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CUSP GEOMETRY OF FIBERED 3-MANIFOLDS

By DAVID FUTER and SAUL SCHLEIMER

Abstract. Let F be a surface and suppose that ϕ : F →F is a pseudo-Anosov homeomorphism, fixing
a puncture p of F . The mapping torus M =Mϕ is hyperbolic and contains a maximal cusp C about
the puncture p. We show that the area (and height) of the cusp torus ∂C is equal to the stable translation
distance of ϕ acting on the arc complex A(F,p), up to an explicitly bounded multiplicative error. Our
proof relies on elementary facts about the hyperbolic geometry of pleated surfaces. In particular, the
proof of this theorem does not use any deep results from Teichmüller theory, Kleinian group theory,
or the coarse geometry of A(F,p). A similar result holds for quasi-Fuchsian manifolds N ∼= F ×R.
In that setting, we find a combinatorial estimate for the area (and height) of the cusp annulus in the
convex core of N , up to explicitly bounded multiplicative and additive error. As an application, we
show that covers of punctured surfaces induce quasi-isometric embeddings of arc complexes.

1. Introduction. Following the work of Thurston, Mostow, and Prasad, it
has been known for over three decades that almost every 3-manifold with torus
boundary admits a hyperbolic structure [38], which is necessarily unique up to
isometry [30, 33]. Thus, in principle, it is possible to translate combinatorial data
about a 3-manifold into a detailed description of its geometry—and conversely, to
use geometry to identify topological features. Indeed, given a triangulated mani-
fold (up to over 100 tetrahedra) the computer program SnapPy can typically ap-
proximate the manifold’s hyperbolic metric to a high degree of precision [17].
However, building an effective dictionary between combinatorial and geometric
features, for all but the most special families of manifolds, has proven elusive. The
prevalence of hyperbolic geometry makes this one of the central open problems in
low-dimensional topology.

1.1. Fibered 3-manifolds. In this paper, we attack this problem for the
class of hyperbolic 3-manifolds that fiber over the circle. Let F be a connected,
orientable surface with χ(F ) < 0, and (for this paper) with at least one punc-
ture. Given an orientation-preserving homeomorphism ϕ : F → F we construct
the mapping torus

Mϕ := F × [0,1]
/
(x,1) ∼ (ϕ(x),0) .
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Thus Mϕ fibers over S1, with fiber F and monodromy ϕ. Thurston showed that
Mϕ is hyperbolic if and only if ϕ is pseudo-Anosov: equivalently, if and only if
ϕn(γ) is not homotopic to γ for any n �= 0 and any essential simple closed curve
γ ⊂ F [38, 39]. See also Otal [32]. In addition to the connection with dynamics,
fibered 3-manifolds are of central importance in low-dimensional topology because
every finite-volume, non-positively curved 3-manifold has a finite–sheeted cover
that fibers [4, 34].

For those fibered 3-manifolds that are hyperbolic, the work of Minsky, Brock,
and Canary on Kleinian surface groups provides a combinatorial, bi-Lipschitz
model of the hyperbolic metric [29]. The bi-Lipschitz constants depend only
on the fiber F [11]. However, the existence of these constants is proved using
compactness arguments; as a result the constants are unknown.

Using related ideas, Brock established the following notable entry in the dic-
tionary between combinatorics and geometry.

THEOREM 1.1. (Brock [10, 9]) Let F be an orientable surface with χ(F )< 0.
Then there exist positive constants K1 and K2, depending only on F , such that
the following holds. For every orientation-preserving, pseudo-Anosov homeomor-
phism ϕ : F → F , the mapping torus Mϕ is a hyperbolic 3-manifold satisfying

K1dP(ϕ)≤ vol(Mϕ)≤K2 dP(ϕ).

Here P(F ) is the adjacency graph of pants decompositions of F . Also dP(ϕ)
is the stable translation distance of ϕ in P(F ), defined in Equation (1.2) below.

The constant K2 in the upper bound can be made explicit. Agol showed that
the sharpest possible value for K2 is 2v8, where v8 = 3.6638 . . . is the volume of a
regular ideal octahedron [3]. On the other hand, the constant K1 is only known in
the special case when F is a punctured torus or 4-puncture sphere; see Guéritaud
and Futer [23, Appendix B]. For all other surfaces, it remains an open problem to
give an explicit estimate for K1.

Brock’s theorem is a template for obtaining combinatorial information; the
pants graph P(F ) is just one of many complexes naturally associated to a surface
F . Others include the curve complex C(F ) and the arc complex A(F ); the latter is
the main focus of this paper. Using A(F ) we give effective two-sided estimates for
the geometry of maximal cusps in Mϕ.

Definition 1.2. In this paper, we use the symbols F and S to denote surfaces
of negative Euler characteristic, connected and orientable, without boundary and
with one or more punctures. Let F be such a surface. The arc complex A(F ) is
the simplicial complex whose vertices are proper isotopy classes of essential arcs
from puncture to puncture. Simplices are collections of vertices admitting pairwise
disjoint representatives. We engage in the standard abuse of notation by using the
same symbol for an arc and its isotopy class.



CUSP GEOMETRY OF FIBERED 3-MANIFOLDS 311

The 1-skeleton A(1)(F ) has a combinatorial metric. For a pair of vertices
v,w ∈ A(0)(F ), the distance d(v,w) is the minimal number of edges required to
connect v to w. This is well-defined, because A(F ) is connected [24].

When F has a preferred puncture p, we define the subcomplexA(F,p)⊂A(F )

whose vertices are arcs with at least one endpoint at p. The 1-skeleton A(1)(F,p) is
again connected. The distance dA(v,w) is the minimal number of edges required
to connect v to w inside of A(1)(F,p).

The mapping class group MCG(F ) acts on A(F ) by isometries. In fact, Ir-
mak and McCarthy showed [26] that, apart from a few low-complexity exceptions,
MCG(F ) ∼= IsomA(F ). Similarly, the subgroup of MCG(F ) that fixes the punc-
ture p acts on A(F,p) by isometries. We are interested in the geometric implica-
tions of this action.

Definition 1.3. Let ϕ : F →F be a homeomorphism fixing p. Define the trans-
lation distance of ϕ in A(F,p) to be

dA(ϕ) = min
{
dA(v,ϕ(v)) | v ∈ A(0)(F,p)

}
.(1.1)

The same definition applies in any simplicial complex where MCG(F ) acts by
isometries.

We also define the stable translation distance of ϕ to be

dA(ϕ) = lim
n→∞

dA(v,ϕn(v))
n

, for an arbitrary vertex v ∈ A(0)(F,p),(1.2)

and similarly for other MCG-complexes. It is a general property of isometries of
metric spaces that the limit in (1.2) exists and does not depend on the base vertex
v [8, p. 230]. In addition, the triangle inequality implies that dA(ϕ)≤ dA(ϕ).

Note that applying equation (1.2) to the pants graph P(F ) gives the stable
translation distance dP(ϕ) that estimates volume in Theorem 1.1. In the same
spirit, one may ask the following.

Question 1.4. Let S(F ) be a simplicial complex associated to a surface F , on
which the mapping class group MCG(F ) acts by isometries. How are the dynamics
of the action of ϕ ∈MCG(F ) on S(F ) reflected in the geometry of the mapping
torus Mϕ?

We answer this question for the arc complex of a once-punctured surface F

or, more generally, for the sub-complex A(F,p) of a surface with many punctures.
Here, the stable distance dA(ϕ) predicts the cusp geometry of Mϕ.

1.2. Cusp area from the arc complex. Let M be a 3-manifold whose
boundary is a non-empty union of tori, such that the interior of M supports a com-
plete hyperbolic metric. In this metric, every non-compact end of M is a cusp,
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homeomorphic to T 2× [0,∞). Geometrically, each cusp is a quotient of a horoball
in H3 by a Z×Z group of deck transformations. We call this geometrically stan-
dard end a horospherical cusp neighborhood or horocusp.

Associated to each torus T ⊂ ∂M is a maximal cusp C = CT . That is, C is
the closure of C◦ ⊂M , where C◦ is the largest embedded open horocusp about T .
The same construction works in dimension 2: every punctured hyperbolic surface
has a maximal cusp about each puncture.

In dimension 3, Mostow-Prasad rigidity implies that the geometry of a maxi-
mal cusp C ⊂M is completely determined by the topology of M . One may com-
pute that area(∂C) = 1

2 vol(C). The Euclidean geometry of ∂C is an important
invariant that carries a wealth of information about Dehn fillings of M . For ex-
ample, if a slope s (an isotopy class of simple closed curve on ∂C) is sufficiently
long, then Dehn filling M along s produces a hyperbolic manifold [2, 27], whose
volume can be estimated in terms of the length �(s) [20].

In our setting, Mϕ is a fibered hyperbolic 3-manifold, with fiber a punctured
surface F . The maximal cusp torus ∂C contains a canonical slope, called the longi-
tude of C , which encircles a puncture of F . The Euclidean length of the longitude
is denoted λ. Any other, non-longitude slope on ∂C must have length at least

height(∂C) := area(∂C)/λ.(1.3)

As discussed in the previous paragraph, lower bounds on height(∂C) imply geo-
metric control over Dehn fillings of Mϕ.

Our main result in this paper uses the action of ϕ on A(F,p) to give explicit
estimates on the area and height of the cusp torus ∂C .

THEOREM 1.5. LetF be a surface with a preferred puncture p, and let ϕ : F →
F be any orientation-preserving, pseudo-Anosov homeomorphism. In the mapping
torus Mϕ, let C be the maximal cusp that corresponds to p. Let ψ = ϕn be the
smallest positive power of ϕ with the property that ψ(p) = p. Then

dA(ψ)
450χ(F )4 < area(∂C)≤ 9χ(F )2 dA(ψ).

Similarly, the height of the cusp relative to a longitude satisfies

dA(ψ)
536χ(F )4 < height(∂C)<−3χ(F )dA(ψ).

If the surface F has only one puncture p, the statement of Theorem 1.5 be-
comes simpler in several ways. In this special case, we have n = 1, hence ψ = ϕ.
There is only one cusp in Mϕ, and A(F,p) = A(F ). In this special case, the area
and height of the maximal cusp are estimated by the stable translation distance
dA(ϕ), acting on A(F ).
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In the special case where F is a once-punctured torus or 4-punctured sphere,
Futer, Kalfagianni, and Purcell proved a similar estimate, with sharper constants.
See [21, Theorems 4.1 and 4.7]. Theorem 1.5 generalizes those results to all punc-
tured hyperbolic surfaces.

We note that a non-effective version of Theorem 1.5 can be derived from Min-
sky’s a priori bounds theorem for the length of curves appearing in a hierarchy [29,
Lemma 7.9]. In fact, this line of argument was our original approach to estimating
cusp area. In the process of studying this problem, we came to realize that argu-
ments using the geometry and hierarchical structure of the curve complex C(F ) can
be replaced by elementary arguments focusing on the geometry of pleated surfaces.
See Section 1.5 below for an outline of this effective argument.

1.3. Quasi-Fuchsian 3-manifolds. The methods used to prove Theo-
rem 1.5 also apply to quasi-Fuchsian manifolds. We recall the core definitions; see
Marden [28, Chapter 3] or Thurston [37, Chapter 8] for more details. A hyperbolic
manifold N =H3/Γ is called quasi-Fuchsian if the limit set Λ(Γ) of Γ is a Jordan
curve on ∂H3, and each component of ∂H3

�Λ(Γ) is invariant under Γ. In this
case, N is homeomorphic to F ×R for a surface F . The convex core of N , denoted
core(N), is defined to be the quotient, by Γ, of the convex hull of the limit set
Λ(Γ). When N is quasi-Fuchsian but not Fuchsian, core(N) ∼= F × [0,1], and its
boundary is the disjoint union of two surfaces ∂+ core(N) and ∂− core(N), each
intrinsically hyperbolic, and each pleated along a lamination. See Definition 2.2.

Although the quasi-Fuchsian manifold N has infinite volume, the volume of
core(N) is finite. Each puncture of F corresponds to a rank one maximal cusp
C (the quotient of a horoball by Z), such that C ∩ core(N) has finite volume and
∂C ∩ core(N) ∼= S1× [0,1] has finite area. Thus we may attempt to estimate the
area and height of ∂C ∩ core(N) combinatorially.

Definition 1.6. Let N ∼= F ×R be a quasi-Fuchsian 3-manifold, and let p be a
puncture of F . Define Δ+(N) to be the collection of all shortest arcs from p to p in
∂+ core(N). By Lemma 3.4, the arcs in Δ+(N) are pairwise disjoint, so Δ+(N)

is a simplex in A(F,p). Similarly, let Δ−(N) be the simplex of shortest arcs from
p to p in ∂− core(N).

We define the arc distance of N relative to the puncture p to be

dA(N,p) = min{dA(v,w) | v ∈Δ−(N), w ∈Δ+(N)}.

In words, dA(N,p) is the length of the shortest path in A(F,p) from a shortest arc
in the lower convex core boundary to a shortest arc in the upper boundary.

THEOREM 1.7. Let F be a surface with a preferred puncture p, and let N ∼=
F ×R be a quasi-Fuchsian 3-manifold. Let C be the maximal cusp corresponding
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to p. Then

dA(N,p)

450χ(F )4 −
1

23χ(F )2 < area(∂C ∩ core(N))

< 9χ(F )2 dA(N,p)+
∣∣12χ(F ) ln |χ(F )|+26χ(F )

∣∣
Similarly, the height of the cusp relative to a longitude satisfies

dA(N,p)

536χ(F )4 −
1

27χ(F )2 < height(∂C ∩ core(N))

<−3χ(F )dA(N,p)+2ln |χ(F )|+5.

We note that the multiplicative constants in Theorem 1.7 are exactly the same
as in Theorem 1.5. However, in addition to multiplicative error, the estimates in
Theorem 1.7 contain explicit additive error. This additive error is necessary: for
example, if the limit set of N is sufficiently close to a round circle, one may have
dA(N,p) = 0. (See Lemma 9.2 for a constructive argument.) On the other hand,
area(∂C ∩ core(N))> 0 whenever N is not Fuchsian.

Theorem 1.7 has an interesting relation to the work of Akiyoshi, Miyachi, and
Sakuma [5]. For a quasi-Fuchian manifold N , they study the scale-invariant quan-
tity

width(∂C) := height(∂C ∩ core(N))/λ= area(∂C ∩ core(N))/λ2

where λ is the Euclidean length of the longitude of the cusp annulus ∂C . Gen-
eralizing McShane’s identity, they give an exact expression for width(∂C) as the
sum of an infinite series involving the complex lengths of closed curves created by
joining the endpoints of an arc. It seems reasonable that most of the contribution
in this infinite sum should come from the finitely many arcs in F that are shortest
in N . Theorem 1.7 matches this intuition, and indeed its lower bound is proved by
summing the contributions of finitely many short arcs.

1.4. Covers and the arc complex. Theorem 1.7 has an interesting appli-
cation to the geometry of arc complexes, whose statement does not involve 3-
manifolds in any way.

