon criterion for immersed curves (see [12, The-
orem 2.7]) implies that ˇ must have either a monogon or a bigon of self-intersection.
If ˇ has a monogon B of self-intersection, then, since index is additive, � must be
disjoint from B . Thus we can homotope ˇ to remove B while fixing � pointwise. If ˇ
has a bigon B of self-intersection, then, as in the proof of uniqueness in Section 4.1,
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Figure 11. Left: the lowest point shown has negative sign. The paths r and �L form a bigon.
Right: the corresponding figure for �R .

we may remove B via a sequence of rectangle swaps. After removing all monogons
and bigons of self-intersection, the curve ˇ is embedded and in efficient position.

Suppose that N is positive. Let b be a branch with a point p 2 r \ b of negative
sign. Let �R (�L) be the half-route starting at p, travelling in the direction of b, and
thereafter turning only right (left). Each of �R and �L must have at least one bigon
with r , as their points at infinity lie in .x; y/. There are now two (essentially identical)
cases (see Figure 11).
� There is a bigon B between r and �R, to the right of r , such that the corners

of B appear in the same order along r and �R.
� There is a bigon B between r and �L, to the right of r , such that the corners

of B appear in opposite order along r and �L.
If neither case holds, then any half-route ending at p must originate in .x; y/, contra-
dicting the fact that p has negative sign. Note that, by Remark 4.11, �R (�L) is disjoint
from its nontrivial �1.˛/ translates. It follows that the bigon B is also disjoint from its
nontrivial translates. Finally, we may equivariantly isotope r across �1.˛/ �B . Since
the arc of �R \ @B (resp., �L \ @B) is combed outside of B , this isotopy reduces N
by at least 1 (again, see Figure 11). This completes the proof of Theorem 4.1 when ˛
is a curve.

4.4. Efficient position for arcs and multicurves
Now suppose that ˛ � S is an essential arc. Let ˛0 be a lift of ˛ to H, the universal
cover of S . Note that ¹x;yº D @1˛0 is a pair of parabolic points. Construct K D

H�.Hy;x[Hx;y/ as before. The proof now proceeds as above, omitting any mention
of �1.˛/, equivariance, or annulus swaps.

Finally, suppose that� is a multicurve. As shown in Section 4.2, we may isotope,
individually, every ˛ 2� into efficient position. By Corollary 4.3, all ˛ 2� may be
realized disjointly in efficient position. This completes the proof of Theorem 4.1.
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5. The structure theorem

5.1. Bounding diameter
We now bound the diameters of the sets of wide arcs and curves carried by the induced
track.

LEMMA 5.1
Suppose that � is a birecurrent track and thatX � S is an essential annulus. If � jX ¤
;, then the diameter of V.� jX/[ V �.� jX/ inside of A.X/ is at most 8.

Proof
In the proof, we use V and V � to represent V.� jX/ and V �.� jX/. Since � jX ¤ ;,
it follows that A.� jX/ is nonempty. The first conclusion of Lemma 3.4 now implies
that V is nonempty.

CLAIM

The set V � of wide dual arcs is nonempty.

Proof
By Lemma 2.6, there is a dual curve ˇ 2 C�.�/ such that i.˛;ˇ/ > 0. Thus there is
a lift ˇ0 � SX with closure an essential arc. Since � jX � �X , it follows that ˇ0 2
A�.� jX/. The first conclusion of Lemma 3.4 now implies that V � is nonempty.

CLAIM

If ˇ 2 V and � 2 V �, then i.ˇ; �/� 3.

Proof
Suppose that i.ˇ; �/ D n � 4. Let ¹�iºn�1iD1 be the components of � � ˇ with both
endpoints on ˇ. Let Ri be the components of SX � .ˇ [ �/ with compact closure.
We arrange matters so that opposite sides of Ri are on �i and �iC1. Let R be the
union of the Ri . Since index.R/D 0, every region T of the closure of R �N.� jX/
also has index zero and so is a rectangle. If T meets both �i and �iC1, then � was not
wide, a contradiction. As n� 1� 3, any region T meeting �2 is a compact rectangle
component of the closure of SX �N.� jX/. An index argument implies that �X , and
thus � � S , has a complementary region with nonnegative index, a contradiction.

Since V and V � are nonempty, it follows that diam.V [ V �/� 8.

Now suppose that X is not an annulus. Prompted by Lemma 2.8, we define
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W.�X /D
®
˛ 2AC.�X /

ˇ̌
˛ is wide

¯
:

Define W �.�X / similarly, replacing AC.�X / by AC�.�X /.

LEMMA 5.2
There is a constant K1 D K1.S/ with the following property. Suppose that � is a track
and that X � S is an essential subsurface (not an annulus) with �X .�/¤;. Then the
diameter of W.�X /[W �.�X / inside of AC.X/ is at most K1. Furthermore, if @X ,
after isotopy into efficient position and with the induced orientation, is not wide, then
either C.� jX/ or C�.� jX/ has diameter at most 2 in C.X/.

Proof
In the proof, we useW;W �;AC ;AC� to representW.�X / and so on. Since �X .�/¤
;, there is some vertex cycle ˛ 2 V.�/ such that ˛ cuts X . Since ˛ is wide (see
Lemma 2.8), there is a lift ˛0 � �X which is also wide; deduce that W is nonempty.

CLAIM

The set W � of wide duals is nonempty.

