
AUTOMORPHISMS OF THE DISK COMPLEX

MUSTAFA KORKMAZ AND SAUL SCHLEIMER

Abstract. We show that the automorphism group of the disk
complex is isomorphic to the handlebody group. Using this, we
prove that the outer automorphism group of the handlebody group
is trivial.

1. Introduction

We show that the automorphism group of the disk complex is iso-
morphic to the handlebody group. Using this, we prove that the outer
automorphism group of the handlebody group is trivial. These results
and many of the details of the proof are inspired by Ivanov’s work [15]
on the mapping class group and the curve complex. We begin with a
review of the relevant story for surfaces.

1.1. Surfaces. Let S = Sg,n be the compact connected orientable
surface of genus g with n boundary components. We write S = Sg when
n = 0. Define e(S) = −χ(S) = 2g − 2 + n and define the complexity of
S to be ξ(S) = 3g − 3 + n.

Suppose α is a simple closed curve, properly embedded in S. We
say α is inessential if α cuts a disk off of S; otherwise α is essential.
We say α is peripheral if it cuts an annulus off of S; otherwise α is
non-peripheral. Note that essential curves may be peripheral.

Definition 1.2 (Harvey [10]). The curve complex C(S) is the simplicial
complex with vertex set being ambient isotopy classes of essential, non-
peripheral simple closed curves in S. The k–simplices are given by
collections of k + 1 vertices having pairwise disjoint representatives.

In the usual abuse of notation, we typically do not distinguish a curve
from its isotopy class. If K is a simplicial complex (as in [32, page 108])
then let Aut(K) be the group of simplicial automorphisms of K.

Definition 1.3. The mapping class group MCG(S) is the group of
homeomorphisms of S, up to isotopy. (Some authors refer to this as
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the extended mapping class group, as orientation reversing homeomor-
phisms are permitted.) There is a natural homomorphism MCG(S)→
Aut(C(S)); we call any element of the image a geometric automorphism.

We now state a foundational result.

Theorem 1.4 (Ivanov’s Theorem). If ξ(S) ≥ 3, or if (g, n) = (0, 5),
then all elements of Aut(C(Sg,n)) are geometric. �

This was first proved by Ivanov [15], for surfaces of genus at least two,
and was extended to lower genus by Korkmaz and by Luo [19, 22].

One application of Theorem 1.4 is a version of a theorem of Roy-
den [30]: for g ≥ 2 any complex analytic isometry from a domain of
Teichmüller space T (Sg), into T (Sg), is induced by a mapping class.
Note that Royden’s result was generalized by Earle and Kra to include
punctured surfaces [8].

Work following Ivanov includes proofs that the mapping class group
is the automorphism group of: the graph of ideal triangulations [20], the
pants graph [24], the Hatcher-Thurston graph [12], the arc complex [13],
the Torelli geometry [9], the complex of separating curves [5], the
complex of non-separating curves [11], the arc and curve complex [21],
and the duality graph [31]. These results align in a pleasing fashion
with Ivanov’s metaconjecture: “Every object naturally associated to a
surface S with sufficiently rich structure has MCG(S) as its group of
automorphisms.” [16, Problem 6].

Many of these proofs follow a common plan, as do our results; this is
laid out in Section 3. However, since we work with three-manifolds our
cut-and-paste arguments have an extra dimension; in the same line, our
theorems conclude with the mapping class group of a handlebody, not
of a surface. This does not contradict Ivanov’s metaconjecture; the disk
complex is naturally associated to a handlebody, not to its boundary.
Note that Aramayona and Souto [2] have a preprint showing that all
automorphisms of the sphere complex are geometric.

Ivanov [15] uses Theorem 1.4 to obtain a new proof of algebraic
rigidity of the mapping class group. This was first proven by Ivanov
and by McCarthy [15, 25] using other methods.

Theorem 1.5. Suppose that e(S) ≥ 3. Then the outer automorphism
group of the mapping class group MCG(S) is trivial. �

To prove such a result, one fixes attention on a subgroup of the
mapping class group, defines a suitable combinatorial complex and
then establishes combinatorial rigidity (as in Theorem 1.4). Algebraic
rigidity may then follow; such a plan is carried out in many of the
papers referenced above.
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1.6. Handlebodies. The rest of the paper is devoted to a parallel
development of Section 1.1, in the handlebody setting. Let V = Vg,n be
the genus g handlebody with n spots: a regular neighborhood of a finite,
polygonal, connected graph in R3 with n disjoint closed disks chosen
on the boundary. See Figure 1.7 for a picture of V2,2. We write V = Vg
when n = 0. Let ∂0V denote the union of the spots. We will assume
that all ambient isotopies of V fix ∂0V setwise. Let ∂+V be the closure
of ∂V − ∂0V . So ∂+V is homeomorphic to Sg,n. Define e(V ) = e(∂+V )
and ξ(V ) = ξ(∂+V ).