Definition 1.8. Suppose f : Σ→ S is an n-sheeted covering map of surfaces.
We define a relation π : A(S)→A(Σ) as follows: α ∈ π(a) if and only if α is a
component of f−1(a). In other words, π(a) ⊂ A(Σ) is the set of all n lifts of a,
which span an (n−1)-simplex.

Definition 1.8 also applies to curve complexes, with the (inessential) difference
that the number of lifts of a curve is not determined by the degree of the cover.
Using tools from Teichmüller theory, Rafi and Schleimer proved that π : C(S)→
C(Σ) is a quasi-isometric embedding [35]. That is, there exist constants K ≥ 1 and
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C ≥ 0, such that for all a,b ∈ C(0)(S) and for all α ∈ π(a), β ∈ π(b), we have

d(a,b) ≤Kd(α,β)+C and d(α,β) ≤Kd(a,b)+C.

The constants K and C depend only on S and the degree of the cover, but are
not explicit. Using tools from Kleinian groups, Tang gave an alternate proof, again
without explicit constants [36].

In a similar spirit to Tang, we use Theorem 1.7 to prove a version of the Rafi-
Schleimer theorem for arc complexes, with explicit constants.

THEOREM 1.9. Let Σ and S be surfaces with one puncture, and f : Σ→ S a
covering map of degree n. Let π : A(S)→A(Σ) be the lifting relation. Then, for
all a,b ∈ A(0)(S), we have

d(a,b)

4050nχ(S)6 −2 < d(α,β) ≤ d(a,b)

where α ∈ π(a) and β ∈ π(b).

1.5. An outline of the arguments. The proofs of Theorems 1.5 and 1.7
have a decidedly elementary flavor. The primary tool that we use repeatedly is the
geometry of pleated surfaces, as developed by Thurston [37]. (See Bonahon [6]
or Canary, Epstein, and Green [14] for a detailed description.) In our context, a
pleated surface is typically a copy of the fiber F with a prescribed hyperbolic met-
ric, immersed into M in a piecewise geodesic fashion, and bent along an ideal tri-
angulation of F . In Sections 2 and 3 below, we give a detailed definition of pleated
surfaces and discuss the geometry of cusp neighborhoods in such a surface. We
also study a mild generalization of pleated surfaces, called simplicial hyperbolic
surfaces, that are hyperbolic everywhere except for a single cone point with angle
at least 2π.

The upper bounds of Theorems 1.5 and 1.7 are proved in Section 4 and 5,
respectively. To sketch the argument in the fibered case, let τ be an ideal triangu-
lation of the fiber F . Then F can be homotoped to a pleated surface, Fτ , in which
every ideal triangle is totally geodesic. Using lemmas in Sections 2 and 3, we show
that the intersection Fτ ∩∂C gives a closed polygonal curve about the puncture p,
whose length is bounded by −6χ(F ). As a result, the pleated surface Fτ makes a
bounded contribution to the area and height of ∂C . Summing up the contributions
from a sequence of triangulations that “realize” the monodromy ϕ gives the desired
upper bound of Theorem 1.5. The upper bound of Theorem 1.7 uses very similar
ideas; the one added ingredient is a bound on how far a short arc in ∂± core(N)

drifts when it is pulled tight, making it geodesic in N .
The lower bounds on cusp area and height rely on the idea of a geometrically

controlled sweepout. This is a degree-one map Ψ : F × [0,1]/ϕ→Mϕ, in which
every fiber F ×{t} in the domain is mapped to a piecewise geodesic surface Ft ⊂
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M , which is either pleated or simplicial hyperbolic. The elementary construction
of such a sweepout, which is due to Thurston [37] and Canary [13], is recalled in
Section 6.

The lower bound of Theorem 1.5 is proved in Section 7. We show that every
piecewise geodesic surface Ft in the sweepout of Section 6 must contain an an
arc from cusp to cusp whose length is explicitly bounded above. As the parameter
t moves around the sweepout, we obtain a sequence of arcs, representing a walk
through the 1-skeleton A(1)(F,p), such that each arc encountered has bounded
length in M . This sequence of somewhat-short arcs in the fiber leads to a packing
of the cusp torus ∂C by shadows of somewhat-large horoballs, implying a lower
bound on area(∂C) and height(∂C).

It is worth emphasizing that the entire proof of Theorem 1.5 is elementary in
nature. In particular, this proof does not rely on any deep results from Teichmüller
theory, Kleinian groups, or the coarse geometry of the curve or arc complexes.

The lower bound of Theorem 1.7 is proved in Section 8, using very similar
ideas to those of Theorem 1.5. Once again, we have a sweepout Ψ : F × [0,r]→
core(N) by simplicial hyperbolic surfaces. Once again, each surface Ft in the
sweepout contains a somewhat-short arc from cusp to cusp, corresponding to a
horoball whose shadow contributes area to ∂C . However, we also need to know
that the pleated surfaces at the start and end of the sweepout can be chosen arbitrar-
ily close to ∂± core(N). This fact, written down as Theorem A.1 in the appendix, is
one of the few places in the paper where we need to reach into the non-elementary
toolbox of Kleinian groups.

Finally, in Section 9, we prove Theorem 1.9. Given a cover Σ→ S, vertices
a,b of A(S), and vertices α ∈ π(a), β ∈ π(b), the upper bound on the distance
d(α,β) is immediate because disjoint arcs lift to disjoint multi-arcs. To prove a
lower bound, we construct a quasi-Fuchsian manifold M ∼= S×R, so that a and b

are the unique shortest arcs on its convex core boundaries. The hyperbolic metric
on M ∼= S ×R lifts to a quasi-Fuchsian structure on N ∼= Σ×R. By applying
Theorem 1.7 to both M and N , we will bound d(α,β) from below.

Acknowledgments. This project began at the University of Warwick sympo-
sium on Low Dimensional Geometry and Topology, in honor of David Epstein, and
continued at the MSRI program in Teichmüller Theory and Kleinian Groups. We
thank the organizers of both events for creating such a fertile ground for collabora-
tion. We thank Ian Agol for numerous helpful conversations, and in particular for
contributing the key idea of Lemma 3.8. We thank Dick Canary and Yair Minsky
for clarifying a number of points about pleated surfaces, and for helping us sort out
the proof of Theorem A.1. We thank Marc Lackenby for continually encouraging
us to make our estimates effective.

2. Pleated surfaces and cusps. To prove the upper and lower bounds in
our main theorems, we need a detailed understanding of the geometry of pleated
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surfaces in a hyperbolic 3-manifold. In this section, we survey several known re-
sults about pleated surfaces. We also describe the somewhat subtle geometry of the
intersection between a pleated surface and a cusp neighborhood in a 3-manifold N .
The study of pleated surfaces is continued in Section 3, where we obtain several
geometric estimates.

References for this material include Bonahon [6] and Canary, Epstein, and
Green [14].

Definition 2.1. Let S be a surface. (Recall the convention of Definition 1.2.) A
lamination L⊂ S is a 1-dimensional foliation of a closed subset of S.

A special case of a lamination is the union of the edges of an ideal triangula-
tion; this special case appears frequently in our setting.

Definition 2.2. Let N be a hyperbolic 3-manifold, and let S be a surface. Fix
a proper map f0 : S → N , sending punctures to cusps. For a lamination L ⊂ S a
pleating of f0 along L, or a pleating map for short, is a map f : S→ N , properly
homotopic to f0, such that

(1) f maps every leaf of L to a hyperbolic geodesic, and
(2) f maps every component of S�L to a totally geodesic surface in N .

We say that f realizes the lamination L, and call its image f(S) a pleated surface.

Note the existence of a pleating map places restrictions on L; for instance,
every closed leaf of L must be essential and non-peripheral in S. The hyperbolic
metric on N , viewed as a path-metric, pulls back via f to induce a complete hy-
perbolic metric on S. In this induced hyperbolic metric, every leaf of L becomes
a geodesic, and the map f : S → N becomes a piecewise isometry, which is bent
along the geodesic leaves of f(L).

LEMMA 2.3. Every pleated surface f(S) is contained in the convex core of N .

Proof. Adding leaves as needed to subdivide the totally geodesic regions, we
can arrange for the complement S�L to consist of ideal triangles. Fix g, a side of
some ideal triangle of S�L. Thus g is a bi-infinite geodesic; each end of the image
geodesic f(g) either runs out a cusp of N or meets a small metric ball infinitely
many times. In either case, the lift of f(g) to the universal cover Ñ =H3 has both
endpoints at limit points of N . Since an ideal triangle in H3 is the convex hull of
its vertices, the surface f(S) is contained in core(N). �

In a quasi-Fuchsian manifold N , the components of ∂± core(N) are themselves
pleated surfaces. In this paper, the convex core boundaries are the only examples
of pleated surfaces where the pleating laminations are not ideal triangulations.

A foundational result is that every essential surface S ⊂N can be pleated along
an arbitrary ideal triangulation. This was first observed by Thurston [37, Chapter
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S̃

γ0

γH0

d H

Figure 1. The intersection between a pleated surface and a horocusp. The intersection
with horoball H0 is standard, whereas the intersection with H may contain portions of the
surface bent along geodesics whose endpoints are not in H . Graphic based on a design of
Agol [2, Figure 1].

8]. For a more detailed account of the proof, see Canary, Epstein, and Green [14,
Theorem 5.3.6] or Lackenby [27, Lemma 2.2].

PROPOSITION 2.4. Let N be a cusped orientable hyperbolic 3-manifold. Let
f0 : S→N be a proper, essential map, sending punctures to cusps. Then, for any
ideal triangulation τ of S, the map f0 is homotopic to a pleating map along τ .

In other words, every ideal triangulation τ is realized by a pleating map
fτ : S→N .

Suppose that C ⊂N is a horospherical cusp neighborhood in N , and f : S→
N is a pleating map. Our goal is to describe the geometry of f(S)∩C . We offer
Figure 1 as a preview of the geometric picture. The figure depicts a lift S̃ of a
pleated surface to H3. For a sufficiently small horocusp C0 ⊂ C , which lifts to
horoball H0 in the figure, the intersection f(S)∩C0 is standard, meaning that
f−1(C0) is a union of horospherical cusp neighborhoods in S. The intersection
f(S)∩C is more complicated, because the surface is bent along certain geodesics
whose interior intersects C�C0. Nevertheless, we can use the geometry of f(S)∩
C0 to find certain cusp neighborhoods contained in f−1(C) (in Lemma 2.5), and
certain geometrically meaningful closed curves in ∂C (in Lemma 2.6).

LEMMA 2.5. Let N be a cusped orientable hyperbolic 3-manifold, with a horo-
cusp C . Let f : S→N be a pleating map, such that n punctures of S are mapped
to C . Suppose that a loop about a puncture of S is represented by a geodesic
of length λ on ∂C . Then, in the induced hyperbolic metric on S, the preimage
f−1(C)⊂ S contains horospherical cusp neighborhoods R1, . . . ,Rn with disjoint
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interiors, such that

�(∂Ri) = area(Ri)≥ λ for each i.

Our proof is inspired by an argument of Agol [2, Theorem 5.1].

Proof of Lemma 2.5. Without loss of generality, assume that the pleating lami-
nation L cuts S into ideal triangles. (Otherwise, add more leaves to L.) Let C0 ⊂C

be a horocusp chosen sufficiently small so that C0∩f(L) is a union of non-compact
rays into the cusp. Then f−1(C0) is a union of tips of ideal triangles in S and con-
sists of disjoint horospherical neighborhoods R0

1, . . . ,R
0
n, each mapped into C .

Lift N to its universal cover H3, so that C0 lifts to a horoball H0 about ∞ in
the upper half-space model. Then f̃(S) intersects H0 in vertical bands, as shown
in Figure 1.

Let d be the distance in N between ∂C0 and ∂C . Since the interior of C is
embedded, this means that the shortest geodesic in N from C0 to C0 has length
at least 2d. Since the pleating map f : S → N is distance-decreasing, the shortest
geodesic in S from f−1(C0) to itself also has length at least 2d. In other words, we
may take a closed d-neighborhood of each R0

i and obtain a cusp neighborhood Ri,
such that R1, . . . ,Rn have disjoint interiors.

Consider the areas of these neighborhoods, along with their boundary lengths.
A standard calculation in the upper half-plane model of H2 implies that the length
of a horocycle in S equals the area of the associated cusp neighborhood. Further-
more, both quantities grow exponentially with d.

On ∂C0, a Euclidean geodesic about a puncture of S has length e−dλ. Since
f(S)∩C0 may not be totally geodesic (in general, it is bent, as in Figure 1), each
curve of ∂R0

i has length bounded below by e−dλ. These lengths grow by ed as we
take a d-neighborhood of ∪iR0

i . We conclude that each component Ri satisfies

�(∂Ri) = area(Ri)≥ ed · e−d ·λ= λ.(2.1)

It remains to show that f(Ri) ⊂ C for each i. Suppose, without loss of gen-
erality, that R0

1 is the component of f−1(C0) whose lift is mapped to the horoball
H0. Then, by construction, the lift of R1 is mapped into the d-neighborhood of H0,
which is a horoball H covering C . Thus f(R1) ⊂ C . Note that the containment
might be strict, because f(S) might be bent along some geodesics in the region
C�C0, as in the middle of Figure 1. �

The argument of Lemma 2.5 also permits the following construction, which is
important for Section 4.

LEMMA 2.6. Let N be a cusped orientable hyperbolic 3-manifold, with a horo-
cusp C . Let f : S → N be a pleating map that realizes an ideal triangulation τ .
Then, for each puncture p of S that is mapped to C , there is an immersed closed
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curve γ = γ(f,p,C), piecewise geodesic in the Euclidean metric on ∂C , with the
following properties:

(1) The loop γ is homotopic in C to a loop in f(S) about p.
(2) The vertices of γ lie in ∂C ∩ f(τ), and correspond to the endpoints of

edges of τ at puncture p.
(3) �(γ) = �(∂Ri), where Ri ⊂ S is one of the cusp neighborhoods of

Lemma 2.5.

A lift of γ to a horoball H covering C is shown, dotted, in Figure 1.

Proof of Lemma 2.6. We may construct γ as follows. Recall, from the proof of
Lemma 2.5, that there is a horocusp C0 ⊂ C such that the intersection f(S)∩C0

is standard, consisting of tips of ideal triangles. Then f−1(C0) is a disjoint union
of horospherical cusp neighborhoods. Let R0

i be the component of f−1(C0) that
contains puncture p, and let γ0 = f(∂R0

i )⊂ ∂C0.
Note that the curve γ0 is piecewise geodesic in the Euclidean metric on ∂C0,

and that it is bent precisely at the intersection points ∂C0∩ f(τ), where the trian-
gulation τ enters the cusp. See Figure 1.

We define γ to be the projection of γ0 to the horospherical torus ∂C . Note that
if C0 and C are lifted to horoballs about ∞ in H3, as in Figure 1, this projection is
just vertical projection in the upper half-space model.

