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Abstract. A Heegaard splitting of a closed, orientable three-manifold satis-

fies the Disjoint Annulus Property if each handlebody contains an essential

annulus and these are disjoint. This paper proves that, for a fixed three-

manifold, all but finitely many splittings have the disjoint annulus property.

As a corollary, all but finitely many splittings have distance three or less, as

defined by Hempel.

1. History and overview

Great effort has been spent on the classification problem for Heegaard splittings
of three-manifolds. Haken’s lemma [2], that all splittings of a reducible manifold are
themselves reducible, could be considered one of the first results in this direction.
Weak reducibility was introduced by Casson and Gordon [1] as a generalization
of reducibility. They concluded that a weakly reducible splitting is either itself
reducible or the manifold in question contains an incompressible surface. Thomp-
son [16] later defined the disjoint curve property as a further generalization of weak
reducibility. She deduced that all splittings of a toroidal three-manifold have the
disjoint curve property.
Hempel [5] generalized these ideas to obtain the distance of a splitting, defined

in terms of the curve complex. He then adapted an argument of Kobayashi [9]
to produce examples of splittings of arbitrarily large distance. Hartshorn [3], also
following the ideas of [9], proved that Hempel’s distance is bounded by twice the
genus of any incompressible surface embedded in the given manifold.
Here we introduce the twin annulus property (TAP) for Heegaard splittings as

well as the weaker notion of the disjoint annulus property (DAP). As discussed
below, a splitting has the disjoint annulus property if each handlebody contains an
essential annulus and these are disjoint. The TAP is essentially found in [16] while
the DAP arises naturally in Kobayashi’s discussion of the strong rectangle condition
in [8].
Next, we apply the ideas of strong irreducibility and normal surface theory as

in [15] and [12]. This gives Theorem 6.3: every splitting in M , of sufficiently
large genus, satisfies the DAP. We next need Jaco and Rubinstein’s solution to the
Waldhausen conjecture: If M is closed, orientable, and atoroidal then there are
only finitely many strongly irreducible splittings, up to isotopy, in each genus. This
yields:

Theorem 6.5. In any closed orientable three-manifold there are only finitely many

Heegaard splittings, up to isotopy, which do not satisfy the disjoint annulus property.
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As a corollary there are only finitely many splittings, up to isotopy in the given
manifold, which have distance greater than three in the sense of [5]. This result is
not sharp, as shown by the Casson-Gordon-Parris examples:

Fact. There is a closed Haken three-manifold containing infinitely many, pairwise
non-isotopic, distance two splittings. (See [3].)

I thank Kevin Hartshorn and David Bachman for many valuable conversations
in which the main question of the paper was formulated. I also thank Yoav Moriah
for his valuble comments on an early version of this paper. I owe a further debt
of gratitude to Andrew Casson for his insightful comments, gentle encouragement,
and great patience.

2. Heegaard splittings and the DAP

This section recalls standard notation and reviews several notions from the the-
ory of Heegaard splttings. (For an excellent survey of the subject, see [13].) Also,
the twin and disjoint annulus properties are introduced.
In this paper, M will be used to denote a closed, orientable three-manifold. A

handlebody is a compact three-manifold which is homeomorphic to a closed regular
neighborhood of a finite, connected graph embedded in R3. A Heegaard splitting

(or simply a splitting), H ⊂ M , is a closed, embedded, orientable surface with
complement a disjoint pair of handlebodies, V and W . The genus of the splitting
is the genus of H, g(H) = 1−χ(V ). A properly embedded disk D ⊂ V is essential
if ∂D is essential inside H = ∂V . Recall that a splitting H is reducible if there are
essential disks, D ⊂ V and E ⊂W , such that ∂D = ∂E.
A strict parallel can now be drawn, using annuli instead of disks.

Definition. A properly embedded annulus A ⊂ V is essential if A is incompressible
and not boundary parallel.

Thus ∂A = ∂+A ∪ ∂−A is essential in H. An analogue of reducibility is the
following:

Definition. A Heegaard splitting has the twin annulus property if there are essen-
tial annuli, A ⊂ V and B ⊂W , such that ∂+A = ∂−B while ∂−A ∩ ∂+B = ∅.