Proof
By Lemma 2.6, there is a dual curve ˛ 2 C�.�/ cutting X . By Lemma 2.9, there is a
wide dual ˇ that also cuts X . Thus there is a lift ˇ0 � SX with closure an essential
wide arc or wide essential, nonperipheral curve. So ˇ0 2W �, as desired.

Now isotope @X into efficient position. Let X 0 be the compact component of the
preimage of X under the covering map SX ! S . Note that @X 0 is in efficient position
with respect to �X . Note that the covering map SX ! S induces a homeomorphism
between X 0 and X . Let NX D N.�X / � SX be the preimage of N D N.�/. Let
N 0 D X 0 \ NX . Again, the covering map induces a homeomorphism between N 0

and N \X .
Suppose that @X , with its induced orientation, is not wide. If @X fails to be wide

in S � N.�/, then there is a properly embedded, essential arc � � X disjoint from
N.�/. Lift � to � 0 �X 0. Adjoin to � 0 geodesic rays in SX �X 0 to obtain an essential,
properly embedded arc � 00 � SX . Note that i.� 00; ˛/ D 0 for every ˛ 2 AC ; only
intersections in X 0 contribute to geometric intersection number as computed in SX .
This implies that diamX .C.� jX//� 2. Furthermore, i.� 00; ˇ/� 2 for every ˇ 2W �.
This gives the desired diameter bound for W [W �.

If, instead, @X fails to be wide inN.�/, then there is a properly embedded, essen-
tial arc � �X that is a subarc of a tie. Again, lift and extend to an essential arc � 00 �
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SX so that i.� 00; ˇ/D 0 for any ˇ 2AC�. This implies that diamX .C
�.� jX// � 2.

We also have i.� 00; ˛/� 2 for any ˛ 2W . Again, the diameter is bounded.
Now suppose that @X is wide. Thus, for every b 2B.�/, the rectangle Rb meets

@X in at most a pair of arcs. It follows that N \ X , and thus N 0, is a union of at
most 2jB.�/j subrectangles of the form R0;R00 � Rb . Suppose that ˛ 2W and that
ˇ 2 W �. Then ˛ and ˇ each meet a subrectangle R0 in at most two arcs. Thus ˛
and ˇ intersect in at most four points inside of R0. Thus i.˛;ˇ/ � 8jB.�/j. Since
jB.�/j � 6 � �.S/D 18g � 18C 6n, Lemma 5.2 is proved.

5.2. Accessible intervals
Suppose that ¹�iºNiD0 is a sliding and splitting sequence of birecurrent train tracks.
Suppose thatX � S is an essential subsurface, yet not an annulus, with �.X/ < �.S/.
Define

mX Dmin
®
i 2 Œ0;N �

ˇ̌
diamX

�
C�.�i jX/

�
� 3

¯

and

nX Dmax
®
i 2 Œ0;N �

ˇ̌
diamX

�
C.�i jX/

�
� 3

¯
:

If either mX or nX is undefined or if nX < mX , then IX , the accessible interval, is
empty. Otherwise, IX D ŒmX ; nX �.

If X � S is an annulus, then IX is defined by replacing C by A and increasing
the lower bound on diameter from 3 to 9. We may now state the structure theorem.

THEOREM 5.3
For any surface S with �.S/� 1, there is a constant K0 D K0.S/ with the following
property. Suppose that ¹�iºNiD0 is a sliding and splitting sequence of birecurrent train
tracks in S , and suppose that X � S is an essential subsurface.
� For every Œa; b� � Œ0;N �, if Œa; b� \ IX D ; and �X .�b/ ¤ ;, then dX .�a;

�b/� K0.
Suppose that i 2 IX . If X is an annulus, then we have the following.
� The core curve ˛ is carried by and wide in �i .
� Both sides of ˛ are combed in the induced track �i jX .
� If i C 1 2 IX , then �iC1jX is obtained by taking subtracks, slides, or at most

a pair of splittings of �i jX .
If X is not an annulus, then we have the following.
� When in efficient position, @X is wide with respect to �i .
� The track �i jX is birecurrent and fills X .
� If i C 1 2 IX , then �iC1jX is either a subtrack, a slide, or a split of �i jX .



1640 MASUR, MOSHER, and SCHLEIMER

Proof
Fix an interval Œa; b�� Œ0;N �. Note that �b � �a and so �X

b
� �Xa . Thus AC.�X

b
/�

AC.�Xa /, while AC�.�Xa /�AC�.�X
b
/.

CLAIM

If Œa; b�\ IX D; and if �X .�b/¤;, then dX .�a; �b/� K0.

Proof
Fix, for the duration of the claim, a vertex cycle ˇ 2 V.�b/ so that ˇ cuts X . Since ˇ
is also carried by �a, there is, by Lemma 2.9, a vertex cycle ˛ 2 V.�a/ cuttingX . Pick
˛0 2 �X .˛/ and ˇ0 2 �X .ˇ/. Note that Lemma 2.8 implies that ˛0 is wide in �Xa while
ˇ0 is wide in �X

b
. The proof divides into cases depending on the relative positions of

a; b;mX , and nX .

Case I
Suppose that nX < a or nX is undefined.

Note that ˇ0 � �Xa . If X is an annulus, then, since a … IX , the diameter of
A.�ajX/ is at most 8; thus dX .˛;ˇ/� 8, and we are done.