Observe that while γ0 ⊂ f(S), its projection γ might not be contained in the
pleated surface. Nevertheless, γ is completely defined by γ0. The vertices where γ

is bent are contained in f(τ).
Let d be the distance between ∂C0 and ∂C . Then, as in Lemma 2.5, lengths

grow by a factor of ed as we pass from ∂C0 to ∂C . Thus, by the same calculation
as in (2.1),

�(γ) = ed · �(γ0) = ed · area(R0
i ) = area(Ri) = �(∂Ri),

where Ri ⊃ R0
i is the cusp neighborhood in S that is mapped into C , as in

Lemma 2.5. �

Our final goal in this section is to provide a universal lower bound on the size
of the cusp neighborhoods Ri. We do this using the following result of Adams [1].

LEMMA 2.7. Let N be a non-elementary, orientable hyperbolic 3-manifold,
and let C be a maximal horocusp in N . (This neighborhood may correspond to
either a rank one or rank two cusp.) Let s be a simple closed curve on ∂C , which
forms part of the boundary of an essential surface in N . Then �(s)> 21/4.

Proof. This is a consequence of a theorem of Adams [1, Theorem 3.3]. He
proved that every parabolic translation of the maximal cusp of any non-elementary
hyperbolic 3-manifold has length greater than 21/4, with exactly three exceptions:
one parabolic each in the three SnapPea census manifolds m004, m009, and m015.
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Each of the manifolds m004, m009, and m015 is either a punctured torus bundle
or a two-bridge knot complement. Hence the boundary slopes of incompressible
surfaces in these manifolds are classified [19, 25]. In particular, none of the three
slopes shorter than 21/4 bounds an essential surface. �

As a result, we obtain

LEMMA 2.8. Let N be a cusped orientable hyperbolic 3-manifold, with a
maximal cusp C . Let f(S) ⊂ N be a pleated surface, homotopic to a properly
embedded essential surface, such that n punctures of S are mapped to C . Then
f−1(C) ⊂ S contains n disjoint horospherical cusp neighborhoods R1, . . . ,Rn,
such that

�(∂Ri) = area(Ri)> 21/4 for each i.

Proof. This is immediate from Lemmas 2.5 and 2.7. �

3. Hyperbolic surfaces with one cone point. Recall from Definition 2.2
that every pleated surface carries an intrinsic hyperbolic metric. In this section, we
prove several lemmas about the geometry of cusp neighborhoods and geodesic arcs
in these surfaces. These estimates are used throughout the proofs of Theorems 1.5
and 1.7.

In fact, we work in a slightly more general setting: namely, hyperbolic surfaces
with a cone point, whose cone angle is at least 2π. These singular surfaces arise in
sweepouts of a hyperbolic 3-manifold: see Section 6. Therefore, we derive length
and area estimates for these singular surfaces, as well as non-singular ones.

Definition 3.1. A hyperbolic cone surface is a complete metric space S, home-
omorphic to a surface of finite type. We require that S admits a triangulation into
finitely many simplices, such that each simplex is isometric to a totally geodesic
triangle in H2. The triangles are allowed to have any combination of ideal vertices
(which correspond to punctures of S) and material vertices (which correspond to
points in S). The triangles are glued by isometries along their edges.

Every point of S that is not a material vertex of the triangulation thus has a
neighborhood isometric to a disk in H2. Every material vertex v ∈ S has a neigh-
borhood where where the metric (in polar coordinates) takes the form

ds2 = dr2 + sinh2(r)dθ2,(3.1)

where 0 ≤ r < rv and 0 ≤ θ ≤ θv. Here θv is called the cone angle at v, and can
be computed as the sum of the interior angles at v over all the triangles that meet
v. Note that if θv = 2π, equation (3.1) becomes the standard polar equation for the
hyperbolic metric in a disk. The vertices of S whose cone angles are not equal to
2π are called the cone points or singular points of S; all remaining points are called
non-singular.
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If all singular points of S have cone angles θv > 2π, another common name for
S is a simplicial hyperbolic surface. Simplicial hyperbolic surfaces have played an
important role in the study of geometrically infinite Kleinian groups [13, 22].

Just as with non-singular hyperbolic surfaces, cone surfaces have a natural
geometric notion of a cusp neighborhood.

Definition 3.2. Let S be a hyperbolic cone surface, with one or more punctures,
and let R ⊂ S be a closed set. Then R is called an equidistant cusp neighborhood
of a puncture of S if the following conditions are satisfied:

(1) The interior of R is homeomorphic to S1× (0,∞).
(2) There is a closed subset Q⊂R, whose universal cover Q̃ is isometric to a

horoball in H2. This implies that the interior of Q is disjoint from all cone points.
(3) There is a distance d > 0, such that R is the closed d-neighborhood of Q.

R is called a maximal cusp if it is not a proper subset of any larger equidistant cusp
neighborhood. Equivalently, R is maximal if and only if it is not homeomorphic to
S1× [0,∞).

LEMMA 3.3. Let S be a hyperbolic surface with one cone point v, of angle
θv ≥ 2π. Let R ⊂ S be a non-maximal equidistant neighborhood of a puncture of
S. Then

(1) There is a geodesic α that is shortest among all essential paths from R to
R.

(2) The arc α is either embedded, or is the union of a segment and a loop
based at v. In the latter case, there is an arbitrarily small homotopy in S making
α embedded.

(3) If 2π ≤ θv < 4π, and β is another shortest arc from R to R, there is an
arbitrarily small homotopy making α and β disjoint.

One way to interpret Lemma 3.3 is as follows. Let p be a puncture of S. Then
any shortest arc relative to a cusp neighborhood about p gives a vertex of the
arc complex A(S,p). If there are two distinct shortest arcs, they span an edge of
A(S,p); more generally, if there are n distinct shortest arcs, they span an (n−1)-
simplex. This is used in Sections 7 and 8 to construct a path in A(S,p).

Proof of Lemma 3.3. Let d be the infimal distance in the universal cover S̃ be-
tween two different lifts of ∂R; since R is not a maximal cusp, d > 0. Furthermore,
since distance to the nearest translate is an equivariant function on ∂R̃, it achieves
a minimum. Thus there are points x,y on distinct lifts of ∂R, whose distance is
exactly d. By the Hopf-Rinow theorem for cone manifolds [16, Lemma 3.7], the
distance between x and y is realized by a geodesic path α, and every distance-
realizing path is a geodesic. This proves (1).

Suppose that α : [0,d]→ S is a unit-speed parametrization. The image of α is
a graph Γ = Im(α). If α is not embedded, then Γ has at least one vertex of valence
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α3α2

α1

=⇒

Figure 2. Exchanging and rounding off the arcs α1 and α3 produces a shorter path.

larger than 2. In this case, we will show that Γ is the union of a segment and a loop
based at v.

Let w be a vertex of Γ that has valence larger than 2. Consider preimages
x,y ∈ α−1(w), where x < y. Then [0,d] splits into sub-intervals

I1 = [0,x], I2 = [x,y], I3 = [y,d].

Let αi be the restriction of α to the sub-interval Ii.
We claim that α1 must be homotopic to α3 (the reverse of α3): otherwise,

cutting out the middle segment α2 would produce a shorter essential path. We also
claim that �(α1) = �(α3): for, if �(α1)< �(α3), we could homotope α3 to α1 while
shortening the length of α. In particular, the last claim implies that x and y are the
only preimages of w, and w has valence 3 or 4.

If w �= v, then it is a non-singular point of S, hence a 4-valent vertex. This
means that α1 meets α3 at a nonzero angle. Then, exchanging α1 and α3 by ho-
motopy and rounding off the corner at w, as in Figure 2, produces an essential arc
shorter than α. This is a contradiction.

We may now assume that the only vertex in the interior of Γ = Im(α) occurs
at the cone point v. This implies that v is not in the cusp neighborhood R, hence
R contains no singular points and its universal cover R̃ is isometric to a horoball.
Thus, since horoballs are convex, there is a unique shortest path from v to R, in
each homotopy class.

In particular, the homotopic arcs α1 and α3 must coincide. Thus w = v is 3-
valent, and is the only vertex of Γ. Hence α2 is an embedded loop based at v, and
α must be an “eyeglass” that follows α1 from R to v, runs around the loop α2,
and returns to R by retracing α1. In this case, even though α is not embedded, one
component of the frontier of an ε-neighborhood of Γ is an embedded arc homotopic
to α. This proves (2).

For future reference, we note an important feature of eyeglass geodesics. Sup-
pose that α consists of an arc α1 from v to R and a loop α2 based at v. Then α1

must be the unique shortest path from v to R. For if another geodesic α3 from v to
R has length �(α3)≤ �(α1), then α1 and α3 must be in different homotopy classes.
This means α1∪α3 is an essential arc from R to R, whose length is

�(α1)+ �(α3)≤ 2�(α1)< 2�(α1)+ �(α2) = �(α),

contradicting the fact that α is shortest.
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Figure 3. An eyeglass path and an embedded arc can be made disjointly embedded after a
short homotopy. The dashed sections of α and β are schematics meant to indicate that the
arcs are traveling through a distant part of the surface, while staying disjoint.

For part (3), suppose that α and β are two distinct shortest arcs from R to R.
By statement (2), each of α and β is either an embedded arc or an eyeglass with a
loop based at v. Suppose that α and β intersect, and let Γ = Im(α)∪ Im(β).

If Γ has a non-singular vertex w, then w cuts α into sub-arcs α1,α2 that run
from w to R. Similarly, w cuts β into sub-arcs β3,β4 from w to R. Without loss
of generality, say that α1 is shortest among these four arcs. Then at least one of
α1 ∪ β1 or α1 ∪ β2 is an essential arc from R to R, and both of these arcs are no
longer than β. By rounding off the corner at w, we can make α1 ∪ β1 or α1 ∪ β2

into an essential arc shorter than β. This is a contradiction.
For the rest of the proof, we assume that the only vertex of Γ is at v. One

consequence of this assumption is that R contains no singular points. Hence, as in
the proof of (2), there is a unique shortest path from v to R in each homotopy class.
There are three cases: (i) neither α nor β is an eyeglass, (ii), α is an eyeglass but β
is not, and (iii) both α and β are eyeglasses.

If α and β are embedded arcs that intersect at v, consider the valence of v,
which must be 3 or 4. If v is 3-valent, α and β must share the same path α1 = β1

from R to v, then diverge. In this case, the ε-neighborhood of Γ contains disjointly
embedded arcs homotopic to α and β.

If v is 4-valent, let γ1, . . . ,γ4 be the four geodesic sub-arcs of Γ from v to R.
Since each γi is the unique shortest path in its homotopy class, any combination
γi∪γj is an essential arc. Since α= γ1∪γ2 and β = γ3∪γ4 are both shortest arcs
in S, every γi must have the same length. But since v has cone angle θv < 4π, there
must be two sub-arcs γi,γj that meet at an angle less than π. Thus γi∪ γj can be
shortened by smoothing the corner at v, contradicting the assumption that α and β

are shortest.
If α is an eyeglass, but β is not, let α1 be the sub-arc of α from v to R. By

the observation at the end of part (2), α1 is the unique shortest geodesic from v

to R. Let β1, β2 be the sub-arcs of β from v to R, where �(β1) ≤ �(β2). If α1

is distinct from β1, then α1 ∪ β1 would be an essential path that is shorter than
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Figure 4. Two eyeglass paths that share the same stem can be made disjointly embedded
after a short homotopy. Shown are the embedded versions of α and β, in the three possible
interleaving configurations at vertex v.

β—contradiction. Thus α1 = β1. In this case, homotoping α to an embedded arc
makes it disjoint from β. See Figure 3.

Finally, if each of α and β is an eyeglass, the observation at the end of part (2)
implies that each of α and β must contain the unique shortest geodesic from v to
R. Thus each of α and β consists of the same geodesic arc γ1 from v to R, as well
as a loop based at v. Figure 4 shows that the ε-neighborhood of Γ= Im(α)∪ Im(β)

contains disjointly embedded paths representing α and β. �

In the case where S is a non-singular surface, we have a stronger version of
Lemma 3.3: not only are shortest arcs disjoint, but nearly-shortest arcs must be
disjoint as well.

LEMMA 3.4. Let S be a punctured hyperbolic surface, and let R be a horo-
spherical neighborhood about one puncture. Let α and β be distinct geodesic arcs
from R to R. If α and β intersect, then there is a third geodesic arc γ, satisfying

�(γ)≤max{�(α), �(β)}− ln(2).

Here, all lengths are measured relative to the cusp neighborhood R.

In practice, we use the contrapositive statement: if both α and β are at most
ln(2) longer than the shortest geodesic from R to R, then they must be disjoint.

Proof of Lemma 3.4. If we change the size of the cusp neighborhood R, then
all geodesic arcs from R to R have their lengths changed by the same additive
constant. Thus, without loss of generality, we may assume that R is small enough
so that all intersections between α and β happen outside R. As S has no cone
points, α and β meet transversely.

Orient both α and β. If we cut the geodesic α along its intersection points with
β, we obtain a collection of segments. Let α1 and α2 be the first and last such
segments, respectively, along an orientation of α. That is, α1 (respectively α2) is
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the sub-arc of α from ∂R to the first (last) point of intersection with β. Similarly,
let β1 and β2 be the first and last segments of β, along an orientation of β.

Assume, without loss of generality, that α1 is shortest among the segments
α1,α2,β1,β2. Set v = α1 ∩ β. Then the vertex v cuts β into sub-arcs β3 and β4,
such that β1 ⊂ β3 and β2 ⊂ β4. Without loss of generality, we may also assume
that β3 (rather than β4) is the sub-arc of β that meets α1 at an angle of at most π/2.

Note that α1∪β3 is an embedded arc, because (by construction) α1 only inter-
sects β at the vertex v. Furthermore, α1∪β3 is topologically essential (otherwise,
one could homotope β to reduce its length). The hypothesis that α1 is shortest
among α1,α2,β1,β2 implies that

�(α1∪β3)≤ �(β2∪β3)≤ �(β4∪β3) = �(β).

Let γ denote the geodesic from R to R in the homotopy class of α1∪β3. Then
the geodesic extensions of α1, β3, and γ form a 2/3 ideal triangle, with angle
θ ≤ π/2 at the material vertex v. Then, [15, Lemma A.3] gives

�(γ) = �(α1∪β3)+ ln

(
1− cosθ

2

)
≤ �(β)+ ln

(
1
2

)
,

as desired. �

Next, we consider the area of equidistant cusp neighborhoods in S.

LEMMA 3.5. Let S be a simplicial hyperbolic surface with at most one sin-
gular point. Let R1 and R2 be embedded equidistant neighborhoods of the same
puncture of S, such that R1⊂R2⊂ S, and d is the distance between ∂R1 and ∂R2.
Then

area(R2)≥ ed area(R1).

Proof. Let Q ⊂ R1 be a cusp neighborhood isometric to the quotient of a
horoball. Then there is a number m > 0, such that for all x ∈ [0,m], the closed
x-neighborhood of Q is an equidistant cusp neighborhood R(x). In particular,
R1 =R(x1) and R2 =R(x2), where x2 = x1+d. We shall explore the dependence
of area(R(x)) on the parameter x.