Figure 1.7. A genus two handlebody with two spots.

A properly embedded disk D ⊂ V , with ∂D ⊂ ∂+V , is essential or
non-peripheral exactly as its boundary is in ∂+V .

Definition 1.8 (McCullough [26]). The disk complex D(V ) is the
simplicial complex with vertex set being ambient isotopy classes of
essential, non-peripheral disks in V . The k–simplices are given by
collections of k + 1 vertices having pairwise disjoint representatives.

Again, we do not notationally distinguish a disk from its isotopy class.
Note that there is a natural simplicial injection D(V )→ C(∂+V ) taking
a disk to its boundary.

Definition 1.9. The handlebody group H(V ) is the group of homeo-
morphisms of V , fixing the spots setwise, up to ambient isotopy. We
call the image of the natural homomorphism H(V )→ Aut(D(V )) the
group of geometric automorphisms.

Note that there is also a natural monomorphismH(V )→MCG(∂+V )
which takes f ∈ H(V ) to f |∂+V .

Our main theorem is an analogue of Theorem 1.4.

Theorem 9.3. If a handlebody V = Vg,n satisfies e(V ) ≥ 3 then all
elements of Aut(D(V )) are geometric.
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The plan of the proof is given in Section 3. The proof itself is
completed in Section 9. Section 4 shows that Theorem 9.3 is sharp;
all handlebodies V with e(V ) ≤ 2 exhibit some kind of exceptional
behavior. Theorem 9.3 has the following consequence.

Theorem 9.4. If a handlebody V = Vg,n satisfies e(V ) ≥ 3 then the
natural map H(V )→ Aut(D(V )) is an isomorphism.

In Section 10 we use Theorem 9.3 to prove an analogue of Theorem 1.5.

Theorem 10.1. If e(V ) ≥ 3 then the outer automorphism group of the
handlebody group is trivial.

2. Background

The genus zero case of Theorem 1.4 is contained in the thesis of the
first author [19, Theorem 1].

Theorem 2.1. If g = 0 and n ≥ 5 then all elements of Aut(C(S0,n))
are geometric. �

Spotted balls are the simplest handlebodies. Accordingly:

Lemma 2.2. The natural maps D(V0,n) → C(S0,n) and H(V0,n) →
MCG(S0,n) are isomorphisms.

Proof. The three-manifold V0,n is an n–spotted ball. Every simple closed
curve in ∂+V bounds a disk in V . This proves that D(V0,n)→ C(S0,n)
is a surjection and thus, by the remark immediately after Definition 1.8,
an isomorphism.

It follows from the Alexander trick [1] that the map of mapping class
groups is an injection. SinceMCG(S0,n) is generated by half twists and
a reflection [3, Theorem 4.5] the inclusion is in fact surjective. �

The genus zero case of Theorem 9.3 is an immediate corollary. Higher
genus requires further preparation.

Suppose that V is a handlebody. Two disks D,E ∈ D(V ) are
topologically equivalent if there is a mapping class f ∈ H(V ) so that
f(D) = E. The topological type of D is its equivalence class in D(V ).

For any simplicial complex K and for any simplex σ ∈ K we define
link of σ to be the subcomplex

link(σ) = {τ ∈ K | σ ∩ τ = ∅, σ ∪ τ ∈ K}.
So if D is a simplex of D(V ) then link(D) is the subcomplex of D(V )
spanned by disks E disjoint from all and distinct from all D ∈ D.

If X ⊂ Y is a properly embedded submanifold then we write n(X)
and N(X) to denote open and closed regular neighborhoods of X in Y .
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If X is codimension zero then the frontier of X in Y is the closure of
∂X − ∂Y .

A simplex D ∈ D(V ) is a cut system if V − n(D) is a spotted ball.
Thus the number of vertices in D is exactly the genus of V . Note that
every disk of D yields two spots of V − n(D).