Suppose thatX is not an annulus. If ˇ0 is an arc, then Lemma 3.3 gives two cases:
we may replace ˇ0 by � , which is either a wide arc in �Xa or is an essential nonpe-
ripheral curve in �ajX . (If ˇ0 is a curve, then let � D ˇ0.) In either case, Lemma 3.3
ensures that i.�;ˇ0/ � 2 and so dX .�;ˇ0/ � 4. If � is an arc, then both ˛0 and � are
wide so Lemma 5.2 gives dX .˛;ˇ/� K1C 4. If � is a curve, pick any ı 2 V.�ajX/.
Then Lemma 5.2 implies that dX .˛0; ı/� K1. Also, a…IX implies that dX .ı; �/� 2.
Thus dX .˛;ˇ/� K1C 6.

Case II
Suppose that b <mX or mX is undefined.

If X is an annulus, then Lemma 5.1 gives wide duals ˛� 2 V �.�ajX/ and ˇ� 2
V �.�bjX/ so that dX .˛0; ˛�/; dX .ˇ0; ˇ�/ � 8. It follows that the arc ˛� also lies in
A�.�bjX/. Since b … IX , we have dX .˛�; ˇ�/� 8. Thus dX .˛;ˇ/� 24, as desired.

If X is not an annulus, then by Lemma 5.2 there is a wide dual ˛� 2W �.�Xa /
such that dX .˛0; ˛�/� K1. Again, ˛� is also an element of AC�.�X

b
/ but may not be

wide there. If ˛� is an arc, then Lemma 3.3 gives two cases: we may replace ˛� by
�� which is either a wide dual arc to �X

b
or is an essential nonperipheral dual curve

to �X
b

. (If ˛� is a curve, then let �� D ˛�.) So i.˛�; ��/� 2 and thus dX .˛�; ��/�
4. If �� is a wide dual arc, then Lemma 5.2 implies that dX .��; ˇ0/ � K1 and so
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dX .˛;ˇ/ � 2K1 C 4. If �� is a dual curve, then, as b … IX , any dual wide curve
ı� 2 V �.�bjX/ has dX .��; ı�/� 2. Again, Lemma 5.2 implies that dX .ı�; ˇ0/� K1

and so dX .˛;ˇ/� 2K1C 6.

Case III
Suppose that a � nX < c <mX � b.

The first two cases bound dX .�c; �b/ and dX .�a; �c/; thus we are done by the
triangle inequality.

Case IV
Suppose that a � nX <mX � b and that mX D nX C 1.

Let c D nX and d DmX . The first two cases bound dX .�d ; �b/ and dX .�a; �c/.
Since V.�c/ and V.�d / have bounded intersection, dX .�c; �d / is also bounded and
the claim is proved.

Now fix i 2 IX .

CLAIM

If X is an annulus, then we have the following.
� The core curve ˛ is carried by and is wide in �i .
� Both sides of ˛ are combed in the induced track �i jX .
� If i C 1 2 IX , then �iC1jX is obtained by taking subtracks, slides, or at most

a pair of splittings of �i jX .

Proof
Since i 2 IX , both A.�i jX/ and A�.�i jX/ have diameter at least 9. From Lemma 5.1,
deduce that the inclusions V �A and V � �A� are strict. Thus by Lemma 3.5, the
core curve ˛ is both carried by and dual to �i jX . The second statement now follows
from Lemma 3.6. Thus at least one side of ˛ is combed in �Xi . Projecting from SX to
S , we find that ˛ � �i . If ˛ is not wide in �i , then we deduce that neither side of ˛ is
combed in �X , a contradiction.

Suppose that �i slides to �iC1. Then, up to isotopy, �iC1 slides to �i . Since slides
do not kill essential arcs, it follows that �iC1jX is obtained from �i jX by an at most
countable collection of slides.

Now suppose that �iC1 is obtained by splitting �i along a large branch b. Thus
�XiC1 is obtained from �Xi by splitting all of the countably many lifts of b. Every
essential arc carried by �iC1jX is also carried by �Xi . Let � 0 � �Xi be the union of
these essential routes. It follows that �iC1jX is obtained from � 0 by splitting along
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Figure 12. Four of the possible ways for an oriented, carried, wide curve ˛ to meet a large rect-
angle Rb of N.�/. Note that when X is an annulus and ˛ is the core curve, the upper left picture
implies that neither side of ˛ is combed in � jX . Splitting the upper right deletes zero or two
components of �i jX � ˛. In the bottom row, only the left splitting is possible when i; i C 1 2 IX .
On the bottom left, one component of �i jX � ˛ is deleted and �i jX is split once. On the bottom
right �i jX is split twice.

lifts of b that are also large branches of � 0. Since both sides of ˛ are combed in �i jX ,
the same is true in � 0 and so any component of � 0�˛ is a tree without large branches.
The track � 0 therefore has only finitely many large branches, all contained in ˛. Since
˛ is wide in �i , there are at most two preimages of the large branch b contained in
˛ � SX . Thus �iC1jX is obtained from � 0 by at most two splittings. This proves the
claim. (See Figure 12 for pictures of how ˛ may be carried by �i and how splitting b
effects �i jX .)

CLAIM

Suppose that X is not an annulus.
� When in efficient position, @X is wide with respect to �i .
� The track �i jX is birecurrent and fills X .
� If i C 1 2 IX , then �iC1jX is either a subtrack, a slide, or a split of �i jX .