Let v be the singular point of S. (If S is non-singular, let v be an arbitrary point
of S�Q, and consider it a cone point of cone angle 2π.) Let xv be the distance
from v to ∂Q. Then, for x < xv, R(x) is a non-singular neighborhood of a cusp,
itself the quotient of a horoball. As mentioned in the proof of Lemma 2.5, the area
of a horospherical cusp grows exponentially with distance. In symbols,

area(R(x)) = ex area(Q) if x≤ xv.

For x > xv, the cusp neighborhood R(x) can be constructed from a horoball
and a cone. More precisely: take a horospherical cusp, and cut it along a vertical
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slit of length r = x−xv. Then, take a cone of radius r and angle θ = θv−2π, and
cut it open along a radius. Gluing these pieces together along the slits produces
R(x). The area of a hyperbolic cone with radius r and angle θ can be computed as
2θ sinh2(r/2). Adding this to the area of a horospherical cusp, we obtain

area(R(x)) =

{
ex area(Q) if x < xv,

ex area(Q)+2θ sinh2((x−xv)/2) if x≥ xv.

To complete the proof, it suffices to check that the function f(x) = sinh2(x/2)
grows super-exponentially for x≥ 0:

(
sinh

x+d

2

)2

=

(
sinh

x

2
cosh

d

2
+ cosh

x

2
sinh

d

2

)2

>

(
sinh

x

2
cosh

d

2
+ sinh

x

2
sinh

d

2

)2

=
(
ed/2 sinh

x

2

)2

= ed sinh2
(x

2

)
.

Thus, since the area of R(x) is the sum of two functions, each of which grows at
least exponentially with x, it follows that area(R(x+d))≥ ed area(R(x)). �

LEMMA 3.6. Let S be a simplicial hyperbolic surface with at most one sin-
gular point. Let Rmax ⊂ S be a maximal cusp neighborhood of a puncture of S.
Then

area(Rmax)≤−2πχ(S).

Furthermore, if S is non-singular, then

area(Rmax)≤−6χ(S).

Proof. Let θv ≥ 2π be the cone angle at the singular point. (As above, we take
θv = 2π if the surface S is non-singular.) Then, by the Gauss-Bonnet theorem [16,
Theorem 3.15],

area(Rmax)≤ area(S) =−2πχ(S)+ [2π− θv]≤−2πχ(S).(3.2)

If S is a non-singular surface, then horosphere packing estimates of
Böröczky [7] imply that at most 3/π of the area of S can be contained in the
cusp neighborhood Rmax. Thus the above estimate improves to area(Rmax) ≤
−6χ(S). �
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Remark 3.7. By the Gauss-Bonnet theorem expressed in equation (3.2), the
area of S decreases as the cone angle θv increases from 2π. Thus it seems reason-
able that the area of a maximal cusp Rmax would also decrease as θv increases from
2π. If this conjecture is true, then the estimate area(Rmax) ≤ −6χ(S) would hold
for singular hyperbolic surfaces as well as non-singular ones.

LEMMA 3.8. Let S be a simplicial hyperbolic surface with at most one singu-
lar point. Let R⊂ S be an embedded equidistant neighborhood of a puncture of S.
Then there exists a geodesic arc α from R to R, satisfying

�(α)≤ 2ln |2πχ(S)/area(R)|.

Furthermore, if S is non-singular, then

�(α) ≤ 2ln |6χ(S)/area(R)|.

Proof. By Lemma 3.3, there is a geodesic arc α that is shortest among all
essential arcs from R to R. Let Rmax be the maximal cusp neighborhood containing
R. Then, by construction, Rmax meets itself at the midpoint of α. Thus the distance
from ∂R to ∂Rmax is d= �(α)/2. By Lemma 3.5, this implies

ed area(R)≤ area(Rmax),

which simplifies to

�(α) = 2d≤ 2ln (area(Rmax)/area(R)) .

Substituting the bound on area(Rmax) from Lemma 3.6 completes the proof. �

4. Upper bound: fibered manifolds. In this section, we prove the upper
bounds of Theorem 1.5. We begin with a slightly simpler statement:

THEOREM 4.1. Let F be an orientable hyperbolic surface with a preferred
puncture p, and let ψ : F → F be an orientation-preserving, pseudo-Anosov home-
omorphism such that ψ(p) = p. In the mapping torus Mψ , let C be the maximal
cusp that corresponds to p. Then

area(∂C)≤ 9χ(F )2 dA(ψ) and height(∂C)<−3χ(F )dA(ψ).

Theorem 4.1 differs from the upper bound of Theorem 1.5 in two relatively
small ways. First, Theorem 4.1 restricts attention to monodromies that fix the punc-
ture p. (Given an arbitrary pseudo-Anosov ϕ, one can let ψ be the smallest power
of ϕ such that ψ(p) = p.) Second, Theorem 4.1 estimates cusp area and height in
terms of the translation distance dA(ψ), rather than the stable translation distance
dA(ψ). We shall see at the end of the section that this simpler statement quickly
implies the upper bound of Theorem 1.5.
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Figure 5. The edges ai enter the cusp annulus A⊂Nψ at well-defined heights.

Proof of Theorem 4.1. The proof involves a direct construction. Suppose that
dA(ψ) = k. Then, by Definition 1.3, there is a vertex a0 ∈ A(0)(F,p), that is an
isotopy class of arc in F meeting the puncture p, so that dA(a0,ψ(a0)) = k. Fix a
geodesic segment in A(1)(F,p) with vertices

a0,a1, . . . ,ak = ψ(a0).

By Definition 1.2, the arcs representing ai−1 and ai are disjoint. Thus, for every
i = 1, . . . ,k, we can choose an ideal triangulation τi of F that contains ai−1 and
ai. In the arc complex A(F,p), the geodesic segment from a0 to ak extends to
a bi-infinite, ψ-invariant, piecewise geodesic. Similarly, the sequence of ideal tri-
angulations τ1, . . . , τk extends to a bi-infinite sequence of triangulations in which
τi+k = ψ(τi).

To prove the upper bounds on cusp area and height, it is convenient to work
with the infinite cyclic cover of Mψ . This is a hyperbolic manifold Nψ

∼= F ×R,
in which the torus cusps of M lift to annular, rank one cusps. Let A ⊂Nψ be the
lift of ∂C that corresponds to the puncture p of F .

We choose geodesic coordinates for the Euclidean metric on A ∼= S1×R, in
which the non-trivial circle (a longitude about p) is horizontal, and the R direction
is vertical. We also choose an orientation for every arc ai, such that the oriented
edge ai points into the preferred puncture p. In the 3-manifold Nψ , the edge ai is
homotopic to a unique oriented geodesic. Given our choices, every arc ai has an
associated height h(ai), namely the vertical coordinate of the point of A where the
oriented geodesic representing ai enters the cusp. For simplicity, we may assume
that h(a0) = 0 and h(ak) = h(ψ(a0))> 0. See Figure 5.

To estimate distances on the annulus A, we place many copies of the fiber F
into pleated form. That is, for each ideal triangulation τi, i ∈ Z, Proposition 2.4
implies that the fiber F ×{0} ⊂Nψ = F ×R can be homotoped in Nψ to a pleated
surface Fi realizing the triangulation τi. Recall that every ideal triangle of τi is
totally geodesic in Fi.
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ai−1 h(ai−1) ai−1 h(ai−1)

ai h(ai) ai h(ai)

γi γi

Figure 6. Left: the polygonal closed curve γi ⊂A. Right: the shape of γi that maximizes
the area of the band Bi between heights h(ai−1) and h(ai).

For each pleated surface Fi, Lemma 2.6 gives a possibly self-intersecting,
piecewise geodesic closed curve γi ⊂ A, which is homotopic to a loop about the
puncture p. The curve γi is not necessarily contained in Fi ∩A, but we do know
that the vertices where it bends are the endpoints of edges of τi meeting the annulus
A. See Figure 1 for a review.

LEMMA 4.2. Each piecewise linear closed curve γi ⊂ A, determined by the
pleated surface Fi, has length �(γi)≤−6χ(F ).

Proof. Lemma 2.6 states that �(γi) = �(∂Ri) = area(Ri), where Ri ⊂ Fi
is an embedded horospherical neighborhood of the puncture p. By Lemma 3.6,
area(Ri)≤−6χ(F ). �

See Agol [2, Theorem 5.1] or Lackenby [27, Lemma 3.3] for a very similar
statement, on which Lemma 4.2 is based.

Applying Lemma 4.2 to the pleated surface Fi gives a height estimate.

LEMMA 4.3. The heights of consecutive arcs satisfy

|h(ai)−h(ai−1)|<−3χ(F ).

Proof. By construction, the arcs ai−1 and ai have endpoints at the puncture p.
Additionally, the geodesic representatives of both arcs are contained in the trian-
gulation τi along which Fi is bent. Thus the piecewise geodesic closed curve γi,
containing the vertices at the forward endpoints of ai−1 and ai, must visit heights
h(ai−1) and h(ai). See Figure 6, left. Since �(γi)≤−6χ(F ), and this closed curve
covers the distance between heights h(ai−1) and h(ai) at least twice, we conclude
that

|h(ai)−h(ai−1)|<−3χ(F ).

The inequality is strict because γi must also travel around a horizontal loop in
A. �

Lemma 4.2 also leads to an area estimate.
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LEMMA 4.4. Let Bi ⊂ A be the band whose boundary consists of horizontal
circles at heights h(ai−1) and h(ai). Then area(Bi)≤ 9χ(F )2.

Proof. As in the proof of Lemma 4.3, we study the piecewise geodesic closed
curve γi ⊂A. Since γi meets both ai−1 and ai, it must meet both boundary compo-
nents of Bi. The goal is to determine the shape of γi that allows the largest possible
area for Bi.

Without loss of generality, we may assume that γi contains exactly two ge-
odesic segments connecting the two boundary circles of Bi: otherwise, one can
straighten γi while stretching Bi. Such a piecewise-linear loop consisting of two
segments splits Bi into two isometric triangles: one triangle below γi, and the other
triangle above γi. See Figure 6, right.

At this point, we have reduced to the classical calculus problem of building
a triangular corral adjacent to a river. As is well-known, the optimal shape for γi
is one where the two segments have the same length and meet at right angles.
By Lemma 4.2, the total length of these two equal segments is at most −6χ(F ).
Therefore, the maximum possible area for Bi is 9χ(F )2. �

We can now complete the proof of Theorem 4.1. A fundamental domain for
the torus ∂C is the portion of A between height h(a0) = 0 and height h(ak) =
h(ψ(a0)). This fundamental domain is contained in B1 ∪ . . .∪Bk. (The contain-
ment might be strict, since there is no guarantee that the sequence h(ai) is mono-
tonically increasing; see Figure 5.) Thus, by Lemma 4.4,

area(∂C)≤
k∑
i=1

area(Bi)≤ 9kχ(F )2.

Similarly, by Lemma 4.3,

height(∂C) = h(ak)−h(a0)≤
k∑
i=1

|h(ai)−h(ai−1)|<−3kχ(F ).

Recalling that dA(ψ) = k completes the proof. �

COROLLARY 4.5. Let F be an orientable hyperbolic surface with a preferred
puncture p, and let ψ : F →F be an orientation-preserving, pseudo-Anosov home-
omorphism such that ψ(p) = p. In the mapping torus Mψ , let C be the maximal
cusp that corresponds to p. Then

area(∂C)≤ 9χ(F )2 dA(ψ) and height(∂C)<−3χ(F )dA(ψ).

Corollary 4.5 differs from Theorem 4.1 in that dA has been replaced by dA.
Since dA(ψ) ≤ dA(ψ) by triangle inequalities, the statement of Corollary 4.5 is
slightly sharper.
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Proof of Corollary 4.5. Let n≥ 1. The maximal cusp C of Mψ lifts to an em-
bedded horocusp in Mψn , whose area is n · area(∂C). Applying Theorem 4.1 to
Mψn , we obtain

n · area(∂C)≤ 9χ(F )2 dA(ψn).

Thus

area(∂C)≤ 9χ(F )2 inf
n≥1

dA(ψn)
n

≤ 9χ(F )2 liminf
n→∞

dA(ψn)
n

≤ 9χ(F )2 dA(ψ).

The identical calculation goes through for height(∂C). �

Proof of Theorem 1.5, upper bound. Let ϕ : F → F be a pseudo-Anosov
homeomorphism, and let ψ= ϕn be the smallest power of ϕ that fixes the puncture
p. Let C be the maximal cusp of Mϕ corresponding to p. Then C lifts to a (not
necessarily maximal) horocusp C ′ ⊂ Mψ , which is a one-sheeted cover of C .
Corollary 4.5 gives upper bounds on the area and height of the maximal cusp of
Mψ, which implies upper bounds on the (possibly smaller) area and height of
C . �

5. Upper bound: quasi-Fuchsian manifolds. In this section, we prove the
upper bounds of Theorem 1.7. The proof strategy is nearly the same as the proof of
Theorem 4.1, with the quasi-Fuchsian manifold N ∼= F ×R playing the same role
as Nψ in the previous section. The main geometric difference is that core(Nψ) is
the whole manifold, whereas core(N) has finite volume and finite cusp area.

Let C ⊂N be the maximal cusp corresponding to the puncture p of F . As in
Section 4, we choose geodesic coordinates on A = ∂C ∼= S1×R, in which the R
direction is vertical. Since core(N) is convex, the intersection core(N)∩A must
be a compact annulus whose boundary is a pair of horizontal circles. We choose
the orientation on R so that ∂+ core(N) is higher than ∂− core(N). Then every
oriented essential arc ai ⊂ N whose forward endpoint is at C has a well-defined
height h(ai), namely the vertical coordinate of the point on A where the geodesic
homotopic to ai enters the cusp. See Figure 5.

Following Definition 1.6, let Δ±(N) be the simplex in A(F,p) consisting of
all shortest arcs from p to p in ∂± core(N). Let a0 ∈ Δ−(N) and ak ∈ Δ+(N)

realize the distance between these simplices, so that

k = dA(a0,ak) = dA(N,p).

Since a0 has both of its endpoints at p, we may choose the orientation on a0 so that
the point where a0 enters the cusp is the lower of the two endpoints. Similarly, we
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choose the orientation on ak so that the point where ak enters the cusp is the higher
of the two endpoints.

LEMMA 5.1. Let B ⊂ A be the compact annular band whose boundary con-
sists of horizontal circles at heights h(a0) and h(ak). Then

area(B)≤ 9χ(F )2 dA(N,p) and |h(ak)−h(a0)|<−3χ(F )dA(N,p).

Proof. This follows from the results of Section 4. Let a0,a1, . . . ,ak be the ver-
tices of a geodesic inA(1)(F,p) between a0 and ak. Then, for every i, let Bi⊂A be
the annular band whose boundary consists of horizontal circles at heights h(ai−1)

and h(ai). By Lemmas 4.3 and 4.4,

area(Bi)≤ 9χ(F )2 and
∣∣h(ai)−h(ai−1)

∣∣<−3χ(F ).