Recall that for simple curves α, β, properly embedded in S, the geo-
metric intersection number i(α, β) is the minimum possible intersection
number between ambient isotopy representatives.

Two disks D,E ∈ D(V ) are dual if i(∂D, ∂E) = 2. Equivalently, all
representatives of D meet E and, after a suitable ambient isotopy of
D, the disks D and E intersect along a single arc. Equivalently, after a
suitable ambient isotopy of D, a regular neighborhood of D ∪ E is a
four-spotted ball with all spots essential in V . (Note that the spots of
V0,4 may be peripheral in V .) See Figure 2.3.

Figure 2.3. Every spot of the V0,4 containing a pair of
dual disks is essential in V . The spots of V0,4 may be
peripheral.

If D = {Di} is a cut system then define duali(D) to be the subcomplex
spanned by the disks E ∈ D(V ) which are dual to Di and disjoint from
Dj for all j 6= i. Define dual(D) to be the subcomplex spanned by
∪i duali(D).

3. The plan of the proof of Theorem 9.3

Let V = Vg,n be a genus g handlebody with n spots. Suppose that
g ≥ 1 and e(V ) ≥ 3. Let φ be any automorphism of D(V ); so φ
preserves the combinatorics of D(V ). It follows that any topological
property of V admitting a combinatorial characterization is preserved
by φ. This observation is the driving force behind our proof. Applying
it, Lemma 5.1 proves that φ preserves the topological types of disks.
In addition, φ sends cut systems to cut systems (Lemma 5.10). Next
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Lemma 7.2 shows that φ preserves duality. Also, for any cut system
D = {Di}, the complex duali(D) is connected (Lemma 7.3).

Fix now a cut system D. Pick any geometric automorphism fcut so
that fcut(D) = φ(D), vertex-wise; fcut exists by Lemma 5.10. Define
φcut = f−1

cut ◦ φ. Thus

φcut|D = Id .

Let V ′ = V − n(D) =∼= V0,2g+n be the spotted ball obtained by
cutting V along a regular neighborhood of D. Let D±i be the two spots
of V ′ that are parallel to Di in V . Now, since φcut preserves link(D) ∼=
D(V ′), by Theorem 2.1 and Lemma 2.2 there is a homeomorphism
f : V ′ → V ′ so that the induced automorphism f ∈ Aut(D(V ′)) satisfies
f = φcut| link(D). Lemma 6.1 proves that for every i either f fixes
the spots D+

i and D−i or f interchanges the spots. Thus f can be
glued to give a homeomorphism flink : V → V as well as a geometric
automorphism flink ∈ Aut(D(V )). Define φlink = f−1

link ◦ φcut. Thus

φlink|D ∪ link(D) = Id .

Recall that φlink preserves duals by Lemma 7.2. For every Di ∈ D pick
some dual Ei ∈ duali(D). By Lemma 8.1 there is an integer mi ∈ Z so
that Tmi

i (Ei) = φlink(Ei), where Ti is the Dehn twist about Di. Define
fdual =

∏
Tmi
i and define φdual = f−1

dual ◦φlink. Letting E = {Ei} we have

φdual|D ∪ link(D) ∪ E = Id .

Recall that Lemma 7.3 proves that duali(D) is connected. Therefore,
a crawling argument, given in Lemma 8.2, proves that

φdual|D ∪ link(D) ∪ dual(D) = Id .

Wajnryb [33] proves that the cut system complex is connected. Thus
we may likewise crawl through D(V ) and prove (Section 9) that

φdual = Id

and so prove that

φ = fcut ◦ flink ◦ fdual.

Thus φ is geometric.

4. Small handlebodies

This section covers the handlebodies V with e(V ) ≤ 2. We start with
genus zero. If n ≤ 3 then D(V0,n) is empty. By Lemma 2.2 the mapping
class groups of V and ∂+V are equal. Thus

H(V0), H(V0,1) ∼= Z/2Z
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while
H(V0,2) ∼= K4 and H(V0,3) ∼= Z/2Z× Σ3.

Here K4 is the Klein four-group and Σ3 is the symmetric group on three
objects [29, Appendix A].

In genus zero with n = 4 the disk complex D is a countable collection
of vertices with no higher dimensional simplices. Thus Aut(D) = Σ∞
is uncountable. However, there are only countably many geometric
automorphisms. In fact, by Lemma 2.2, the mapping class groupH(V0,4)
is isomorphic to K4 o PGL(2,Z) [29, Appendix A].