Proof
Since i 2 IX , the second conclusion of Lemma 5.2 implies that @X is wide. The
induced track �i jX carries a pair of curves at distance at least 3; thus �i jX fills X .
Also, �i jX is recurrent by definition. For any branch b0 2 �i jX � SX , let b � � be
the image in S . Since � is transversely recurrent, there is a dual curve ˇ meeting b.
Lifting ˇ to a curve or arc ˇ0 � SX gives a dual to � jX meeting b0. Thus � jX is
transversely recurrent with respect to arcs and curves, as defined in Section 3.1.
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Now, if �i slides to �iC1, then, as in the annulus case, �i jX slides to �iC1jX .
Suppose instead that �i splits to �iC1 along the branch b 2B.�i /. Thus �i jX splits
(or isotopes) to a track � 0 so that �iC1jX is a subtrack. Let Rb �N.�i / be the rectan-
gle corresponding to the branch b. Isotope @X into efficient position with respect to
N.�i /, and recall that X is to the left of @X . Note that, by an isotopy, we may arrange
for all curves in C.�i jX/ to be disjoint from @X . Let ˇ � Rb be a central splitting
arc: a carried arc completely contained in Rb .

If ˇ \ X is empty, then �i jX is identical to �iC1jX . If ˇ � X , then �iC1jX is
either a subtrack or a splitting of �i jX , depending on how the carried curves of �i jX
meet the lift of Rb . In all other cases, �iC1jX is a subtrack of �i jX . (See Figure 12
for some of the ways carried subarcs of @X may meet Rb .) If @X \Rb contains a tie,
then �i jX is identical to �iC1jX . This completes the proof of the claim.

Thus Theorem 5.3 is proved.

We now rephrase a result of Masur and Minsky [17] using the refinement proce-
dure of Penner and Harer [21, p. 122].

THEOREM 5.4 ([17, Theorem 1.3])
For any surface S with �.S/ � 1, there is a constant Q DQ.S/ with the following
property. For any sliding and splitting sequence ¹�iºNiD0 of birecurrent train tracks in
S , the sequence ¹V.�i /ºNiD0 forms a Q-unparameterized quasi-geodesic in C.S/.

Theorem 5.3 implies that the same result holds after subsurface projection.

THEOREM 5.5
For any surface S with �.S/ � 1, there is a constant Q DQ.S/ with the following
property. For any sliding and splitting sequence ¹�iºNiD0 of birecurrent train tracks
in S and for any essential subsurface X � S , if �X .�N / ¤ ;, then the sequence
¹�X .�i /º

N
iD0 is a Q-unparameterized quasi-geodesic in C.X/.

Proof
By the first conclusion of Theorem 5.3, we may restrict attention to the subinterval
Œp; q�D IX � Œ0;N �.

Fix any vertex ˛ 2 V.�qjX/. Note that ˛ is carried by �i jX for all i � q. So
define 	i � �i jX to be the minimal pretrack carrying ˛. Since 	i does not carry any
peripheral curves, 	i is a train track. Note that 	i is recurrent by definition and trans-
versely recurrent by Lemma 3.2. Applying Theorem 5.3, for all i 2 Œp; q � 1�, the
track 	iC1 is a slide, a split, or identical to the track 	i .
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Theorem 5.4 implies that the sequence ¹V.	i /º is a Q-unparameterized quasi-
geodesic in C.X/. Note that dX .	i ; �i jX/ is uniformly bounded because 	i is a sub-
track.

Since ˛ � �i jX , the curve ˛ is also carried by �i . By Lemma 2.9, there is a vertex
cycle ˇi � �i that cuts X . Since ˇi is wide (Lemma 2.8), any element ˇ0i 2 �X .ˇ/
is carried by and wide in �Xi . It follows that ˇ0i and the vertex cycles of �i jX have
bounded intersection. Thus dX .�i ; �i jX/ is uniformly bounded, and we are done.

6. Further applications of the structure theorem
We now turn to Theorems 6.1 and 6.2; both are slight generalizations of a result of
Hamenstädt [10, Corollary 3]. Our proofs, however, rely on Theorem 5.3 and are quite
different from the proof found in [10].

6.1. The marking and train-track graphs
Suppose that S is not an annulus. A finite subset � � AC.S/ fills S if for all ˇ 2
C.S/ there is a � 2 � such that i.ˇ; �/¤ 0. If �;� �AC.S/, then we define

i.�; �/D
X

˛2�;ˇ2�

i.˛;ˇ/:

Also, let i.�/D i.�;�/ be the self-intersection number. A set � is a k-marking if �
fills S and i.�/� k. Two sets �;� are `-close if i.�; �/� `.

Define k0 D max� i.V .�//, where � ranges over tracks with vertex cycles V.�/
filling S . Define `0 D max�;� i.V .�/; V .	//, where 	 ranges over tracks obtained
from � by a single splitting. Referring to [16] for the necessary definitions, we define
k1 D max� i.�/, where � ranges over complete clean markings of S . Define `1 D
max�;� i.�; �/, where � ranges over markings obtained from� by a single elementary
move. Define `2 Dmax� min� i.V .�/;�/.

Note that there are only finitely many tracks � and finitely many complete clean
markings �, up to the action of MCG .S/. Since jB.�/j � 6 � �.S/, the number
of splittings of � is also bounded. Lemma 2.4 of [16] bounds the number of ele-
mentary moves for �. Thus the quantities k0; k1; `0; `1 are well defined. An upper
bound for `2 can be obtained by surgering V.�/ to obtain a complete clean mark-
ing (see the discussion preceding [1, Lemma 6.1]). Now define k D max¹k0; k1º
and `D max¹`0; `1; `2º. Define M.S/ to be the marking graph: the vertices are k-
markings and the edges are given by `-closeness. (When S is an annulus, we take
M.S/DA.S/. Recall that A.S/ is quasi-isometric to MCG .S; @/Š Z.)