Remark 2.1. Suppose that H ⊂M has the TAP. Boundary-compressing the given
annuli reveals that H also satisfies Thompson’s disjoint curve property, as defined
in [16]. Both notions are essentially equivalent to the splitting having distance two
or less, in the sense of [5].

Returning to essential disks [1] gives the following fruitful notion:

Definition. A splitting H ⊂ M is weakly reducible if there are essential disks,
D ⊂ V and E ⊂ W , such that ∂D ∩ ∂E = ∅. If H is not weakly reducible then it
is strongly irreducible.

The appendix then proves:

Lemma 8.3. If H is weakly reducible then H satisfies the twin annulus property.

We will also require the following lemma, essentially due to Kobayashi [8]:

Lemma 2.2. If M is toroidal then every strongly irreducible splitting H ⊂M has

the twin annulus property.

There is an analogue of weak reducibility for annuli:



THE DISJOINT ANNULUS PROPERTY 3

PSfrag replacements ReducibleReducible Weakly
TAP

DAP

d(H) ≤ 2

d(H) ≤ 3

Figure 1. Implications

Figure 2. Normal disks

Definition. A Heegaard splitting has the disjoint annulus property if there are
essential annuli, A ⊂ V and B ⊂W , such that ∂A ∩ ∂B = ∅.

Note that if H ⊂ M has the TAP then H also has the DAP, by pushing ∂+A,
in H, to be disjoint from and parallel to ∂−B.

Remark 2.3. If H ⊂ M satisfies the DAP then H has distance three or less, in
the sense of [5]. To see this, note that an essential annulus boundary-compresses to
give a disjoint essential disk. See Figure 1 for a diagram of the relations between
these various properties of Heegaard splittings.

3. Normal surface theory and blocks

This section presents the few necessary tools from normal surface theory. For a
more complete treatment consult [7] or [4].
Fix a triangulation, T , of N , a compact three-manifold. Denote the i-skeleton

of T by T i. A surface S, properly embedded in N , is normal if S is transverse to
the skelata of T and intersects each tetrahedron in a collection of normal disks. See
Figure 2 for pictures of the two kinds of normal disks; the normal triangle and the
normal quadrilateral.
A surface S, properly embedded in N , is almost normal if S is transverse to the

skelata of T and intersects each tetrahedron but one in a collection of normal disks.
In the remaining tetrahedron S yields a collection of normal disks and at most one
almost normal piece. Two of the five kinds of almost normal pieces are shown in
Figure 3.



4 SAUL SCHLEIMER

Figure 3. Almost normal pieces

Suppose now that N = τ is a single tetrahedron. Let S ⊂ τ be a disjoint
collection of normal disks together with at most one almost normal piece.

Definition. A block, B, is the closure of a connected component of τrS. Suppose
B is adjacent to exactly two normal disks, D and E. Suppose also thatD is properly
isotopic, in τ , to E relative to the vertices of τ . Then B is a product block. All
other blocks are called core blocks.

See Figure 4 for pictures of the two product blocks and six of the many possible
core blocks. In the figures I have shaded some of the faces — these are the faces
which lie in the surface S.

4. Blocked and shrunken submanifolds

This section deals with the submanifolds of a triangulated three-manifold natu-
rally contained in unions of blocks. Let (M,T ) be a closed, orientable, triangulated
three-manifold.

Definition. A three-dimensional submanifold X ⊂ (M,T ) is blocked if ∂X is an
almost normal surface and X is a union of blocks.

As a specific example, if H ⊂ (M,T ) is connected, separating, normal surface
then the closure of a component of MrH is a blocked submanifold.

Remark 4.1. Note that a blocked submanifold contains at most 6|T 3| + 2 core
blocks, where |T 3| is the number of tetrahedra in T . To see this, note that a
tetrahedron contains at most five parallel families of normal disks. Thus tetrahedra
not meeting an almost normal piece contribute at most six core blocks. The almost
normal piece (if it exists) gives the final pair of core blocks.