For genus one, if n = 0 or 1 then D is a single point and Aut(D) is
trivial. On the other hand

H(V1), H(V1,1) ∼= Z oK4.

For V = V1,2 matters are more subtle. The subcomplex NonSep(V ) ⊂
D(V ), spanned by non-separating disks, is a copy of the Bass-Serre
tree for the meridian curve in S1,1 = ∂+V1,1 [18]. Thus NonSep(V ) is
a copy of T∞: the regular tree with countably infinite valance. Now,
if E ∈ D(V ) is separating then there is a unique disk D disjoint from
E; also, D is necessarily non-separating. It follows that D(V ) is a copy
of the tree NonSep(V ) with countably many leaves attached to every
vertex. Thus Aut(D) contains a copy of Aut(T∞) as well as countably
many copies of Σ∞; so Aut(D) is uncountable. As usual H(V ) is
countable; thus Aut(D) contains non-geometric elements. However,
Luo’s treatment of C(S) [22] suggests the following problem.

Problem 4.1. Suppose that V = V1,2. Let G be the subgroup of
Aut(D(V )) consisting of automorphisms preserving duality: if φ ∈ G
and D,E are dual then so are φ(D), φ(E). Is every element of G
geometric?

Note that this approach of recording duality is precisely correct for
the four-spotted ball; the complex where simplices record duality in V0,4

is the Farey tessellation, F , and every element of Aut(F) is geometric.
See [22, Section 3.2].

The last exceptional case is V = V2. Let NonSep(V ) be the subcom-
plex of D(V ) spanned by non-separating disks. Then NonSep(V ) is
an increasing union, as follows. Let N0 be a single triangle and form
Ni+1 by attaching (to every free edge of Ni) a countable collection of
triangles. The complex NonSep(V ) is the increasing union of the Ni.
A careful discussion of NonSep(V ) is given by Cho and McCullough [6,
Section 4]

We obtain D(V ) by attaching a countable collection of triangles
to every edge of NonSep(V ). To see this note that every separating
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disk E divides V into two copies of V1,1. These copies of V1,1 have
meridian disks, say D and D′. Thus link(E) is an edge and the triangle
{E,D,D′} has two free edges in D(V ), as indicated. Finally, there is a
countable collection of separating disks lying in V − (D ∪D′), again as
indicated.

It follows that Aut(D(V2)) is uncountable. Again, as in Problem 4.1,
we may ask: are all “duality-respecting” elements f ∈ Aut(D(V2))
geometric? We end this section with another open problem.

Problem 4.2. Suppose that V is a handlebody with e(V ) and genus
both sufficiently large. Show that Aut(NonSep(V )) = H(V ).

A solution to Problem 4.2 may lead to a simplified proof of Theo-
rem 10.1.

5. Topological types

The goal of this section is the following.

Lemma 5.1. For any handlebody V and for any φ ∈ Aut(D(V )) the
automorphism φ preserves topological types of disks.

Note that V1, V1,1 and V0,4 are the only handlebodies where D(V )
has dimension zero. (When D(V ) is empty its dimension is −1.) Fur-
thermore V1 and V1,1 are the only handlebodies where D(V ) is a single
point.

Definition 5.2. A simplicial complex K is flag when, in dimensions
two and higher, a simplex is present if its faces are. (Equivalently,
minimal non-faces have dimension one.) Note that the disk complex
D(V ) is flag.

We call V0,3, the three-spotted ball, a solid pair of pants. Thus
ξ(V ) = 3g − 3 + n is the number of disks in a pants decomposition
of V ; this is also the number of vertices of any maximal simplex in
D(V ). Note that e(V ) = 2g − 2 + n is the number of solid pants in
a pants decomposition. We will call V1,1 a solid handle. Suppose now
that E ⊂ V is a separating disk with V − n(E) = X ∪ Y . If X or Y is
a solid pants then we call E a pants disk. If X or Y is a solid handle
then we call E a handle disk.

Definition 5.3. If K and L are non-empty simplicial complexes with
disjoint vertex sets then their join is the complex

K ∗ L = K ∪ {σ ∪ τ | σ ∈ K, τ ∈ L} ∪ L.
For example, if E ⊂ V is an essential separating disk, yet not a pants
disk, then link(E) ⊂ D(V ) is a join.
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A flag complex decomposes uniquely as a join; here is a version of
that fact.