That M.S/ is connected now follows from the discussion at the beginning of [16,
Section 6.4]. Accordingly, define dM.S/.�; �/ to be the length of the shortest edge-
path between the markings � and �.
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Since the above definitions are stated in terms of geometric intersection number,
the mapping class group MCG .S/ acts via isometry on M.S/. Counting the appro-
priate set of ribbon graphs proves that the action has finitely many orbits of vertices
and edges. The Alexander method (see [6, Section 2.4]) proves that vertex stabilizers
are finite and hence the action is proper. It now follows from the Milnor–Švarc lemma
(see [2, Proposition I.8.19]) that any Cayley graph for MCG .S/ is quasi-isometric
to M.S/.

Define T .S/, the train-track graph, as follows: vertices are isotopy classes of
birecurrent train tracks � � S such that V.�/ fills S . Connect vertices � and 	 by an
edge exactly when 	 is a slide or split of � . Let dT .S/.�; �/ be the minimal number
of edges in a path in T .S/ connecting � to � , if such a path exists. Note that the
map � 7! V.�/ from T .S/ to M.S/ sends edges to edges (or to vertices) and thus
is distance nonincreasing. (For further discussion of graphs tightly related to T .S/,
see [10].)

We adopt the following notation. If ¹�iºNiD0 is a sliding and splitting sequence in
T .S/ and if I D Œp; q� � Œ0;N � is a subinterval, then jI j D q � p and dT .S/.I /D
dT .S/.�p; �q/. If �; 	 2 T .S/, then define

dM.X/.�; 	/D dM.X/

�
V.� jX/;V .	 jX/

�
:

Also take dM.X/.I /D dM.X/.�p; �q/.

THEOREM 6.1
For any surface S with �.S/ � 1, there is a constant Q DQ.S/ with the following
property. Suppose that ¹�iºNiD0 is a sliding and splitting sequence in T .S/. Then the
sequence ¹V.�i /ºNiD0, as parameterized by splittings, is a Q-quasi-geodesic in the
marking graph.

Before proving this, we give our final generalization of [10, Corollary 3], which
follows from Theorem 6.1.

THEOREM 6.2
For any surface S with �.S/ � 1, there is a constant Q DQ.S/ with the following
property. If ¹�iºNiD0 is a sliding and splitting sequence in T .S/, injective on slide
subsequences, then ¹�iº is a Q-quasi-geodesic.

Notice that here, unlike Theorem 6.1, the parameterization is by index. In the
proof we use the following.
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LEMMA 6.3
There is a constant AD A.S/ such that if ¹�iºNiD1 is an injective sliding sequence in
T .S/, then N C 1�A.

Proof of Theorem 6.2
Let ¹�iº be the given sliding and splitting sequence in T .S/. Let I D Œp; q�� Œ0;N �
be a subinterval. Note that dT .S/.I /� jI j because ¹�iº is an edge-path in T .S/.

Define S.I / to be the set of indices r 2 I , where rC1 2 I and �rC1 is a splitting
of �r . Thus jI j �A jS.I /j, where A is the constant of Lemma 6.3. Now, Theorem 6.1
implies that jS.I /j �Q dM.S/.I /. Finally, since � 7! V.�/ is distance nonincreasing,
we have dM.S/.I /� dT .S/.I /. Deduce that jI j �Q dM.S/.I /, for a somewhat larger
value of Q.

Remark 6.4
Note that we have not used the connectedness of T .S/, an issue that appears to be
difficult to approach combinatorially. For a proof of connectedness, see [10, Corol-
lary 3.7].

6.2. Hyperbolicity and the distance estimate
To prove Theorem 6.1, we will need the following.

THEOREM 6.5 ([15, Theorem 1.1])
For every connected compact orientable surface X , there is a constant ıX such that
C.X/ is ıX -hyperbolic.

An important consequence of the Morse lemma (see [2, Theorem III.H.1.7]) is a
reverse triangle inequality.

LEMMA 6.6
For every ı andQ, there is a constant R0 DR0.ı;Q/ with the following property. For
any ı-hyperbolic space X, for any Q-unparameterized quasi-geodesic f W Œm;n�!
X, and for any a; b; c 2 Œm;n�, if a � b � c, then

dX.˛;ˇ/C dX.ˇ; �/� dX.˛; �/CR0;

where ˛;ˇ; � D f .a/; f .b/; f .c/.

We now take R0 D R0.ı;Q.S//, where ı D max¹ıX j X � Sº, as provided by
Theorem 6.5, and where Q.S/ is the constant of Theorem 5.5. The next central result
needed is the distance estimate for M.S/. Let Œ��C be the cutoff function



ON TRAIN-TRACK SPLITTING SEQUENCES 1647

Œx�C D

²
0; if x < C
x; if x � C

³
:

We may now state the distance estimate.

THEOREM 6.7 ([16, Theorem 6.12])
For any surface S , there is a constant C.S/ such that for every C �C.S/ there is an
E� 1 and such that for all �;� 2M.S/,

dM.S/.�; �/DE

X
ŒdX .�; �/�C ;

where the sum ranges over essential subsurfaces X � S .

6.3. Marking distance
Suppose that ¹�iºNiD0 � T .S/ is a sliding and splitting sequence. Let Vi D V.�i / be
the set of vertex cycles of �i . As i.Vi / � k0 and i.Vi ; ViC1/ � `0, the map i 7! Vi

gives rise to an edge-path in M.S/.
Suppose that Œp; q�� Œ0;N �. Let SX .p; q/ be the set of indices r 2 Œp; q � 1� so

that �rC1jX is a splitting of �r jX . (When X is an annulus, �rC1jX may also differ
from �r jX by a pair of splits.)