Definition. Let X ⊂ (M,T ) be blocked. A three-dimensional submanifold Y ⊂ X

is shrunken if there is a union of blocks Y ⊂ X, with

Y = Yrη(fr(Y )r∂X).
Here η(·) denotes a regular open neighborhood taken inside of M . Thus the

shrunken Y is obtained by removing a neighborhood of Y ’s frontier, taken inside
of X. (That is, by shrinking Y .) Note that Y uniquely determines Y as well as the
reverse.
Let ∂hY = Y ∩ ∂X denote the horizontal boundary of Y . Also, the vertical

boundary of Y , ∂vY , equals the closure of ∂Yr∂X. This terminology is prompted
by the fact that if Y is a union of product blocks then Y forms an I-bundle over a
surface. Below, | · | denotes the number of components of a topological space.
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The product blocks

A few core blocks

Figure 4. Some of the possible blocks

Definition. If Y is a shrunken submanifold then define the complexity of Y :

c(Y ) = χ(Y ) + |∂vY |.

This in an exact parallel of the complexity of a compact surface G, c(G) =
χ(G) + |∂G|. If Y is in fact an I-bundle then c(Y ) agrees with the complexity of
Y ’s base surface. A more delicate measure of complexity, c′(·), is also required:
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Definition. Let Y be a shrunken submanifold which is an I-bundle. Then Ŷ , the
large part of Y , equals the union of all components Z ⊂ Y which have c(Z) ≤ 0.

Now define c′(Y ) = c(Ŷ ).

If Y = Ŷ then we say that Y is large. Again, this parallels the notation for
surfaces: A compact surface G is large if no component of G has positive complexity.
Note that, if Y is a shrunken submanifold which is an I-bundle, then c′(Y ) ≤ c(Y ).
We end this section with a discussion of how to obtain new shrunken subman-

ifolds from old. Let Y be a shrunken submanifold of the blocked X. Let B ⊂ X

be a block which meets the interior of Y . Then Yrη(B) is again a shrunken sub-
manifold inside of X. The following lemma records how the complexity of Yrη(B)
differs from that of Y :

Lemma 4.2. There is a positive integer a1 independent of (M,T ), X, Y , and B

such that

c(Yrη(B)) ≤ c(Y ) + a1.

Proof. There are only finitely many combinatorial types of block. Hence χ(Y ) and
|∂vY | can only increase by a bounded amount. ¤

Remark 4.3. In fact, the change in complexity can be controlled by twice the
number of vertical faces of the block B. By listing all possible blocks one finds an
easy upper bound, a1 ≤ 16. However, we will not prove this as it is not required in
the sequel.

5. Shelling high genus splittings

This section deals with the main objects of interest: almost normal Heegaard
splittings. Here [15] serves as a reference. A pair of blocked handlebodies and a
sequence of shrunken submanifolds will now be derived from each such splitting.
Fix (M,T ) a closed, orientable, triangulated three-manifold. Suppose that H ⊂

M is an almost normal Heegaard splitting. Then H divides M into two blocked
handlebodies, V and W . Label the blocks of V and W inductively: In the first step
all core blocks are labeled zero. During the (i+ 1)th step every unlabeled product
block receives the label i if and only if it is adjacent, across H, to a block labeled
i− 1.

Definition. Suppose V andW are labeled as above. Obtain Vi by shrinking Vi, the
union of all blocks inside of V with label at least i. The shelling of V is the sequence
of submanifolds, {V0, V1, V2, . . . Vn}. The shelling of W is defined symmetrically.

If i is greater than zero Vi is a I-bundle. Thus, when i > 0, the vertical boundary
of Vi is a collection of annuli properly embedded in the handlebody V .
Several remarks are in order.

Remark 5.1. As M is orientable, all I-bundles considered are orientable.

Remark 5.2. If i < j then Vi ⊃ Vj . Thus c
′(Vi) ≤ c′(Vj). This follows directly

from Lemma 8.5 applied to the base surfaces of Vi and Vj .

Remark 5.3. If Y and Z are large, connected I-bundles with a component of ∂hY

contained in ∂hZ then

c(Z) ≤
1

2
c(Y ).

Again, this follows from Lemma 8.5 applied to the relevant components of ∂hY and
∂hZ.
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Remark 5.4. As V0 equals V so c(V0) = 1− g(H), where g(H) is the genus of H.
By Remark 4.1 and Lemma 4.2 we have c(V1) ≤ 1− g(H) + a1 · (6|T

3|+ 2). Here
a1 is the constant provided by Lemma 4.2 and |T

3| is the number of tetrahedra in
the triangulation T .