Adding up these estimates as i ranges from 1 to k gives the result. �

To prove the upper bounds of Theorem 1.7, it remains to estimate the area
and height of the part of core(N)∩A that is not contained in the band B. To
make this region more precise, define h±(N) to be the vertical coordinate of the
circle ∂± core(N)∩A. Then we may define B− = B−(N) to be the band whose
boundary consists of horizontal circles at heights h−(N) and h(a0), and similarly
B+ =B+(N) to be the band between heights h(ak) and h+(N). Note that the ori-
entations of a0 and ak were chosen precisely so as to minimize the size of B−(N)

and B+(N), respectively.
Recall that ∂− core(N) is an intrinsically hyperbolic surface, pleated along a

lamination. The arc a0 has a geodesic representative in ∂− core(N); in fact, by
definition this geodesic is shortest in ∂− core(N) among all arcs from p to p. Then
h−(N) is the height at which the geodesic representative of a0 in ∂− core(N) enters
the cusp C , and h(a0) is the height at which the geodesic representative of a0 in
N enters the cusp C . The difference |h(a0)−h−(N)| is the height of B−(N). We
control |h(a0)−h−(N)| via the following proposition.

PROPOSITION 5.2. Let γ ⊂N be an oriented, essential arc from cusp C back
to C , which is disjoint from the interior of C . Let g ⊂ N be the geodesic in the
homotopy class of γ. Let h(γ) be the height at which γ enters C , and h(g) be the
height at which g enters C .

Assume that the orientation of γ has been chosen to minimize |h(g)−h(γ)|.
Then either |h(g)−h(γ)| ≤ √2, or

|h(g)−h(γ)| ≤
�(γ)− ln

(
3+2

√
2
)
+2
√

2

2
=

�(γ)

2
+0.5328 . . . ,(5.1)

where �(γ) is the arclength of γ.
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Proof. Lift γ to an arc γ̃ ⊂ H3. The oriented arc γ̃ runs from horoball H ′ to
horoball H . Let g̃ be the corresponding lift of g, namely the oriented geodesic from
H ′ to H . Let d+ = d+(g,γ) be the distance along ∂H between the endpoints of g̃
and γ̃ on H , and similarly let d− = d−(g,γ) be the distance along ∂H ′ between the
endpoints of g̃ and γ̃ on H ′. Since the orientation of γ has been chosen to minimize
|h(g)−h(γ)|, we have

|h(g)−h(γ)| ≤min{d−(g,γ), d+(g,γ)} ≤ d−+d+
2

.(5.2)

Thus, to bound |h(g)−h(γ)|, it will suffice to bound the average of d− and d+.
Next, we reduce the problem from three to two dimensions, as follows. Con-

sider cylindrical coordinates (r,θ,z) on H3, with the geodesic g̃ at the core of the
cylinder. Thus r measures distance from g̃, while θ is the rotational parameter,
and z measures distance along g̃. With these coordinates, the hyperbolic metric
becomes

ds2 = dr2 + sinh2(r)dθ2 + cosh2(r)dz2.(5.3)

We claim that no generality is lost by assuming γ̃ lies in the half-plane corre-
sponding to θ = 0. This is because the expression for the metric in (5.3) is diago-
nalized, hence the map (r,θ,z) �→ (r,0,z) is distance–decreasing. Thus replacing
γ̃ by its image in this half-plane only makes it shorter. Furthermore, horoballs H

and H ′ are rotationally symmetric about g̃, hence the new planar curve is still dis-
joint from their interiors. Finally, observe that rotation about g̃ keeps the endpoints
of γ̃ a constant distance from g̃∩H ′ and g̃∩H , respectively. Thus the quantities
d−(g,γ) and d+(g,γ) are unchanged when we replace γ̃ by its rotated image. From
now on, we will assume that γ̃ lies in the copy of H2 for which θ ∈ {0,π}.

Recall that γ̃ is disjoint from the interiors of H and H ′. When its endpoints are
sufficiently far apart from g̃, the geodesic between those points would pass through
the interiors of the horoballs. Instead, the shortest path that stays outside H and H ′

follows the boundary of H ′, then tracks a hyperbolic geodesic tangent to H ′ and
H , then follows the boundary of H . (See Figure 7.) The following lemma estimates
the length of the geodesic segment in the middle of this path.

LEMMA 5.3. Let H and H ′ be horoballs in H2 with disjoint interiors. Let
α ⊂ H2 be a hyperbolic geodesic such that H and H ′ are both tangent to α, on
the same side of α. Let β ⊂ H2 be a hyperbolic geodesic perpendicular to both H

and H ′. If �1 denotes the length along α from H ∩α to H ′ ∩α, and �2 denotes the
length along ∂H from H ∩α to H ∩β, then

�1 ≥ ln
(

3+2
√

2
)

and �2 ≤
√

2.

Each inequality becomes equal if and only if H is tangent to H ′.
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g̃ ⊂ β

�1

�2 �2

�0− �2 �3− �2

γ̃

H ′ H

Figure 7. The setup of Proposition 5.2. When the endpoints of γ̃ are sufficiently far apart,
the shortest path that stays disjoint from the interiors of H and H ′ is the three-piece thick
arc, of length (	0− 	2)+ 	1 +(	3− 	2).

H ′

Hα

�1

β

1− r ≥ 1+ r

1− r H

H ′

�2

α β

1+ rr

�2

Figure 8. The setup of Lemma 5.3. Left: making geodesic α vertical helps estimate 	1.
Right: making geodesic β vertical helps estimate 	2. In both panels, the horoball H ′ has
Euclidean radius r.

Proof. Let g be the geodesic segment of α whose length is �1. For the first
inequality, apply an isometry of H2 so that g ⊂ α is vertical in the upper half-plane
model, so that H is the larger horoball, and so that the Euclidean radius of H is
1. Then the point of tangency α∩H is at Euclidean height 1. (See Figure 8, left.)
A calculation with the Pythagorean theorem then implies that the Euclidean radius
of H ′ must be r ≤ 1/(3+ 2

√
2), with equality if and only if H is tangent to H ′.

Since one endpoint of g is at height 1 and the other endpoint is at height r, we have
�1 = ln(1/r)≥ ln(3+2

√
2).

For the second inequality, apply an isometry of H2 so that ∂H is a horizontal
line at Euclidean height 1. Then α is a Euclidean semicircle of radius 1, and the
horoball H ′ must have Euclidean radius r ≤ 1/2. (See Figure 8, right.) Again, a
calculation with the Pythagorean theorem implies that �2 ≤

√
2, with equality if

and only if r = 1/2. �

Returning to the proof of Proposition 5.2, we import the notation of
Lemma 5.3. That is: the geodesic α is tangent to H and H ′, while the geo-
desic β contains g̃. Let �1 and �2 be as in the lemma. Let �0 = d−(g,γ) be the
distance along ∂H ′ between the g̃∩∂H ′ and γ̃∩∂H ′, and let �3 = d+(g,γ).
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If one of �0 = d− or �3 = d+ is no longer than
√

2, then equation (5.2) gives
|h(g)−h(γ)| ≤ √2 as well, and the proof is complete. Otherwise, if �0 and �3 are
both longer than

√
2, then Lemma 5.3 implies that they are longer than �2. As a

consequence, the shortest path between the endpoints of γ̃ that stays disjoint from
H and H ′ will need to track horoball H ′ for distance (�0−�2), then follow geodesic
α for distance �1, then track horoball H for distance (�3− �2). See Figure 7.

Thus we may compute:

�(γ)≥ (�0− �2)+ �1 +(�3− �2) by construction of γ̃

= (d−+d+)−2�2 + �1 by the definition of �0 and �3

≥ (d−+d+)−2
√

2+ ln(3+2
√

2) by Lemma 5.3,

≥ 2|h(g)−h(γ)|−2
√

2+ ln(3+2
√

2) by (5.2),

implying (5.1). �

We can now prove the upper bounds of Theorem 1.7.

Proof of Theorem 1.7, upper bound. Let C ⊂ N be a maximal cusp corre-
sponding to the puncture p of F . As above, ∂C ∩ core(N) decomposes into three
compact annular bands: the band B− between heights h−(N) and h(a0), the band
B between heights h(a0) and h(ak), and the band B+ between heights h(ak) and
h+(N).

The area and height of B were bounded in Lemma 5.1. As for B−, let a0 ∈
Δ−(N) be one of the arcs from C to C that is shortest on ∂− core(N). Let γ be the
geodesic in ∂− core(N) in the homotopy class of a0. By Lemmas 3.8 and 2.8,

�(γ)≤ 2ln
∣∣∣6χ(F )/21/4

∣∣∣= 2ln |χ(F )|+ ln
(

18
√

2
)
.(5.4)

Note that ln
(

18
√

2
)
≈ 3.2369 >

√
2, hence the larger upper bound in Proposi-

tion 5.2 is the one in equation (5.1). Thus, by plugging estimate (5.4) into (5.1), we
obtain

height(B−) = |h(a0)−h(γ)| ≤ ln |χ(F )|+
ln
(

18
√

2
)

2
+0.54 < ln |χ(F )|+2.16.

By Lemma 4.2, the circumference of B− (which is a longitude of the cusp C)
satisfies λ≤−6χ(F ). Thus

area(B−) = λ ·height(B−)<
∣∣6χ(F ) ln |χ(F )|+13χ(F )

∣∣.
The top band B+ =B+(N) satisfies the same estimates.
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Combining these estimates with Lemma 5.1, we obtain

area(∂C ∩ core(N)) = area(B− ∪B∪B+)

< 9χ(F )2 dA(N,p)+
∣∣12χ(F ) ln |χ(F )|+26χ(F )

∣∣.
Similarly,

height(∂C ∩ core(N)) = height(B− ∪B∪B+)

<−3χ(F )dA(N,p)+2ln |χ(F )|+5,

completing the proof. �

6. Sweepouts. In this section, we describe an important geometric and
topological construction needed for the lower bounds in Theorems 1.5 and 1.7.

Definition 6.1. Let N be a hyperbolic 3-manifold, F a surface, and f0 : F →
N a map sending punctures to cusps. Fix a connected set J ⊂ R. A sweepout
through f0 is a map Ψ : F ×J→N , thought of as a one-parameter family of maps
Ψt : F →N , each homotopic to f0.

A sweepout Ψ is called geometric if every Ψt is a simplicial hyperbolic map:
that is, for every t ∈ J , the image Ft = Ψt(F ) is a hyperbolic cone surface with
at most one cone point of angle 2π ≤ θt < 4π. Note that a pleating map along an
ideal triangulation is a special case of a simplicial hyperbolic map.

Let gt be the hyperbolic cone metric on F induced by Ψt. Then the continuity
of Ψ implies that gt varies continuously with t. In particular, the lengths of geo-
desic realizations of homotopy classes of arcs and curves (with respect to gt) vary
continuously with t.

Definition 6.2. Let M =Mψ be a fibered hyperbolic 3-manifold with fiber F
and monodromy ψ. Let N =Nψ be the infinite cyclic cover of M , with primitive
deck transformation Z : N → N . Fix r > 0 and define z : F ×R → F ×R by
z(x,t) = (ψ(x), t+ r). We say a sweepout Ψ : F ×R→ N is equivariant if each
Ψt is properly homotopic to the fiber, and

Z ◦Ψ=Ψ◦z.

Note that equivariance implies that Ψ descends to a degree-one sweepout of
M .

PROPOSITION 6.3. Let M =Mψ be a fibered hyperbolic 3-manifold with fiber
F and monodromy ψ. Let N = Nψ be the infinite cyclic cover. Then there is a
geometric, equivariant sweepout Ψ : F ×R→N .

This result originates in the work of Thurston [37, Theorem 9.5.13]; see page
9.47 in particular. A careful account of the proof was also written down by Canary
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εi−1 ei=⇒ xt

Figure 9. Left: a diagonal exchange in a quadrilateral. Center right: a diagonal exchange
between two pleated surfaces creates a 3-dimensional tetrahedron Δi. Right: a singular
quadrilateral Qt interpolates between the top and bottom pleated sides of the tetrahedron.

[13, Sections 4–5]. What follows below is a review of their argument, adapted to
ideal triangulations.

Proof of Proposition 6.3. Let τ0 be an ideal triangulation of F . Hatcher
proved [24] that the triangulations τ0 and ψ(τ0) can be connected by a sequence
of diagonal exchanges, as in Figure 9. Thus we have a sequence of ideal trian-
gulations, τ0, τ1, . . . , τr = ψ(τ0), where each τi differs from τi−1 by a diagonal
exchange. We extend the sequence of triangulations τi to a bi-infinite sequence
{τi | i ∈ Z}, such that τi+r = ψ(τi).

Fix an embedding f0 : F → N isotopic to the fiber. By Proposition 2.4, for
each i ∈ Z we may take Ψi : F → N to be a pleating of f0 along τi. We choose
these pleating maps so that Z ◦Ψi =Ψi+r ◦ψ. Define Fi = Im(Ψi) and notice that,
since τi differs from τi−1 by a diagonal exchange, Fi differs from Fi−1 by an ideal
tetrahedron Δi.

Fix i ∈ Z. Let εi−1 be the edge of τi−1 that is exchanged for the edge ei of τi.
Because all six edges of the tetrahedron Δi lift to hyperbolic geodesics, the edges
εi−1 and ei lift to hyperbolic geodesics with no shared endpoints at infinity. In H3,
this pair of geodesics is joined by a unique geodesic segment γ that meets εi−1,ei
perpendicularly. (In the special case where εi−1 and ei intersect, γ has length 0.)

Now, for every t ∈ [i− 1, i], we take xt to be the point on γ that is distance
�(γ)(t− i+ 1) from εi−1 and distance �(γ)(i− t) from ei. In other words, xt is
obtained by linear interpolation between the points where γ meets εi−1 and ei.
We construct a (singular) ideal quadrilateral Qt by coning xt to the four edges of
Δi� (ei ∪ εi−1). (See Figure 9, right.) Finally, let Ft be the surface that includes
the quadrilateral Qt inside the tetrahedron Δi, and agrees with Fi everywhere else.
Recall that Fi−1 agrees with Fi outside Δi.

For t ∈ (i−1, i), we take Ψt : F →Nψ to be a simplicial hyperbolic map with
image Ft. We choose the maps Ψt so that Ψ|F×[i−1,i] is continuous and so that
Z ◦Ψt =Ψt+r ◦ψ.

Now consider the geometry of Ft = Ψt(F ). Wherever this surface agrees
with Fi, it is built out of ideal triangles, and inherits an intrinsically hyperbolic
metric from Nψ . Meanwhile, the quadrilateral Qt where Ft disagrees with Fi is
constructed out of four (2/3)-ideal triangles that share a vertex at xt. Thus the
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surface Ft has a smooth hyperbolic metric everywhere except at xt. At this cone
point, observe that the singular quadrilateral Qt is not contained in any hyperbolic
half-space through xt. As a result, a lemma of Canary [13, Lemma 4.2] implies
that the cone angle at xt is θt ≥ 2π. Also, because each of the four triangles
meeting at xt has an interior angle less than π, we have θt < 4π.