Lemma 5.4. Suppose that K, L are simplicial complexes, both flag,
non-empty, and not joins. Then K and L can be recovered from K ∗ L.

Proof. Let J = K ∗ L be given. Note that J is flag. Let G be the
graph on the vertex set J (0) of J , defined as follows. For any distinct
u, v ∈ J (0) we have {u, v} ∈ G if and only if {u, v} /∈ J .

Let u be a vertex of K. Let Gu ⊂ G be the connected component

containing u. By induction on distance from u in Gu deduce G(0)
u ⊂ K(0).

Define Ku to be the subcomplex of J spanned by the vertices of Gu. It
follows that Ku is a subcomplex of K.

Suppose, for a contradiction, that Ku 6= K. Let Ku be the subcomplex
of K spanned by vertices not in Ku. It follows that, in J and thus in
K, every vertex of Ku is connected to every vertex of Ku. Since K is
flag deduce that K = Ku ∗ Ku, a contradiction. �

The main hypothesis of Lemma 5.4 holds in our setting.

Lemma 5.5. For any handlebody V the complex D(V ) is not a join.

Proof. When e(V ) ≤ 2 this can be checked case-by-case, following
Section 4. The remaining handlebodies all admit disks D,E that fill:
every disk F meets at least one of D or E. It follows that any edge-path
in the one-skeleton D(1)(V ) connecting D to E has length at least three.
However, the diameter of the one-skeleton of a join is either one or
two. �

Here is our first combinatorial characterization of a family of disks.

Lemma 5.6. A disk E ∈ D(V ) is a separating disk yet not a pants
disk if and only if link(E) is a join. Furthermore, link(E) is uniquely
realized as a join, up to permuting the factors.

Proof. For the forward direction of the first claim, suppose that V −
n(E) = X ∪ Y , where neither X nor Y is a solid pants. Since E is
essential and non-peripheral D(X) and D(Y ) are both non-empty. Thus
link(E) = D(X) ∗ D(Y ) is a join.

On the other hand, if E is non-separating then link(E) is isomorphic
to D(Vg−1,n+2). If E is a pants disk then link(E) ∼= D(Vg,n−1). Neither
of these is a join by Lemma 5.5.

We now prove the second claim. The complexes D(X) and D(Y )
are flag, non-empty, and, by Lemma 5.5, not joins. It follows from
Lemma 5.4 that we may recover D(X) and D(Y ) from link(E). �
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The next three lemmas give combinatorial characterizations of handle
disks, non-separating disks, and pants disks. Recall that a cone is the
join of a point (the apex) with some non-empty simplicial complex (the
base).

Lemma 5.7. Suppose that V 6= V1,2. Then E ∈ D(V ) is a handle disk
if and only if link(E) is a cone.

Proof. Suppose that E cuts off a solid handle X with meridian D.
Let Y be the other component of V − n(E). Since V 6= V1,2 we have
that D(Y ) is non-empty; in particular E is not a pants disk. Thus
link(E) = D(X)∗D(Y ). As D(X) = {D} we are done with the forward
direction.

Now suppose that link(E) is a cone with apex D. Since a cone is the
join of the apex with the base, by Lemma 5.6 the disk E is separating but
not a pants disk. Let V −n(E) = X ∪Y . Thus link(E) = D(X)∗D(Y ).
However, by Lemma 5.6 the decomposition of link(E) is unique; breaking
symmetry we may assume that D(X) = {D}. Thus X is a solid handle
and we are done. �

Lemma 5.8. Suppose that V 6= V1,2. Then D ∈ D(V ) is non-separating
if and only if there is an E ∈ link(D) so that link(E) is a cone with
apex D. �

Thus being a separating disk is a combinatorial property; we use this
fact to characterize pants disks.

Lemma 5.9. Suppose that V 6= V1,2. Then E ∈ D(V ) is a pants disk
if and only if E is separating and link(E) is not a join. �

We now combinatorially characterize cut systems.

Lemma 5.10. Suppose that e(V ) ≥ 3. A simplex D ∈ D(V ) is a cut
system if and only if the following properties hold.

• For every pair of disks D,E ∈ link(D) the complex link(E) ∩
link(D) is not a cone with apex D.
• For every proper subset σ  D there is a pair of disks D,E ∈

link(σ) so that the complex link(E)∩ link(σ) is a cone with apex
D.

Proof. The forward direction follows from Lemma 5.8 and the definition
of a cut system. (When V is a spotted ball the only cut system is the
empty set; the empty set has no proper subsets.)