Remark 5.5. Suppose that i > 0. If a tetrahedron τ meets the almost normal
piece then τ contains at most six families of parallel product blocks. If not, then τ
contains at most five such families. Each family contains at most two blocks labeled
i. Thus, when i > 0 the I-bundle Vi+1 is obtained by removing at most 10 · |T

3|+2
blocks from Vi. By Lemma 4.2 we have

c(Vi+1) ≤ c(Vi) + 12a1|T
3|.

6. High genus implies the DAP

Enough tools are now at hand to prove the main technical proposition:

Proposition 6.1. If (M,T ) is a closed, orientable, triangulated three-manifold and
H ⊂M is an almost normal Heegaard splitting of genus g(H) > 496(a1|T

3|)2 then
H satisfies the disjoint annulus property.

Proof. As H is almost normal the handlebodies V andW are blocked submanifolds
of M . We will first find an essential annulus A ⊂ V .
As in Section 5 obtain shellings of V and W , {Vi} and {Wi}. Now, c(V0) =

c(V ) ≤ −496(a1|T
3|)2. The I-bundle V1 contains at most (6|T

3|+2)a1 components.
It follows that some component, Y1 ⊂ V1, has

c(Y1) ≤
c(V1)

(6|T 3|+ 2)a1

≤ −62a1|T
3|+ 1.

Define Yi = ̂(Vi ∩ Y1) to be the large part of Vi ∩ Y1. Let k > 1 be the small-
est integer such that c(Yk) > c(Y1). The I-bundle Yk is nonempty, as c(Yk) ≤
−50a1|T

3|+1. Push each component of ∂vYk slightly into Yk. Denote the resulting
collection of annuli by A = {Aj}

m
j=1.

Claim. Some annulus A ∈ A is essential in V .

Proceed by via contradiction: Suppose every Aj ∈ A is inessential. Deduce from
Lemmata 8.6 and 8.7 that each Aj separates Y1 into two pieces, one of which has
complexity equal to 2. Then the entire collection A cuts Y1 into m+ 1 pieces. Of
these exactly one has complexity not equal to 2. We deduce that Yk is connected
and has c(Yk) = c(Y1). This contradicts our choice of k and proves the claim.
We must now find a disjoint essential annulus B ⊂W . As the horizontal bound-

ary of Yk is contained in ∂hVk and Yk is large we have ∂hYk ⊂ ∂hŴk−1. It follows

that c(Ŵk−1) ≤
1

2
c(Yk). Thus c(Ŵk−1) ≤ −25a1|T

3|+ 1

2
and c(Ŵk+1) ≤ −a1|T

3| <

0. Deduce that Ŵk+1 contains a properly embedded, nonseparating, vertical annu-
lus, B. By Lemma 8.6 the annulus B must be essential in W .
Finally, note that B ⊂Wk+1 while A is properly isotopic into the vertical bound-

ary of Yk ⊂ Vk. Thus A and B, after a small proper isotopy of A, are disjoint. We
conclude that H satisfies the disjoint annulus property. ¤

Proposition 6.1 is cast into the realm of general splittings using:

Theorem 6.2 (Rubinstein [12], Stocking [15]). If H ⊂ (M,T ) is a strongly irre-

ducible Heegaard splitting then H is isotopic to an almost normal surface.
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We now deduce:

Theorem 6.3. Fix M , a closed, orientable three-manifold. There is a constant

a2(M) such that if H ⊂ M is a Heegaard splitting, with g(H) > a2(M), then H

satisfies the disjoint annulus property.

Proof. Let T be a minimal triangulation of M and take a2(M) = 496(a1|T
3|)2. If

H is strongly irreducible then, by Theorem 6.2, we may isotope H to be almost
normal with respect to T . Thus H has the DAP by Proposition 6.1. On the other
hand, if H is weakly reducible then H satisfies the DAP by Lemma 8.3. ¤

Finally, we require Jaco and Rubinstein’s solution to the Waldhausen Conjecture:

Theorem 6.4 (Jaco, Rubinstein [6]). Fix M , a closed, orientable, atoroidal three-

manifold. Then, for every g ∈ N, there are only finitely many isotopy classes of

strongly irreducible Heegaard splittings of genus g.

From this follows:

Theorem 6.5. In any closed orientable three-manifold there are only finitely many

Heegaard splittings, up to isotopy, which do not satisfy the disjoint annulus property.