Remark 6.8
We do not place indices r onto SX , where �rC1jX is a subtrack of �r jX ; the number
of such indices is bounded by a constant depending only on X .

Recall that we omit the subscript from SX when X D S . As a piece of notation,
set IS D Œ0;N �. When X � S is essential, take V.� jX/ to be the vertex cycles of the
induced track. Recall that IX � IS , defined in Section 5.2, is the accessible interval
for X � S . If J D Œm;n� � Œ0;N � is an interval, then define SX .J / D SX .m;n/,
dX .J /D dX .�m; �n/, and so on. Here is the crucial tool for the proof of Theorem 6.1.

PROPOSITION 6.9
Suppose that X � S is an essential subsurface and that JX � IX is a subinter-
val. There is a constant A D A.X/, independent of the sequence ¹�iº, such that
jSX .JX /j �A dM.X/.JX /:

Proof of Theorem 6.1
Suppose that ¹�iºNiD0 is a sliding and splitting sequence. Define Vi D V.�i /. By our
definition of M.S/, and since slides do not effect P.�/ (see [21, Proposition 2.2.2]),
the map i 7! Vi gives an edge-path in M.S/. Thus dM.Vi ; Vj /� jS.i; j /j. The oppo-
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site inequality, with multiplicative and additive error at most A.S/, follows from
Proposition 6.9.

The remainder of this paper gives the proof of Proposition 6.9. We begin with a
sketch.

We induct on the complexity of the subsurface X � S . Partition the interval JX
into two kinds of subintervals. The first are inductive intervals. They arise from proper
subsurfaces Y �X for which the projection dY .JX / is above a given threshold. The
second are straight intervals: those for which the diameter of the projection to all
proper subsurfaces is below another threshold.

Lemma 6.12 uses the structure theorem (Theorem 5.3) to show that intervals
disjoint from the inductive intervals are straight. The main technical step of the proof
of Proposition 6.9 is Lemma 6.13: the number of splittings in a straight interval I �
JX is bounded by the diameter dX .I /, measured in the curve complex of X . This
again uses our structure theorem and also the distance estimate (Theorem 6.7), the
latter saying that if all strict subsurface projections are small, then marking distance
is quasi-equal to distance in C.X/.

We then divide the straight intervals into the long and the short: those which are
longer than a threshold defined by the reverse triangle inequality (Lemma 6.6) and
those which are shorter. Lemma 6.18 bounds the total number of splittings in long
straight intervals by dX .JX /. The sum in short straight intervals is bounded by the
number of inductive intervals (Lemma 6.19). In Lemma 6.22, we apply the inductive
hypothesis provided by Proposition 6.9 to prove that the number of splittings in all
inductive intervals is bounded by a sum of marking distances. The distance estimate,
in turn, implies that the sum of marking distances is bounded by a sum of subsurface
projections.

Adding these estimates, on the number of splittings in straight intervals and in
inductive intervals, produces the desired bound of Proposition 6.9.

6.4. Inductive and straight intervals
We fix two thresholds T0;T1 so that

max
®
6N1C 2N2C 2K0.X/C 2; 2R0;M2.X/;C.X/

¯
� T0.X/;

max
®
T0.X/C 2R0;B0N2

¯
� T1.X/:

Here N1 is an upper bound for dY .˛;ˇ/, where Y � S is any essential subsur-
face, � is a track, and ˛ and ˇ are wide with respect to � . The constant B0 is an
upper bound for the number of branches in any induced track. The constant N2 is an
upper bound for the distance (in any subsurface projection) between the vertices of
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� (or � jX ) and the vertices of a single splitting or subtrack of � . Also, M2.X/ is the
constant provided by [16, Lemma 6.1].

Recall that the interval JX � IX is given in Proposition 6.9.

Definition 6.10
Suppose that Y � X is an essential subsurface with �.Y / < �.X/. If dY .JX / �
T0.X/, then we call Y an inductive subsurface of X , and we take JY D IY \ JX as
the associated inductive subinterval of JX . If dY .JX / < T0.X/, then we set JY D;.

Suppose that I is a subinterval of JX . Define diamY .I / to be the diameter, in
AC.Y /, of the union

S
i2I �Y .�i /.

Definition 6.11
A subinterval I � JX is a straight subinterval for X if for all essential subsurfaces
Y �X , with �.Y / < �.X/, we have diamY .I /� T1.X/.

LEMMA 6.12
If I � JX is disjoint from all inductive subintervals of JX , then I is straight for X .

Proof
Fix an essential Y � X with �.Y / < �.X/. It suffices to show, for every subinterval
J � I , that dY .J /� T1.X/.

If J \IY D;, then Theorem 5.3 implies that dY .J /� K0. Suppose that J meets
IY ; thus JY D ; by hypothesis, and so Y is not inductive. It follows that dY .I / <
T0.X/. By Lemma 6.6, we have dY .J / < T0.X/C 2R0.

LEMMA 6.13
There is a constant AD A.X/, independent of ¹�iº, such that if I � JX is straight,
then jSX .I /j �A dX .I /.