Since the triangulations τi satisfy τi+r = ψ(τi), we have

Z ◦Ψt =Ψt+r ◦ψ, for all t ∈ R.

Therefore, Ψ is the desired equivariant, geometric sweepout of N . �

The above construction extends nicely to quasi-Fuchsian manifolds.

PROPOSITION 6.4. Let N ∼= F ×R be a cusped quasi-Fuchsian 3-manifold.
Let τ,τ ′ be ideal triangulations of F . Then there exists a geometric sweepout
Ψ : F × [0,r]→N , such that Ψ0 is the pleating map along τ and Ψr is the pleating
map along τ ′.

Proof. We repeat the proof of Proposition 6.3, without needing to worry about
equivariance. Let τ = τ0, τ1, . . . , τr = τ ′ be a sequence of ideal triangulations of
F , with each τi differing from τi−1 by a diagonal exchange. Then each τi can be
realized by a pleated surface Fi, and we may interpolate from Fi−1 to Fi by a
1-parameter family of simplicial hyperbolic surfaces, as in Figure 9. �

LEMMA 6.5. Let Ψ : F × J → N be a geometric sweepout in a hyperbolic
3-manifold N . Let C be an embedded horocusp in N , with longitude of length λ.
Then, for every surface Ft=Ψt(F ) in the sweepout, C∩Ft contains an equidistant
cusp neighborhood whose area is at least λ.

Recall that an equidistant cusp of a hyperbolic cone surface is defined in Defi-
nition 3.2.

Proof of Lemma 6.5. This is identical to the proof of Lemma 2.5, with pleated
surfaces replaced by simplicial hyperbolic surfaces. First, take a horocusp C0 ⊂ C

small enough so that Ft∩C0 is a non-singular, horospherical cusp R0
t . If d denotes

the distance between ∂C0 and ∂C , then area(R0
t )≥ e−dλ. Then Ft∩C contains an

equidistant d-neighborhood of R0
t . By Lemma 3.5, this equidistant neighborhood

Rt satisfies

area(Rt)≥ ed area(R0
t )≥ λ. �

7. Lower bound: fibered manifolds. In this section, we prove the lower
bound of Theorem 1.5. We begin with a slightly more restricted statement:

THEOREM 7.1. Let F be an orientable hyperbolic surface with a preferred
puncture p, and let ψ : F → F be an orientation-preserving, pseudo-Anosov
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homeomorphism such that ψ(p) = p. In the mapping torus Mψ , let C be a horo-
cusp corresponding to p, whose longitude has length λ = 21/4. Then there exists
an integer n≥ 1, such that

area(∂C)>
dA(ψn)

450χ(F )4 and height(∂C)>
dA(ψn)

536χ(F )4 .

Theorem 7.1 differs from the lower bound of Theorem 1.5 in several small
ways. First, it restricts attention to horocusps that have longitude of length 21/4.
(This choice of longitude is justified by Lemma 2.7, which represents the best
available lower bound on the longitude.) Second, Theorem 7.1 restricts attention
to monodromies that fix the puncture p. (Given an arbitrary pseudo-Anosov ϕ, one
can let ψ be the smallest power of ϕ such that ψ(p) = p.) Finally, Theorem 7.1
estimates cusp area and height in terms of the translation distance dA(ψn) for an
unspecified integer n, rather than the stable translation distance dA(ψ). We shall
see at the end of the section that this restricted statement quickly implies the lower
bound of Theorem 1.5.

Proof of Theorem 7.1. As in Sections 4 and 6, it is convenient to work with
the infinite cyclic cover of Mψ , namely Nψ

∼= F ×R. The horocusps of M lift
to annular, rank one cusps. Let A ⊂ Nψ be the lift of ∂C that corresponds to the
puncture p of F . Then A is an annulus, with longitude of length λ = 21/4, which
covers the torus ∂C .

By Proposition 6.3, there is a geometric, equivariant sweepout Ψ : F ×R→
Nψ. In particular, for every t, we have Ft = Ψt(F ) is a hyperbolic cone surface
with at most one singular point of cone angle 2π ≤ θt < 4π.

Definition 7.2. Let Ft be a simplicial hyperbolic surface in N (such as one
occurring in the sweepout). We say that an arc a ∈ A(0)(F,p) is short on Ft if a
runs from p to p, and if its geodesic representative in the singular hyperbolic metric
of Ft is shortest among all such arcs.

Note that a given surface Ft can have multiple short arcs. However, all short
arcs on Ft have disjoint representatives, by Lemma 3.3.

For each surface Ft, Lemma 3.8 gives an explicit upper bound on the length
of a short arc in Ft (hence, also on its length in Nψ). On the cusp annulus A, each
short arc gives a shadow of a horoball, with area bounded below. More precisely,
we obtain the following quantitative estimate.

LEMMA 7.3. Let a ∈A(0)(F,p) be an arc that is short on Ft for some t. Then,
on the cusp annulus A⊂Nψ , the arc a corresponds to a pair of disjoint disks, each
of radius

r =

√
2

8π2χ(F )2 .
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Furthermore, if an arc b is short on Ft′ for some t′, and a �= b ∈ A(0)(F,p), then
the disks corresponding to a and b are disjoint on A.

Proof. By convention (and by Lemma 2.7), the longitude of A has length λ=

21/4. Thus, by Lemma 6.5, the intersection between Ft and the horocusp of Nψ

contains an equidistant cusp neighborhood Rt, of area at least 21/4. Therefore, by
Lemma 3.8, the length of a short arc a in Ft�Rt is

�(a)< 2ln
∣∣∣2πχ(F )/21/4

∣∣∣.
Since Ft is immersed in Nψ as a piecewise geodesic union of hyperbolic trian-
gles, this immersion is distance-decreasing. Thus, in Nψ , the geodesic ga in the
homotopy class of a must also be shorter than the above estimate.

Lift Nψ to the universal cover H3 in the upper half-space model, so that the
cusp annulus A lifts to a horizontal horosphere at Euclidean height 1. Let H∞ be
the horoball above this horosphere. This means that ga lifts to a vertical geodesic
that starts at height 1 and ends at the top of a horoball Ha, of diameter

e−	(a) ≥
√

2
4π2χ(F )2 .(7.1)

InH3, there is a covering transformation for Nψ that maps Ha to H∞, and maps
H∞ to another horoball H ′a. The diameter of H ′a must be the same as that of Ha

because they lie at the same distance from H∞ (namely, the length of ga). This new
horoball H ′a cannot belong to the same orbit as Ha under the parabolic subgroup
π1(A) = Z preserving H∞: for, this parabolic subgroup preserves the orientation
on all the lifts of ga, but one lift of ga is oriented downward toward Ha whereas the
other is oriented upward from H ′a toward H∞. Thus the shadows of Ha and H ′a are
disjoint disks on the horosphere at height 1, which project to disjoint disks Da and
D′a on A because Ha and H ′a are in different orbits. After shrinking Da and D′a if
necessary, we obtain a pair of disjoint disks of radius

√
2/8π2χ(F )2.

Now, suppose that b is another arc from p to p, not isotopic to a, such that b
is short on Ft′ for some t′. Then, performing the same construction as for a, we
obtain a pair of horoballs Hb and H ′b, whose heights also satisfy equation (7.1).
The four horoballs Ha,H

′
a,Hb,H

′
b must lie in distinct orbits of the parabolic Z

subgroup preserving ∞, because a and b are in distinct homotopy classes on F .
Thus the four horoballs are disjoint in H3. Their shadows on H∞ are not necessar-
ily disjoint. However, if we shrink all four horoballs until their diameter is exactly√

2/4π2 χ(F )2, then the shadows of disjoint horoballs of the same size are them-
selves disjoint.

Since Ha,H
′
a,Hb,H

′
b lie in distinct orbits under π1(A), we obtain four disjoint

disks Da,D
′
a,Db,D

′
b in A, each of radius

√
2/8π2 χ(F )2. �
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To obtain a lower bound on the area and height of ∂C , we need to find a
sequence of arcs in F , each of which is short in a surface Ft for some t.

LEMMA 7.4. There is a sequence of real numbers 0 = t0, t1, . . . , tk = r and
an associated sequence a0,a1, . . . ,ak of arcs embedded in F , with the following
properties:

(1) Each ai is short on Fti .
(2) The first and last arcs satisfy ak = ψ(a0).
(3) Each ai is disjoint from ai−1. In other words, [ai−1,ai] is an edge of

A(F,p).
Proof. Let a be an embedded arc in F from p to p. Define

S(a) := {t ∈R | a is shortest on Ft among all arcs from p to p}.
In other words, S(a) consists of those values of t for which a is short (as in Def-
inition 7.2). According to the definition of a geometric sweepout (Definition 6.1)
the length of any arc varies continuously with t. Since being shortest is a closed
condition it follows that the set S(a) is closed. Also, since every surface Ft in the
sweepout has a short arc, the line R is covered by the sets S(a), as a varies over
the vertices of A(F,p).

We claim that the arcs a for which S(a) �= /0 belong to finitely many ψ-orbits.
This is because every ψ-orbit of arcs in F descends to a single arc in Mψ, with
distinct orbits descending to distinct arcs. The two endpoints of a geodesic ga ⊂
Mψ representing the arc a must be distinct in ∂C (otherwise, a deck transformation
of Mψ would reverse the orientation of a lift of ga, fixing a point in the middle).
The two endpoints of ga on ∂C are the centers of disjoint disks guaranteed by
Lemma 7.3. Thus, by Lemma 7.3, every orbit of arcs that is shortest on some Ft
makes a definite contribution to area(∂C). On the other hand, area(∂C) is bounded
above (e.g., by Theorem 4.1), hence there can be only finitely many ψ-orbits of arcs
for which S(a) �= /0.

Next, we claim that each S(a) is compact. Fix an arc a, and let ga be the geo-
desic in Nψ that is homotopic to a. Note that the sweepout of Nψ must eventually
exit: that is, as |t| → ∞, the surface Ft must leave any compact set in Nψ . Thus, as
|t| → ∞, the distance from Ft to the geodesic ga becomes unbounded (outside the
horocusp C). However, any path in Ft that is homotopic to ga but remains outside
an s-neighborhood of ga must be extremely long (with length growing exponen-
tially in s). Therefore, when |t|� 0, the geodesic representative of a on Ft must be
very long, and in particular cannot be the shortest arc on Ft. This means that S(a)
is bounded, hence compact.

We conclude there are only finitely many arcs a for which S(a)∩ [0,r] �= /0.
By the first claim above, these arcs belong to finitely many ψ-orbits. Within each
orbit, the compact sets S(a) and S(ψ(a)) differ by a translation by r. Thus only
finitely many sets in each ψ-orbit can intersect [0,r].
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Let a0 be an arc that is short on F0; that is, 0 ∈ S(a0). Then ψ(a0) is short
on Fr . Since the connected interval [0,r] is covered by finitely many closed sets
S(a), a lemma in point-set topology (Lemma B.1 in the Appendix) implies that one
may “walk” from S(a0) to S(ψ(a0)) by intersecting sets: there is a real number
t1 ∈ S(a0)∩S(a1), a number t2 ∈ S(a1)∩S(a2), and so on, for arcs a0, . . . ,ak =

ψ(a0).
By definition, ti ∈ S(ai−1)∩S(ai) means that both ai−1 and ai are short on

Fti . Thus, by Lemma 3.3, [ai−1,ai] is an edge of A(F,p). We have therefore con-
structed a walk through the 1-skeleton of A(F,p), from a0 to ak = ψ(a0), through
arcs ai that are each short on some simplicial hyperbolic surface. �

LEMMA 7.5. The sequence of arcs a0,a1, . . . ,ak in Lemma 7.4 contains a sub-
sequence b0, b1, . . . , bm with the following properties:

(1) Each bi is short on Fti .
(2) The arcs b1, . . . , bm are all in distinct ψ-orbits.
(3) The first and last arcs satisfy bm = ψn(b0), for some integer n �= 0.
(4) Each bi is disjoint from bi−1. In other words, [bi−1, bi] is an edge ofA(F,p).
Proof. The arcs a0,a1, . . . ,ak in Lemma 7.4 constitute a walk through the 1-

skeleton of A(F,p), from a0 to ak = ψ(a0). Given that this walk exists, one can
excise some of the ai if necessary to form a loop-erased walk a0 to ak = ψ(a0).
That is, one may walk from a0 to ak = ψ(a0) through some subcollection of the
ai, without visiting the same isotopy class more than once.

Next, suppose that there are indices i < j, such that ai and aj belong to the
same ψ-orbit. Without loss of generality, assume that i,j are an innermost pair
with this property. This means that aj = ψn(ai) for some n �= 0, and ai+1, . . . ,aj
are all in distinct ψ-orbits. Now, we simply restrict attention to the subsequence
from i to j. That is, let b0 = ai, b1 = ai+1, and so on, until bm = aj for m= j− i.
This subsequence satisfies the lemma. �

We can now complete the proof of Theorem 7.1. Notice that in Lemma 7.5,
b0, b1, . . . , bm are the vertices of a path through A(1)(F,p) from b0 to ψn(b0).
Thus m ≥ dA(ψn). By Lemma 7.3, each arc bi corresponds to two disjoint disks
Di,D

′
i ⊂ A, each of radius

√
2/8π2χ(F )2. Furthermore, for j �= i, the disks

Di,D
′
i,Dj ,D

′
j are all disjoint. Thus we have at least 2dA(ψn) disjoint disks

altogether. Since the arcs b1, . . . , bm are all in different ψ-orbits, these disks project
to 2dA(ψn) disjoint disks on the cusp torus ∂C ⊂Mψ .

To obtain a lower bound on area(∂C), we sum up the areas of these disjoint
disks, and multiply by the circle packing constant of 2

√
3/π (see [7, Theorem 1]).

Thus

area(∂C)≥ 2
√

3
π
·2dA(ψn) ·π

( √
2

8π24χ(F )2

)2

=

√
3dA(ψn)

8π4χ(F )4 >
dA(ψn)

450χ(F )4 .
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Finally, since area(∂C) = λ ·height(∂C), and we have normalized the horocusp so
that λ= 21/4, we have

height(∂C)≥
√

3dA(ψn)
21/4 8π4χ(F )4

>
dA(ψn)

536χ(F )4 . �

Proof of Theorem 1.5, lower bound. Let ϕ : F → F be a pseudo-Anosov
homeomorphism, and let ψ= ϕn be the smallest power of ϕ that fixes the puncture
p. Let C be an embedded cusp of Mϕ corresponding to p, whose longitude has
length λ = 21/4. By Lemma 2.7, an embedded cusp of this size exists, and is
smaller than the maximal cusp of Mϕ. Thus all lower bounds on C also apply to
the maximal cusp.