Proof. Wemay restrict attention to strongly irreducible splittings with genus greater
than one by applying Lemma 8.3 and the classification of splittings of lens spaces.
If M is toroidal then, by Lemma 2.2, every strongly irreducible splitting H ⊂

M has the twin annulus property. Hence all splittings have the disjoint annulus
property.
If M is atoroidal then, by Theorem 6.4, there are only finitely many strongly

irreducible splittings (up to isotopy) with genus below a2(M). All splittings with
higher genus have the DAP by Theorem 6.3. ¤

7. Conjecture

Our results could be strengthened in several ways.

Question. Suppose that H is a Heegaard splitting of M . Is there a integer a3(M)
such that g(H) > a3(M) implies that H satisfies the twin annulus property?

To my great embarrassment an affirmative answer is incorrectly claimed in my
thesis [14]. However, the question seems to be difficult. Gaining this point would
partially close the gap between our results and the Casson-Gordon-Parris examples
mentioned in Section 1. Even more ambitious is the following:

Question. Do high distance Heegaard splittings always have minimal genus?

We end with a question first asked by Eric Sedgwick:

Question. Does there exist a non-Haken manifold with infinitely many non-isotopic,
strongly irreducible Heegaard splittings?

8. Appendix

8.1. Curves and Annuli. Here the focus lies in proving that reducible and weakly
reducible splittings have the twin annulus property. Recall that a simple closed
curve γ, in the boundary of a handlebody, is disk-busting if γ meets the boundary
of every essential disk.

Lemma 8.1. Suppose H ⊂M is a Heegaard splitting. Then there is a curve γ ⊂ H

which is disk-busting for both handlebodies, V and W .
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We mimic an argument of [5] and [9]. As a reference for PMF(H), the space of
projectively measured singular foliations on H, refer to [11].

Proof. If the genus of H, g(H), equals one then any essential curve which does not
bound a disk suffices. For the rest of the proof assume that g(H) ≥ 2.
Let V be the set of isotopy classes of curves which bound disks in V . Let V ′

be the closure of V as a subset of PMF(H). We rely on the following theorem
of Masur [10]: V ′ is nowhere dense in PMF(H). Thus there is an open set U ⊂
PMF(H) in the complement of V ′ ∪W ′.
Let λ be a minimal, uniquely ergodic foliation lying inside of U . That is, λ

contains no closed leaves and admits a projectively unique transverse measure.
(Minimal, uniquely ergodic foliations are dense; see [11].) Let βi ⊂ H be a sequence
of simple closed curves converging to λ in PMF(H).

Claim. There is a K ∈ N such that if i > K then βi is disk-busting for V .

As the same holds for W this will provide the conclusion of the lemma.
Suppose that infinitely many of the βi fail to be disk-busting for V . Reindex so

that all βi fail to be disk-busting. Choose a sequence αi ∈ V such that αi ∩ βi = ∅.
As PMF(H) is compact pass to a subsequence (and reindex) so that the αi

converge to a projectively measured singular foliation, µ. From the continuity of
intersection number as a function MF(H) ×MF(H) → R (see 1.11 of [11]) we
deduce

i(λ, µ) = 0.

Now, as λ is minimal it follows that µ is Whitehead equivalent to λ as topological
foliations (1.12 of [11]). But λ is also uniquely ergodic. Thus the measure on µ
is projectively equivalent to that of λ. So λ is the same point as µ in PMF(H).
That is, λ lies in V ′, a contradiction. ¤

We are now equipped to prove that reducible and weakly reducible splittings
satisfy the TAP.

Lemma 8.2. If H ⊂M is a reducible Heegaard splitting with genus g(H) > 1 then
H satisfies the twin annulus property.