Proof
If X is an annulus, then by Theorem 5.3, for every r 2 I , the core curve ˛ � X
is carried by and wide in �r . It follows that the number of switches in ˛ � �r jX is
bounded by some constantK DK.S/. Let q DmaxI , and pick any ˇ 2 V.�qjX/. As
in the proof of Theorem 5.5, let 	r � �r jX be the minimal subtrack carrying ˇ. Thus
	r has either exactly four branches and two switches, or is an embedded arc. It follows
that every K2=4 consecutive splitting in SX .I / induces at least one splitting in the
sequence of tracks ¹	rº. Therefore, the singleton sets V.	r/ form a quasi-geodesic in
A.X/. Since V.	r/� V.�r jX/, the proof is complete when X is an annulus.
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We assume for the rest of the proof that X is not an annulus. The map i 7!
V.�i jX/, taking tracks to their vertex cycles, is generally not injective (see, e.g., [21,
Proposition 2.2.2]). However, we do have the following.

CLAIM 6.14
There is a constant N0 D N0.X/, independent of ¹�iº, such that if V.�r jX/D V.�sj
X/, then jSX .r; s/j �N0.

Proof
Let �D V.�r jX/. Our hypothesis on �sjX and induction proves that V.�t jX/D �
for all t 2 Œr; s�. Recurrence and uniqueness of carrying (see [20, Proposition 3.7.3])
implies that �tC1jX is a split or a slide of �t jX , and not a subtrack, for all t 2 Œr; s�1�.

If t 2 Œr; s� and b 2B.�t jX/, then define w�.b/D
P
˛2�w˛.b/. Let

M.t/D
�
w�.b/ W b is a large branch of �t jX

�
be the sequence of given numbers arranged in nonincreasing order. Note that if �tC1j
X is a slide of �t jX , then M.t C 1/DM.t/. However, if t 2 SX .r; s/, then the recur-
rence of �t jX implies that M.t C 1/ < M.t/, in lexicographic order. Since there
are only finitely many possibilities for an induced track � jX , up to the action of
MCG .X/, the claim follows.

Notice that if V.�iC1jX/¤ V.�i jX/, then V.�iC1jX/¤ V.�j jX/ for j � i . This
is because P.�kC1jX/ � P.�kjX/ for all k. Using C D 1Cmax¹C.X/;T1.X/º as
the cutoff in Theorem 6.7 gives some constant of quasi-equality, say, E. Define R1 D

EC 1.
Suppose that Œp; q� D I , the straight subinterval of JX given by Lemma 6.13.

We define a function � W Œ0;M �! I as follows. Let �.0/D p, and let �.nC 1/ be
the smallest element in Œ�.n/; q� with dM.X/.�	.n/; �	.nC1// D R1. (If �.n C 1/ is
undefined, then take M D nC 1 and �.M/D q.) Let B.�/ be the ball of radius R1

about the marking � 2M.X/. Define

VDmax
®
jB.�/j W � 2M.X/

¯
:

Deduce from Claim 6.14 that, for all n 2 Œ0;M � 1�,ˇ̌
SX
�
�.n/; �.nC 1/

�ˇ̌
�N0V:

Thus

jSX .I /j �N0V �M:

So to prove Lemma 6.13, it suffices to bound M from above in terms of dX .I /.
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CLAIM 6.15
Fix n 2 Œ0;M � 2�. Let �; 	 D �	.n/; �	.nC1/. Then dX .�; 	/�R0C 1.

Proof
We use Theorem 6.7. Note that dM.X/.�; 	/DR1. Since R1 is greater than the addi-
tive error, there is at least one nonvanishing term in the sum

P
Y�X ŒdY .�; 	/�C .

However, since Œ�.n/; �.nC 1/�� Œp; q� and since Œp; q�D I is straight, we have
dY .�; 	/� T1.X/ for all Y �X with �.Y / < �.X/. Thus dX .�; 	/ is the only term
of the sum greater than the cutoff C . Since C > T1.X/ � R0, we have dX .�; 	/ �
R0C 1, and the claim is proved.

Thus we have

dX .I / � �.M � 1/ �R0C

M�1X
nD0

dX .�	.n/; �	.nC1//

�M � 1C dX .�	.M�1/; �	.M//

�M � 1;

where the first and second lines follow from Lemma 6.6 and Claim 6.15, respectively.
This completes the proof of Lemma 6.13.

LEMMA 6.16
There is a constant A D A.X/ with the following property. Suppose that JY � JX
is an inductive interval. Suppose that I � JY is a straight subinterval for X . Then
jSX .I /j �A.

Proof
Let Œp; q�D I . Applying Theorem 5.3, as p 2 JY � IY , the multicurve @Y is wide
with respect to �p . It follows that @Y is also wide with respect to �Xp . Note that the
curves of V.�pjX/ are also wide with respect to �Xp . Repeating this discussion for q,
and then applying Lemma 5.2 and the triangle inequality gives a uniform bound for
dX .�p; �q/. The lemma now follows from Lemma 6.13.

6.5. Long and short intervals

Definition 6.17
A straight subinterval I for X is short if dX .I /� 4R0. Otherwise I is long.

By Lemma 6.13, if I is a short straight interval, then jSX .I /j is uniformly
bounded by a constant depending only on X .
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Let Ind be the set of inductive subsurfaces Y � X . Define Ind0 D Ind [ ¹Xº.
Note that, by Lemma 6.12, every maximal subinterval of JX �

S
Y2Ind JY is straight.

We partition these maximal subintervals into the sets Long and Short as the given
interval is long or short, respectively.