In the cover Mψ , the horocusp C lifts to an embedded horocusp C1 ⊂Mψ ,
which is a one-sheeted cover of C . Furthermore, for every integer m≥ 1, the map-
ping torus Mψm contains an embedded horocusp Cm whose longitude has length
21/4 and which forms an m-fold cover of C . Consider what Theorem 7.1 says about
the geometry of Cm.

By Theorem 7.1, there exists an integer n(m)≥m, such that

area(∂Cm)>
dA(ψn(m))

450χ(F )4 and height(∂Cm)>
dA(ψn(m))

536χ(F )4 .

Because Cm is an m-fold cover of C , both its area and its height are m times larger
than those of C . Thus, for all m≥ 1,

area(∂C)>
dA(ψn(m))

m ·450χ(F )4 ≥
dA(ψn(m))

n(m) ·450χ(F )4 ≥ inf
r≥n(m)

dA(ψr)
r ·450χ(F )4 .

Since every m≥ 1 gives rise to an integer n(m)≥m satisfying the above inequal-
ity, we have

area(∂C)≥ liminf
n→∞

dA(ψn)
n ·450χ(F )4 =

dA(ψ)
450χ(F )4 .

The last equality holds because the limit in equation (1.2), which defines the stable
translation distance, always exists [8, p. 230]. An identical calculation goes through
for height(∂C). �

8. Lower bound: quasi-Fuchsian manifolds. In this section, we prove the
lower bounds of Theorem 1.7. The argument uses almost exactly the same ingre-
dients as the proof of Theorem 7.1. The one additional ingredient is the ability to
approximate the convex core boundary by surfaces pleated along triangulations.

PROPOSITION 8.1. Let N ∼= F ×R be a cusped quasi-Fuchsian 3-manifold,
and p a puncture of F . As in Definition 1.6, let Δ−(N) be the simplex of A(F,p)
whose vertices are the shortest arcs from p to p in the lower core boundary
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∂− core(N). Then there is an ideal triangulation τ of F , such that in the pleated
surface Fτ pleated along τ , each shortest arc from p to p is distance at most 1
from Δ−(N).

The same statement holds for the simplex Δ+(N).

Proof. Let R0 ⊂ ∂− core(N) be a horospherical cusp neighborhood about
puncture p, such that area(R0) = 1. Note that by Lemma 2.8, the neighborhood
R0 is embedded. For any arc a from puncture p to p in F , let �0(a) be the length
of the geodesic representing a, in the hyperbolic metric of ∂− core(N), outside the
cusp neighborhood R0. Let �N (a) be the length of the geodesic representing a in
the 3-manifold N , outside a cusp neighborhood of longitude 1. Define the set

T (N) =
{
a ∈A(0)(F,p) | both ends of a are at p, �N (a)< 2ln |6χ(F )|+ ln(2)

}
.

(8.1)

Note that by Lemmas 2.5 and 3.8, every arc a ∈Δ−(N) has length

�N (a)≤ �0(a)≤ 2ln |6χ(F )|.

Thus the simplex Δ−(N) of shortest arcs in ∂− core(N) must be contained in
T (N). Also note that T (N) must be a finite set: one way to see this is to recall
(e.g., from Lemma 7.3) that every arc of bounded length makes a definite contri-
bution to area(∂C ∩ core(N)).

Now, we apply Theorem A.1: there exists a sequence of triangulations τi of
F , such that the hyperbolic metrics on the pleated surfaces Fτi converge in the
Teichmüller space T (F ) to ∂− core(N). For each i, let Ri ⊂ Fτi be an embedded
cusp neighborhood of area 1. For each arc a ⊂ F , let �i(a) be the length of the
geodesic representing a, in the induced hyperbolic metric on Fτi , relative to the
cusp neighborhood Ri. Note that �N (a)≤ �i(a) by Lemma 2.5. Then, because the
metrics on Fτi converge to that on ∂− core(N), the length of any arc also converges.
In particular, because T (N) is a finite set of arcs, there is some k� 0 such that

|�k(a)− �0(a)|< ln(2)/3, ∀a ∈ T (N).(8.2)

Let τ = τk, and let b be any shortest arc on Fτ = Fτk . By Lemma 3.8, we
have �k(b)≤ 2ln |6χ(F )|. Furthermore, �N (b)≤ �k(b), since the pleating map that
produces Fτk is 1-Lipschitz. Then, by equation (8.1), it follows that b ∈ T (N).
Thus, for any arc a that is shortest on ∂− core(N) (that is, a ∈Δ−(N)), we obtain

�0(b)− ln(2)/3 < �k(b)≤ �k(a)< �0(a)+ ln(2)/3,(8.3)

where the outer inequalities follow by (8.2) and the middle inequality holds be-
cause b is shortest on Fτ . A simpler way to state the conclusion of (8.3) is that on
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the hyperbolic surface ∂− core(N),

�0(b)< �0(a)+2ln(2)/3.

Since a is shortest on ∂− core(N), and b is nearly shortest, Lemma 3.4 implies that
a and b are disjoint (or the same arc) for any a∈Δ−(N). Thus b is distance at most
1 from Δ−(N). �

We can now begin proving the lower bound of Theorem 1.7. Applying the same
ideas as in Section 7 gives the following analogue of Lemma 7.4.

LEMMA 8.2. Let N ∼= F ×R be a cusped quasi-Fuchsian 3-manifold, and p

a puncture of F . There is a sequence a0,a1, . . . ,ak of arcs embedded in F , and an
associated sequence of simplicial hyperbolic surfaces Ft(ai) ⊂N with at most one
singular point of cone angle 2π ≤ θt < 4π, such that the following hold:

(1) Each ai is short on Ft(ai), in the sense of Definition 7.2.
(2) The arcs a0, . . . ,ak are distinct up to isotopy.
(3) Ft(a0) is the lower core boundary ∂− core(N), and Ft(ak) = ∂+ core(N).
(4) Each ai is disjoint from ai−1. In other words, [ai−1,ai] is an edge of

A(F,p).
Proof. As in Definition 1.6, let Δ−(N) be the simplex of A(F,p) whose ver-

tices are the short arcs on the lower boundary ∂− core(N). By Proposition 8.1,
there is a triangulation τ of F , and a pleated surface Fτ pleated along τ , such that
a short arc on this pleated surface either belongs to the simplex Δ−(N), or is at
distance 1 from some vertex of Δ−(N). Similarly, there is a triangulation τ ′ of F ,
and a pleated surface Fτ ′ pleated along τ ′, whose short arc either belongs to the
simplex Δ+(N), or is at distance 1 from some vertex of Δ+(N).

By Proposition 6.4, there is a geometric sweepout Ψ : F × [0,r]→ N , where
each Ft =Ψ(F ×{t}) is a hyperbolic cone surface with at most one singular point
of cone angle 2π ≤ θt < 4π. Furthermore, F0 = Fτ and Fr = Fτ ′ , for the given
triangulations τ and τ ′.

Next, we apply the argument of Lemma 7.4. In the quasi-Fuchsian setting, the
proof simplifies in several ways. There is no need to worry about equivariance,
and the set of arcs {a : S(a) �= /0} is finite because it is contained in T (N) from
equation (8.1). We thus obtain a sequence of arcs a1, . . . ,ak−1 with the following
properties:
• Each ai is short on some surface Ft(ai) in the sweepout.
• Arc a1 is short on F0 = Fτ , and ak−1 is short on Fr = Fτ ′ .
• Each ai is disjoint from ai−1. In other words, [ai−1,ai] is an edge ofA(F,p).
Next, we extend this sequence of arcs to the convex core boundary. If a1 /∈

Δ−(N), then there is an arc a0 ∈Δ−(N), which is shortest on ∂− core(N) by def-
inition, and such that [a0,a1] is an edge ofA(F,p). Otherwise, if a1 ∈Δ−(N), then
we simply shift indices by 1, so that a1 becomes a0. Similarly, if ak−1 /∈Δ+(N),
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then we add an arc ak ∈ Δ+(N), which is shortest on ∂+ core(N). Otherwise, if
ak−1 ∈Δ+(N), then we simply redefine k := k−1, and stop the sequence there.

We now have a sequence of arcs a0, . . . ,ak, with associated simplicial hyper-
bolic surfaces Ft(ai), so that this sequence satisfies all the conclusions of the lemma
except possibly (2). That is, some of the ai might be in the same isotopy class. But
if the arcs a0, . . . ,ak are the vertices of a path in A(1)(F,p), then some subcollec-
tion of the ai give an embedded path. This means that (2) is satisfied, and the proof
is complete. �

LEMMA 8.3. Let N ∼= F ×R be a cusped quasi-Fuchsian manifold, and p a
puncture of F . Let C ⊂ N be a horocusp corresponding to the puncture p, whose
longitude is λ= 21/4. Then, for some k ≥ dA(N,p), the annulus A= ∂C contains
2k+2 disjoint disks, each of radius

r =

√
2

8π2χ(F )2 ,

such that the center of each disk is in the convex core core(N).

Recall that by Lemma 2.7, there is indeed an embedded horocusp of longitude
λ = 21/4. Recall as well, from Definition 1.6, that dA(N,p) is defined to be the
shortest distance in A(F,p) between a vertex of Δ−(N) and a vertex of Δ+(N).

Proof of Lemma 8.3. The sequence of arcs a0, . . . ,ak, constructed in Lemma
8.2, is a walk through the 1-skeleton of A(F,p) from a vertex of Δ−(N) to a
vertex of Δ+(N). Thus, by Definition 1.6, k ≥ dA(N,p).

For each i ∈ {0, . . . ,k}, let gai be the geodesic in N in the homotopy class of
ai. Then, Lemma 7.3 guarantees that there is a pair of disjoint disks Dai and D′ai ,
of radius r =

√
2/8π2χ(F )2, whose centers are the endpoints of gai on the cusp

annulus A. Since the geodesic gai is contained in the convex core of N , the centers
of Dai and D′ai lie in core(N) as well.

Finally, Lemma 7.3 also implies that if j �= i, the disks of ai are disjoint from
those of aj . Thus we have at least 2k+2 disks in total. �

Proof of Theorem 1.7, lower bound. Let p be a puncture of F , and let C ⊂
N be a horospherical cusp corresponding to the puncture p, whose longitude has
length λ= 21/4. Note that by Lemma 2.7, C is contained in the maximal cusp about
puncture p. Thus lower bounds on the area and height of ∂C ∩ core(N) also apply
to the maximal cusp.

As in Section 4 and 5, we may place Euclidean coordinates on the annulus
A = ∂C ∼= S1×R, in which the R direction is vertical. Let B ⊂ A be a compact
annular band, with boundary consisting of horizontal circles, which is the smallest
such band that contains all of the 2k+2 disks of Lemma 8.3. Since each disk has
radius r =

√
2/8π2 χ(F )2, Böröczky’s estimate on the density of a circle packing



348 D. FUTER AND S. SCHLEIMER

[7, Theorem 1] implies that

area(B)≥ 2
√

3
π
· (2dA(N)+2) ·π

( √
2

8π2χ(F )2

)2

=

√
3(dA(N)+1)
8π4χ(F )4

>
dA(N)+1
450χ(F )4 .

Similarly, since area(B) = λ ·height(B), and we have normalized the horocusp so
that λ= 21/4, we have

height(B)≥
√

3(dA(N)+1)

21/4 8π4χ(F )4
>

(dA(N)+1)
536χ(F )4 .

To complete the proof, it remains is to bound the difference in area (or height)
between B and ∂C∩core(N). Note that by Lemma 8.3, each of the (2k+2) disks
has its center inside core(N). Therefore, the upper boundary of B is at most r =√

2/8π2χ(F )2 higher than ∂+ core(N), and the lower boundary of B is at most r
lower than ∂− core(N). This implies that

area(∂C ∩ core(N))≥ area(B)−2λr

>
dA(N)

450χ(F )4 −
2 ·23/4

8π2χ(F )2

>
dA(N)

450χ(F )4 −
1

23χ(F )2 .

Similarly,

height(∂C ∩ core(N))≥ height(B)−2r >
dA(N)

536χ(F )4 −
1

27χ(F )2 . �

9. Covers and the arc complex. In this section, we will apply Theorem 1.7
to prove Theorem 1.9, which relates the arc complex of a surface S to that of its
cover Σ. The proof uses some classical results in Kleinian groups to construct
a quasi-Fuchsian manifold with prescribed short arcs on its convex core bound-
ary (see Lemma 9.2). We begin by recalling some terminology and results, while
pointing the reader to Marden [28, Chapter 3] for a more detailed reference.

Let Γ be a Kleinian group with limit set Λ. The domain of discontinuity is
Ω = ∂H3

�Λ. When N = H3/Γ is quasi-Fuchsian, Ω is the disjoint union of two
open disks Ω+ and Ω−, each of which admits a conformal, properly discontinuous
action by Γ. The quotients S± = Ω±/Γ are Riemann surfaces, called the (top and
bottom) conformal boundary of N =H3/Γ.
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For each quasi-Fuchsian manifold N , there is a natural “nearest point retrac-
tion” map r : S± → ∂± core(N). Sullivan proved that, if S± is given the unique
hyperbolic metric in its conformal class, the map r : S± → ∂± core(N) is K-
Lipschitz, for a universal constant K > 1. Much more recently, Epstein, Mar-
den, and Markovic [18] showed that the optimal Lipschitz constant is 2. We will
use their result for concreteness, while emphasizing that Sullivan’s original K-
Lipschitz statement is all that is truly needed.

We also recall some facts from the geometry of surfaces. Let ε2 be the 2-
dimensional Margulis constant. For any simple closed geodesic γ in a hyperbolic
surface S, of length � = �(γ) < ε2, the ε2-thin region of S containing γ is an em-
bedded collar of radius r(�). The function r(�) is monotonically decreasing, and
r(�)→ ∞ as �→ 0. See Buser [12] for explicit estimates on ε2 and r(�).

Definition 9.1. Let S be a hyperbolic surface, and γ a simple closed geodesic
on S. We say that γ is sufficiently thin if its length �= �(γ) is short enough that the
ε2-thin collar about γ has radius

r(�)> ln |6χ(S)/ε2|.(9.1)

This requirement on collar radius is motivated by Lemma 3.8.

Given this background, we can prove the following constructive lemma.

LEMMA 9.2. Let F be a surface with a puncture p, and let a−,a+ ∈A(0)(F,p)

be arcs from p to p. Then there exists a quasi-Fuchsian manifold N ∼= F ×R, such
that a± is the unique shortest arc from p to p on ∂± core(N).

Proof. Let R0 ⊂ F be a neighborhood of the puncture p, and let R(a+) be
a regular neighborhood of R0 ∪ a+. This is topologically a pair of pants, whose
frontier in F consists of a pair of essential closed curves c+, c

′
+. (If F is a once-

punctured torus, then c+ is isotopic to c′+; this will not affect our arguments.) Sim-
ilarly, let c−, c′− be closed curves that form the frontier of a regular neighborhood
R(a−).