Proof. Let D ⊂ V and E ⊂ W be essential disks with ∂D = ∂E. As g(H) > 1 we
may assume that D ∪ E is separating. Pick one component of Mr(D ∪ E). Let
M ′ be the closed manifold obtained by gluing shut the boundary S2 along the two
disks D and E. Let H ′ be the resulting splitting of M ′. Let C ⊂ H ′ be the image
of D.
Choose β ⊂ H ′ an essential simple closed curve which meets C in a single

arc. If g(H ′) = 1 then we require that the geometric intersection between β and
the meridional disk of V ′ (and W ′) is at least two points. If g(H ′) > 1 then by
Lemma 8.1 we may require that β is disk-busting for both V ′ and W ′.
Let N be a regular neighborhood of C ∪ β, taken in M ′. Then A′ = ∂N ∩ V ′

and B′ = ∂N ∩ V ′ are incompressible in V ′ and W ′, as β is disk-busting. Also, A′

and B′ are boundary parallel to exactly one side, by our choice of β.
Let A and B be the preimages of A′ and B′ inside V and W respectively. These

annuli are essential and, as ∂A = ∂B, it follows that H has the twin annulus
property. ¤
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Lemma 8.3. If H ⊂M is a weakly reducible Heegaard splitting with genus g(H) >
1 then H satisfies the twin annulus property.

Remark 8.4. In the proof we rely on Lemma 8.2 to deal with the reducible case.

Proof. Choose maximal families of disjoint, essential, nonparallel disks D ⊂ V and
E ⊂W such that ∂D∩∂E = ∅. AsH is connected there is a component ofHr(D∪E)
whose closure meets both D and E . Denote the closure of this component by G.
We claim that |∂G| = 2 and the interior of G is disjoint from D ∪ E . To see

this suppose that ∂G meets distinct disks D,D′ ∈ D. (The case where interior(G)
meets a disk is similar.) Let α be any embedded simple arc in G connecting D to
D′. Let N be a closed regular neighborhood of α ∪ D ∪ D′ taken in V . Then N
is a solid pair of pants with frontier properly isotopic to D ∪D′ ∪D′′. But D′′ is
essential and may be added to D. This contradicts the maximality of D.
If G is an annulus then H is reducible. Lemma 8.2 then implies that H satisfies

the TAP. Suppose now that G is not an annulus and suppose that D ∈ D and
E ∈ E meet ∂G.
Let α be a nonseparating simple closed curve in G. Let β and γ be disjoint simple

arcs in G connecting ∂D and ∂E, respectively, to opposite sides of α. Construct
a pair of annuli as follows: Let N(D) be a regular neighborhood, taken in V , of
α ∪ β ∪ D. Then N(D) is a solid torus with frontier properly isotopic to D ∪ A.
Here A is an annulus properly embedded in V . Similarly construct N(E) ⊂ W

with frontier properly isotopic to E ∪B.
Now, if A is nonseparating in V then it is not boundary parallel. If A is separating

then it separates ∂D from ∂E in H and again is not boundary parallel. The same
holds for B.
Finally, if A compresses in V then there is a compression which is disjoint from

D. It follows that α must bound a disk in V . But this implies that D was not
maximal, a contradiction. Deduce that A and B are essential annuli which, after
proper isotopy, share α ⊂ H as a common boundary component. ¤

8.2. Surfaces. Recall that the complexity of a compact surface G is defined to be
the quantity c(G) = χ(G) + |∂G|. This is the same as the Euler characteristic of
the surface obtained by capping off all boundary components of G by disks. The
lemma below essentially states that Euler characteristic increases when a surface is
compressed.

Lemma 8.5. Suppose that G and F are compact, connected surfaces with G ⊂ F .

Then c(F ) ≤ c(G).

Proof. If G = F then the statement is trivial. Assume then that ∂G 6= ∅ and that
G has been isotoped so that ∂G ∩ ∂F = ∅.
Let G′ =

⋃n
i=1

Gi = Frinterior(G), where each Gi is connected. It follows that
n ≤ |∂G| and that |∂G′| = |∂G| + |∂F |. As c(S) ≤ 2 for any compact, connected
surface S we have:

c(G′) =
∑

c(Gi) ≤ 2n ≤ 2|∂G|.

Omitting the middle yields:

χ(G′) + |∂G′| ≤ 2|∂G|.

Thus:

χ(G′) + |∂F | ≤ |∂G|.
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Now add χ(G) to both sides to obtain the desired inequality. ¤

8.3. I-Bundles. As a matter of terminology, a subset of an I-bundle is called
vertical if it is a union of fibres. The next pair of lemmata supply us with many
essential annuli inside of handlebodies.

Lemma 8.6. Let Y be an I-bundle embedded in a handlebody V such that ∂hY ⊂
∂V . Let A be a properly embedded vertical annulus of Y . Suppose that A is non-

separating inside of Y . Then A is an essential annulus in V .