Now for the backwards direction. From the first property and by
Lemma 5.8 deduce that V ′ = V − n(D) is a collection of spotted balls.
If V ′ has at least two components then there is a proper subset σ ⊂ D
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which is a cut system for V . Thus V − n(σ) is a spotted ball and this
contradicts the second property. �

The next lemma is the handlebody version of [19, Lemma 4.5] and [22,
Lemma 2.1].

Lemma 5.11. When ξ(V ) ≥ 2, the genus and number of spots of V
are combinatorially characterized. In general, if V,W are handlebodies
with D(V ) ∼= D(W ) then either

• V ∼= W or
• V,W ∈ {V1, V1,1} or
• V,W ∈ {V0, V0,1, V0,2, V0,3}.

Proof. Fix a handlebody V = Vg,n. When e(V ) ≤ 2 the lemma can
be checked case-by-case, following Section 4. If e(V ) ≥ 3 then by
Lemma 5.10 cut systems in D(V ) are combinatorially characterized,
and thus so is g, the genus of V . Since ξ(V ) is the number of vertices
in any maximal simplex, we may compute n, the number of spots of V .
Thus D(V ) ∼= D(W ) implies that V ∼= W . �

We are now equipped to prove the main lemma.

Proof of Lemma 5.1. Let V = Vg,n and choose φ ∈ Aut(D(V )). When
e(V ) ≤ 2, Lemma 5.1 can be checked case-by-case, following Section 4.
So suppose that e(V ) ≥ 3.

By Lemmas 5.8 and 5.9 the automorphism φ preserves the set of
non-separating disks and also the set of pants disks.

Suppose that E ∈ D(V ) is a separating disk yet not a pants disk.
Writing V − n(E) = X ∪ Y we have link(E) = D(X) ∗ D(Y ). By
Lemma 5.6 this join is realized uniquely and so we can recover D(X)
and D(Y ). By Lemma 5.11 we may recover the genus and number of
spots of X and Y . Thus φ preserves the topological type of E. �

6. Regluing

Suppose that D = {Di} is a cut system for V .

Lemma 6.1. Suppose that φ ∈ Aut(D(V )) fixes D, vertex-wise. Then
there is an element f ∈ H(V ) such that f and φ agree on D ∪ link(D).

Proof. Let V ′ = V − n(D) and let D±i be the two spots of V ′ that are
parallel to Di in V . By Lemma 2.2 there is a homeomorphism f of
V ′ so that the induced geometric automorphism equals φ| link(D). We
wish to glue f to get a homeomorphism of V : it suffices to show that
for every i the homeomorphism f preserves the spots D±i .

Let handlei(D) be the set of disks E ∈ D(V ) so that
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• link(E) is a cone with apex Di and
• E ∈ link(D).

That is, handlei(D) is the set of disks in the complement of D that cut
off a solid handle, with meridian Di.

Let pantsi(D) be the set of disks E ∈ D(V ′) so that one component
of V ′ − n(E) is a solid pants meeting the spots D±i .

By Lemma 5.7, for all i the set handlei(D) is combinatorially char-
acterized and so preserved by φcut. It follows, for all i, that the home-
omorphism f ∈ Homeo(V ′) preserves the set pantsi(D). Now fix i for
the rest of the proof. Suppose that f(D+

i ), f(D−i ) = A,B where A,B
are spots of V ′. Let E ∈ pantsi(D) be any pants disk. Then f(E) is a
pants disk cutting off A and B. It follows that the spots A,B (in some
order) equal the spots D±i as desired. �

7. Duality

Recall that two disks D,E ∈ D(V ) are dual if i(∂D, ∂E) = 2 (see
Figure 2.3). A pentagon P ⊂ D(V0,5) is a collection of five disks
P = {Ei}4

i=0 so that Ei and Ei+1 are disjoint, for all i (modulo five).
We say that the disks Ei, Ei+2 are non-adjacent in P , for all i (modulo
five).

Lemma 7.1 (pentagon lemma). Suppose that V = V0,5. Two disks
D,E ∈ D(V ) are dual if and only if there is a pentagon P so that
D,E ∈ P and D,E are non-adjacent in P .