LEMMA 6.18
There is a constant ADA.X/, independent of ¹�iº, such thatX

I2Long

jSX .I /j �A dX .JX /:

Proof
From Lemma 6.13, we deduce thatX

I2Long

jSX .I /j �A jLongj C
X
I2Long

dX .I /;

where the first term on the right-hand side arises from addition of additive errors. By
the definition of a long straight interval and from Lemma 6.6, we deduce that

4R0jLongj �
X
I2Long

dX .I /� dX .JX /C 2R0jLongj:

Thus 2R0jLongj � dX .JX /. These inequalities combine to prove the lemma, for a
somewhat larger value of ADA.X/.

LEMMA 6.19
There is a constant ADA.X/, independent of ¹�iº, such thatX

I2Short

jSX .I /j �A jInd0j:

Proof
By Lemma 6.13, the number of splittings in any short straight interval is a priori
bounded (depending only on X ). Since jShortj � jInd0j, the lemma follows.

LEMMA 6.20
If Z 2 Ind, then

card
®
Y 2 Ind

ˇ̌
Z � Y; �.Z/ < �.Y /

¯
� 2

�
�.X/� �.Z/� 1

�
:

This follows from and is strictly weaker than [16, Theorem 4.7, Lemma 6.1].
We give a proof, using our structure theorem, to extract the necessary lower bound
for T0.X/.
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Proof of Lemma 6.20
Suppose that U 2 Ind contains Z. Suppose that JZ D Œp; q� and that JX D Œm;n�.
Thus @Z is wide with respect to �p . So dU .�p; @Z/�N1, by the definition of N1, and
the same holds at the index q. Thus dU .�p; �q/ � 2N1. The subsurface U precedes
or succeeds Z if dU .�m; �p/ or dU .�q; �n/, respectively, is greater than or equal to
2N1CN2CK0.X/C1. Note thatU must precede or succeedZ (or both) as otherwise
dU .�m; �n/ < 6N1C 2N2C 2K0.X/C 2� T0.X/, a contradiction.

It now suffices to consider subsurfaces U and V that both succeed and both con-
tain Z. If maxJU � maxJV , then U � V , for, if not, @V cuts U while missing Z.
Since @V is wide at the index r DmaxJV , we deduce that

dU .�q; �n/ � dU .�q; @Z/C dU .@Z;@V /C dU .@V; �r/

C dU .�r ; �rC1/C dU .�rC1; �n/

� 2N1CN2CK0.X/C 1;

and this is a contradiction. Thus the surfaces in Ind that strictly contain Z, and suc-
ceed Z, are nested.

Definition 6.21
Assign an index r 2 SX .JX / to a subsurface Y �X if Y 2 Ind0, if r 2 JY , if �rC1jY
is a splitting of �r jY , and if there is no subsurface Z � Y; �.Z/ < �.Y / with those
three properties.

LEMMA 6.22
There is a constant ADA.X/, independent of ¹�iº, such that the number of splittings
contained in inductive intervals is quasi-bounded by jIndj C

P
Y2Ind dY .JX /.

Proof
Fix Y 2 Ind. Consider an index r 2 JY that is assigned to X . Let I � JY be the
maximal interval containing r so that all indices in SX .I / are assigned to X . We now
show that I is straight. Let Z be any essential subsurface of X with �.Z/ < �.X/,
and let Œr; s�D J � I be any subinterval. If J \ IZ D ;, then Theorem 5.3 implies
that dZ.J / � K0. If J meets IZ , then, as no splittings of J are assigned to Z, we
deduce that �sjZ is obtained from �r jZ by sliding and taking subtracks only. Thus
dZ.J /� B0N2 � T1.X/, as desired.

By Lemma 6.16, we find that jSX .I /j is bounded. It follows that the number of
splittings in the inductive intervals is quasi-bounded by

P
Y2Ind jSY .JY /j.

By induction, Proposition 6.9 gives

jSY .JY /j �A dM.Y /.JY /:
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Taking a cutoff of C D 1 C max¹C.Y /;T0.X/ C 2R0º and applying the distance
estimate (Theorem 6.7), we have a quasi-inequality

dM.Y /.JY /�E

X
Z�Y

ŒdZ.JY /�C :

Since dZ.JY / � dZ.JX /C 2R0 for all Z � Y , it follows that nonzero terms in the
sum only arise for subsurfaces in Ind0.Y /D ¹Z 2 Ind0 jZ � Y º. Since 2R0 � T0.X/,
we have ŒdZ.JY /�C � 2 � dZ.JX /. Making ADA.X/ larger if necessary, we have

jSY .JY /j �A
X

Z2Ind0.Y /

dZ.JX /:

Thus
X
Y2Ind

jSY .JY /j �A jIndj C
X
Y2Ind

X
Z2Ind0.Y /

dZ.JX /

�A jIndj C
X
Y2Ind

dY .JX /;

where the final quasi-inequality follows from Lemma 6.20, taking A larger as neces-
sary. Note that the term jIndj on the middle line arises by adding additive errors. This
proves Lemma 6.22.

Since every index in SX .JX / is either in a long or short straight interval or in an
inductive interval, from Lemmas 6.18, 6.19, and 6.22, and by increasing A slightly,
we have

jSX .JX /j �A dX .JX /C jInd0j C
X
Y2Ind

dY .JX /:

Note that jInd0j �A dM.X/.JX /; this follows from the hierarchy machine (in partic-
ular, [16, Lemma 6.2, Theorem 6.10]) and because T0.X/�M2.X/, the constant in
[16, Lemma 6.1]. Finally,

X
Y2Ind0

dY .JX /�A dM.X/.JX /

follows from the distance estimate (Theorem 6.7) and because T0.X/ � C.X/. This
completes the proof of Proposition 6.9.
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