Proof. AsA is nonseparating in Y , A is nonseparating in V . Thus A is not boundary
parallel. It is left to show that A is incompressible.
Pick B, a vertical annulus or Mobius band in Y , such that α = A∩B is a single

fibre. For a contradiction suppose that D ⊂ V is a compressing disk for A. As ∂D
is isotopic to the core curve of A, |α ∩ ∂D| is odd.
However, by general position, D∩B is a compact one-manifold with boundary α∩

∂D. But compact one-manifolds have an even number of points on their boundary.
Thus A is incompressible. ¤

Lemma 8.7. Let Y be an I-bundle embedded in a handlebody V such that ∂hY ⊂
∂V . Let A be a properly embedded vertical annulus of Y . Suppose that A separates

Y into components Z0 and Z1 with c(Z0), c(Z1) < 2. Then A is an essential annulus

in V .

Proof. As c(Z0) < 2 there is a vertical rectangle B properly embedded in Z0 such
that ∂vB ⊂ A and B does not separate Z0.
Suppose, for a contradiction, that D ⊂ V is a compressing disk for A. Assume

that a collar of ∂D, taken inside of D, lies in Z0. (The other case is handled
similarly.) Among all compressing disks for A, with collar in Z0, choose D to
minimize the quantity |D ∩ B| + |∂D ∩ B|. The next two paragraphs show that
D ∩B consists of a single arc.
Suppose γ is an innermost simple closed curve of D ∩ B inside of D. Thus γ

bounds disks E ⊂ D and C ⊂ B. The two-sphere E ∪ C bounds a ball in V , as
handlebodies are irreducible. An ambient isotopy of E across this ball pushes D to
a disk D′. The disk D′ compresses A, has a collar in Z0, has |∂D

′ ∩B| = |∂D∩B|,
and has |D′ ∩B| < |D ∩B|. However, this contradicts the minimality assumption.
Thus D ∩B contains no simple closed curves.
Suppose now that D intersects one component of ∂vB more than once. Recall

that ∂D is a core curve in A. Thus there are arcs α ⊂ ∂D, β ⊂ ∂vB such that
α∩ ∂vB = ∂β and α∪ β bounds a disk A′ ⊂ A. An ambient isotopy of α across A′

pushesD toD′. ThenD′ compresses A, has a collar in Z0, has |∂D
′∩B| < |∂D∩B|,

and has |D′ ∩B| ≤ |D ∩B|. Again, this is a contradiction. Thus D ∩B contains a
single arc, γ.
The arc γ cutsD into a pair of disks, E ′ and E′′. Likewise, ∂vB cuts A into a pair

of vertical rectangles, A′ and A′′. Relabeling if necessary we have interior(A′)∩E′′ =
∅. Thus A′ ∪B is a vertical annulus or Mobius band which is nonseparating in Y ,
because B was nonseparating in Z0.
Now, E′ is a compressing disk for A′ ∪B. So if A′ ∪B is an annulus we have a

contradiction of Lemma 8.6. If A′ ∪B is a Mobius band then E ′ shows that A′ ∪B
is two-sided. This contradicts the fact that V is orientable. It follows that A is
incompressible.
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Finally, suppose A is boundary parallel in V . Let C ⊂ ∂V be the annulus
cobounded by the two components of ∂A. Let R be the solid torus cobounded by
A∪C. Suppose that Z0 ⊂ R. (The other possibility is symmetric.) Thus ∂hZ0 ⊂ C.
If c(Z0) < 1 then ∂hZ0 is a nonplanar surface. But ∂hZ0 ⊂ C which is planar.

This is a contradiction.
Suppose instead that c(Z0) = 1. Thus Z0 contains a vertical Mobius band B.

So ∂hB ⊂ C. If ∂hB bounds a disk, D, in C then B ∪D is an RP2 embedded in V ,
which is impossible. Thus ∂hB is a core curve for C. Now choose E, a meridional
disk for the solid torus R, such that ∂E ∩ C = α is a single arc. Then |α ∩ B| is
even, as E ∩B is a one-manifold. However, |α ∩B| must be odd, as ∂hB is a core
curve for C.
This last contradiction establishes that A is not boundary parallel. Thus A is

essential. ¤
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