Choose hyperbolic metrics X± on F , in which the geodesic representatives of
c± and c′± have less than half the length required to be sufficiently thin. By Bers
simultaneous uniformization [28, page 136], there is a quasi-Fuchsian manifold
N ∼= F ×R whose top conformal boundary is X+ and whose bottom conformal
boundary is X−. Thus, by Epstein, Marden, and Markovic [18], the geodesic rep-
resentatives of c± and c′± are sufficiently thin on ∂± core(N).

We claim that a+ is the unique shortest arc from p to p on ∂+ core(N). For con-
creteness, we will measure lengths relative to the horospherical cusp neighborhood
Q(p) ⊂ ∂+ core(N) whose boundary has length ε2. Since horoballs are convex, it
follows that Q(p) is ε2-thin. Then, by Lemma 3.8, there must be a geodesic α+

from p to p whose length relative to this cusp neighborhood satisfies

�(α+)≤ 2ln |6χ(S)/ε2|.
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Now, let b+ be any arc from p to p, other than a+. Since b+ is not isotopic into the
neighborhood R(a+), it must cross c+ ∪ c′+. By the Margulis lemma, the ε2-thin
collars about those curves are disjoint from the ε2-thin cusp neighborhood Q(p).
Thus, since c+ and c′+ are sufficiently thin, and the width of a collar is twice the
radius, equation (9.1) implies that �(b+) > �(α+). Therefore a+ = α+, the unique
shortest arc from p to p.

By the same argument, a− is the unique short arc on ∂− core(N). �

We can now complete the proof of Theorem 1.9, which we restate.

THEOREM 1.9. Let Σ and S be surfaces with one puncture, and f : Σ→ S a
covering map of degree n. Let π : A(S)→A(Σ) be the lifting relation induced by
f . Then, for all a,b ∈A(0)(S), we have

d(a,b)

4050nχ(S)6 −2 < d(α,β) ≤ d(a,b)

where α ∈ π(a) and β ∈ π(b).

Proof. Recall that by Definition 1.8, π(a) is the set of n vertices in A(Σ)
representing arcs that project to a. These vertices form a simplex in A(Σ), since
the arcs that comprise f−1(a) are disjoint. Similarly, if a and a′ are distance 1 in
A(S), then all the 2n lifts of a and a′ are disjoint in Σ, hence every vertex α∈ π(a)
is distance 1 inA(Σ) from every vertex α′ ∈ π(a′). Thus, by induction on distance,
we have

d(α,β) ≤ d(a,b)

for any α ∈ π(a) and any β ∈ π(b).
To prove the other inequality in Theorem 1.9, assume the cover is non-trivial:

that is, n> 1. Fix a,b∈A(0)(Σ). By Lemma 9.2, there is a quasi-Fuchsian manifold
M ∼=S×R, such that a is the unique shortest arc on ∂− core(M) and b is the unique
shortest arc on ∂+ core(M).

Since S has a unique puncture p, we have A(S) = A(S,p). Let C ⊂M be
the maximal horospherical cusp corresponding to this unique puncture. By Defini-
tion 1.6, dA(M,p) = d(a,b). Thus, by the lower bound of Theorem 1.7,

d(a,b)

450χ(S)4 −
1

23χ(S)2 < area(∂C ∩ core(M)).(9.2)

Use the n-fold covering map f : Σ→ S to lift the hyperbolic metric on M ∼=
S×R to a quasi-Fuchsian structure on N ∼= Σ×R. The convex core of N covers
the convex core of M . The horocusp C ⊂M lifts to a horocusp D ⊂N , which is
an n-sheeted cover of C . Thus

n · area(∂C ∩ core(M)) = area(∂D∩ core(N)).(9.3)
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Observe that every arc c ∈ ∂+ core(M) lifts to n disjoint arcs in ∂+ core(N),
each of which has the same length as c (outside the horocusps C and D, re-
spectively). Thus the n arcs of π(b) are shortest on ∂+ core(N), and similarly
the n arcs of π(a) are shortest on ∂− core(N). By Definition 1.6, this implies
dA(N,p)≤ d(α,β) for any α∈ π(a) and any β ∈ π(b). Therefore, the upper bound
of Theorem 1.7 implies

area(∂D∩ core(N))< 9χ(Σ)2 d(α,β)+
∣∣∣12χ(Σ) ln |χ(Σ)|+26χ(Σ)

∣∣∣.(9.4)

Combining equations (9.2), (9.3) and (9.4), we obtain

n ·d(a,b)
450χ(S)4 −

n

23χ(S)2 < 9χ(Σ)2 d(α,β)+
∣∣∣12χ(Σ) ln |χ(Σ)|+26χ(Σ)

∣∣∣,
which can be rearranged, using χ(Σ) = nχ(S), to give

d(a,b)

4050nχ(S)6 −
1

23 ·9nχ(S)4 −

∣∣∣12χ(Σ) ln |χ(Σ)|+26χ(Σ)
∣∣∣

9χ(Σ)2 < d(α,β).

Since Σ is a once-punctured surface that non-trivially covers S, it has Euler charac-
teristic |χ(Σ)| ≥ 3. It follows that the additive error on the left-hand side is bounded
above by 2. This completes the proof. �

Appendix A. Approximating the convex core boundary. The goal of this
appendix is to write down a proof of the following result, which is needed in the
argument of Section 8.

THEOREM A.1. Let N ∼=F ×R be a cusped quasi-Fuchsian 3-manifold. Then
there is a sequence τi of ideal triangulations of F , such that the induced hyperbolic
metrics on the pleated surfaces Fτi converge in the Teichmüller space T (F ) to
the hyperbolic metric on the lower core boundary ∂− core(N). Furthermore, the
pleating maps for the Fτi converge in the compact-open topology to a pleating map
for ∂− core(N).

The same statement holds for the upper core boundary ∂+ core(N).

The statement of Theorem A.1 is entirely unsurprising, and morally it should fit
into the toolbox of well-known results about laminations and pleated surfaces [14,
Chapters 4 and 5]. Indeed, the standard toolbox of Kleinian group theory leads to
a relatively quick proof of the theorem. However, this short proof is also somewhat
technical, as it requires passing between several different topologies on spaces of
laminations and pleated surfaces.

The main reference for the following argument is Canary, Epstein, and
Green [14]. See also Thurston [37, 39], Bonahon [6], and Ohshika [31].



352 D. FUTER AND S. SCHLEIMER

Definition A.2. Let S be a punctured hyperbolic surface of finite area. Let
GL(S) denote the set of geodesic laminations on S: that is, laminations where each
leaf is a geodesic. We equip GL(S) with the Chabauty topology. In this topology,
a sequence {Li} converges to L ∈ GL(S) if and only if:

(1) If a subsequence xni ∈ Lni converges to x ∈ S, then x ∈ L.
(2) For all x ∈ L, there exists a sequence xi ∈ Li, such that xi→ x.

The Chabauty topology is metrizable [14, Proposition 3.1.2]. In fact, when re-
stricted to compact laminations, the Chabauty topology reduces to be the Haus-
dorff topology (induced by the Hausdorff distance between compact sets). See [14,
Section 3.1] for more details.

Definition A.2 makes use of a hyperbolic metric on S, but in an inessential
way. If we modify a metric d to a new hyperbolic metric d′, each lamination L ∈
GL(S) that is geodesic in d can be straightened to a geodesic lamination of d′. This
straightening does not affect convergence of laminations. Thus the space GL(S)
only depends on the topology of S.

We use the term curve to denote a simple closed geodesic in S. The following
lemma is a good example of convergence in the Chabauty topology.

LEMMA A.3. For every curve α ⊂ S, there is a sequence of ideal triangula-
tions τi, converging in the Chabauty topology to a lamination α′ ⊃ α.

Proof. Fix any ideal triangulation τ . Let D = Dα be a Dehn twist about α.
Then τi =Di(τ) converges to the desired α′. �

Definition A.4. Let S be a punctured hyperbolic surface of finite area. Then
ML(S) denotes the space of compact, transversely measured laminations. Every
point ofML(S) is a pair (L,μ) where L is a compact geodesic lamination and μ

is a transverse measure of full support. That is, for each arc α intersecting L trans-
versely, μ(α) is a positive number that stays invariant under an isotopy preserving
the leaves of L. The natural topology onML(S) is called the measure topology.

Let PML(S) denote the projectivization ofML(S), in which nonzero mea-
sures that differ by scaling become identified. The measure topology on ML(S)
descends to PML(S).

If L is a disjoint union of arcs and closed curves in S, an example of a trans-
verse measure is the counting measure, where μ(α) = |α∩L|. For another ex-
ample, suppose that S = ∂+ core(N) is the upper boundary of the convex core in a
quasi-Fuchsian 3-manifold. Then the pleating lamination L has a bending measure,
where μ(α) is the integral of the bending of α as it crosses leaves of L.

The measure-forgetting map PML(S)→GL(S) is not continuous, but it has
the following convenient property.

Fact A.5. Suppose that (Li,μi)→ (L,μ) ∈ PML(S), in the measure topol-
ogy. Then, after passing to a subsequence, there is a lamination L′ ∈ GL(S) so that
L⊂ L′ and Li→ L′ in the Chabauty topology.
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With these facts in hand, we can prove Theorem A.1. The proof contains two
steps, the first of which deals with laminations only.

LEMMA A.6. Let L ∈ GL(S) be a measurable lamination. Then there is a
sequence of ideal triangulations τi converging in the Chabauty topology to a lam-
ination L′′ ⊃ L.

Proof. Pick μ, a measure of full support on L, so that (L,μ) ∈ PML(S).
Thurston proved that curves, equipped with the counting measure, are dense in

PML(S) [6, Proposition 15]. Thus we may pick a sequence of curves {αi} con-
verging to (L,μ) in the measure topology. By Fact A.5, we may pass to a subse-
quence and reindex so that αi converges, in the Chabauty topology, to a lamination
L′ containing L.

By Lemma A.3, we may choose {τi,j}, a sequence of sequences of ideal trian-
gulations, so that for all i

τi,j → α′i ⊃ αi as j→ ∞.

Now, choose an increasing function j : N→ N, so that for all i, τi,j(i) and α′i have
distance at most 1/i, in the metric that induces the Chabauty topology.

Claim. The sequence τi,j(i) contains a subsequence converging to L′′ ⊃ L′.

Proof of claim. As GL(S) is compact [14, Proposition 4.1.6], the sequence
τi,j(i) contains a convergent subsequence. In an abuse of notation, denote this con-
vergent subsequence by τi = τi,j(i). Let L′′ be the limit of the τi. Note that L′′ is
not compact.

Recall that the Chabauty distance between τi and α′i is at most 1/i. Thus the
sequence α′i has the same limit as τi, namely L′′. Since αi ⊂ α′i, it follows by [14,
Lemma 4.1.8] that the limit of αi must be contained in the limit of α′i. That is,
L′ ⊂ L′′, as desired. �

Since L⊂ L′, Lemma A.6 is proven. �

The second step of the argument connects the above discussion of laminations
to pleated surfaces. Following Definition 2.2, we call a lamination L ∈ GL(S)
realizable if it is realized by a pleating map f : S→N homotopic to a prescribed
map f0.

LEMMA A.7. Let N ∼= S×R be a cusped quasi-Fuchsian 3-manifold, and fix
an embedding f0 : S → S ×{0}. Let Li ∈ GL(S) be a sequence of laminations
on S, which are realizable by pleating maps homotopic to f0. Then, if Li→ L′ in
the Chabauty topology, and L ⊂ L′ is also realizable, the hyperbolic metrics di
induced by pleating along Li converge in T (S) to the hyperbolic metric d induced
by pleating along L.
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In fact, the pleating maps fi : S→N converge to the pleating map f : S→N

that realizes L, in the space MPS(S,N) of marked pleated surfaces homotopic
to f0.

We refer the reader to [14, Definition 5.2.14] for the full definition of
MPS(S,N). It suffices to note that convergence in MPS(S,N) involves
both convergence of metrics in T (S) and convergence of pleating maps in the
compact-open topology.

Proof of Lemma A.7. Let C be an embedded neighborhood of the cusps of N .
Then K := core(N)�C is a compact set, and every pleated surface homotopic to
f0 must intersect K.

With this notation, [14, Theorem 5.2.18] implies that the spaceMPS(S,N) =

MPS(S,K) of marked pleated surfaces that intersect K is compact. In particular,
the pleating maps fi : S→N , which pleat along lamination Li, have a convergent
subsequence, fni → f∞. Let L∞ be the pleating lamination of f∞.

Now, recall that Li→L′ in the Chabauty topology, and L⊂L′ is realizable by
a pleating map f : S → N homotopic to f0. Since every component of f(S�L)

is totally geodesic in N , the leaves of L′�L are mapped into these totally geo-
desic regions, hence L′ is realized by the same map f . In this setting, Ohshika [31,
Lemma 1.3] notes that f∞ = f is the same pleating map that realizes the limiting
lamination L′.

Therefore, every convergent subsequence of fi must limit to the same map
f∞ = f that realizes the lamination L. SinceMPS(S,K) is compact, this means
that fi → f in the topology on MPS(S,K). This means that fi → f in the
compact-open topology, and also that the hyperbolic metrics di induced by fi
converge in T (S) to the hyperbolic metric d induced by f . �

Proof of Theorem A.1. Let N ∼=F×R be a cusped quasi-Fuchsian 3-manifold,
as in the statement of the theorem. Let L be the pleating lamination on the lower
core boundary ∂− core(N). The bending measure μ on ∂− core(N) is a transverse
measure of full support, so L is a measurable lamination. By Lemma A.6, there
is a sequence of ideal triangulations τi → L′ in the Chabauty topology, where
L ⊂ L′. Now, by Lemma A.7, the pleating maps fi : F → N that pleat along τi
induce hyperbolic metrics on F that converge in T (F ) to the induced metric on
∂− core(N). By the definition ofMPS(S,N), these pleating maps also converge
in the compact–open topology to a pleating map for ∂− core(N). �

Appendix B. A lemma in point-set topology. Let X be a topological
space, and let S be a cover of X by closed sets. Define a discrete walk of length k

through sets of S to be a sequence of points x0,x1, . . . ,xk, such that x0,x1 ∈ S1,
x1,x2 ∈ S2, and so on, for sets S1, . . . ,Sk that belong to S . We say this sequence is
a walk from x0 to xk.
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The following observation is needed in the proof of Lemma 7.4.

LEMMA B.1. Let X be a connected topological space, and let S1, . . . ,Sn be
closed sets whose union is X. Then, for any pair of points x,y ∈ X, there is a
discrete walk from x to y through sets in the collection {S1, . . . ,Sn}.

Proof. Define an equivalence relation ≡ on X, where

x≡ y⇐⇒ there exists a discrete walk from x to y through {S1, . . . ,Sn}.
Reversing and concatenating walks proves this is an equivalence relation. Further-
more, each closed set Si must be entirely contained in an equivalence class, be-
cause its points are connected by a walk of length 1. Thus each equivalence class
is closed. Since the connected space X cannot be expressed as a disjoint union of
finitely many closed sets, all of X must be in the same equivalence class. �
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