Proof. Recall that D(V0,5) ∼= C(S0,5), by Lemma 2.2. The pentagon
lemma for S0,5 (see [19, Theorem 3.2] or [22, Lemma 4.2]) implies that
there is only one pentagon in D(V0,5), up to the action of the handlebody
group. �

Lemma 7.2. Suppose that V = Vg,n has e(V ) ≥ 3. Two disks D,E ∈
D(V ) are dual if and only if there is a simplex σ ∈ D(V ) with

• link(σ) ∼= D(V0,5),
• D,E are non-adjacent in some pentagon of link(σ).

It follows that every φ ∈ Aut(D(V )) preserves duality. A handlebody
W ⊂ V is cleanly embedded if ∂+W ⊂ ∂+V and every spot of W either

• is essential and non-peripheral in V or
• is a spot of V .

Proof of Lemma 7.2. Suppose that D,E are dual. Let X be the four-
spotted ball containing them. Isotope X to be cleanly embedded. Let E
be a pants decomposition of V ′ = V − n(X). Now, there is at least one
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solid pants P in V ′− n(E) which has a spot, say F , which is parallel to
a spot, F ′, of X. If not then e(V ) ≤ 2, a contradiction.

Let Z be the twice-spotted ball with spots F and F ′. Let Y =
X ∪ Z ∪ P . Note that Y is a five-spotted ball containing D and E,
our original disks. Isotope Y to be cleanly embedded. Let E′ be any
pants decomposition of V − n(Y ). Add to E′ any spots of Y which are
non-peripheral in V . This then is the desired simplex σ ∈ D(V ). Since
D and E are dual the pentagon lemma implies that there is a pentagon
in D(Y ) making D,E non-adjacent.

The backwards direction follows from Lemma 5.11 and from the
pentagon lemma. �

We now discuss the dual complex. Fix a cut system D = {Di}.
Recall that duali(D) is the subcomplex of D(V ) spanned by the disks
E ∈ D(V ) which are dual to Di and disjoint from Dj for all j 6= i.

Define Ui to be the spotted solid torus obtained by cutting V along
all disks of D except Di. Note that Ui has exactly e(V )–many spots,
and this is at least three. Also, Di is a meridian disk for Ui. Note that
duali(D) ⊂ D(Ui). A disk E ∈ duali(D) is a simple dual if E is a pants
disk in Ui.

Let Ai(D) be the complex where vertices are isotopy classes of arcs
α ⊂ ∂+Ui so that

• α meets ∂Di exactly once, transversely, and
• ∂α meets distinct spots of Ui.

A collection of vertices spans a simplex if they can be realized disjointly.
If an arc α ∈ Ai(D) meets spots A,B ∈ ∂0Ui then the frontier of

N(A ∪ α ∪B) is a simple dual, Eα.

Lemma 7.3. If e(V ) ≥ 3 then the complex duali(D) is connected.

It suffices to check this for i = 1. To simplify notation we write
D = D1, U = U1, dual(D) = duali(D) and A(D) = A1(D). Before
proving Lemma 7.3 we require a sequence of claims.

Claim. For any pair of arcs α, γ ∈ A(D) there is a sequence {αk}Nk=0 ⊂
A(D) so that:

• the arcs αk, αk+1 are disjoint, for all k < N ,
• α0 = α and αN = γ, and
• there is at most one spot in common between the endpoints of
αk and αk+1, for all k < N .

Proof. Fix, for the remainder of the proof, an arc β ∈ A(D) so that α
and β are disjoint and so that the endpoints of α and β share at most
one spot. This is possible as U has at least three spots. Define the
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complexity of γ to be c(γ) = i(α, γ) + i(β, γ). Notice if c(γ) = 0 then
we are done: one of the sequences

{α, γ} or {α, β, γ}
has the desired properties.

Now induct on c(γ). Suppose, breaking symmetry, that α meets a
spot, say A ∈ ∂0U , so that γ ∩ A = ∅. If i(α, γ) = 0 then the sequence
{α, γ} has the desired properties. If not, then let x be the point of
α ∩ γ that is closest, along α, to the endpoint α ∩ A. Let α′ ⊂ α be
the subarc connecting x and α ∩ A. Let N be a regular neighborhood,
taken in ∂+U , of γ ∪ α′. The frontier of N , in ∂+U , is a union of three
arcs: one arc properly isotopic to γ and two more arcs γ′, γ′′.

The arcs γ′ and γ′′ are disjoint from γ and satisfy c(γ′) + c(γ′′) ≤
c(γ)− 1. Also, since γ′ and γ′′ each have one endpoint on the spot A
the arcs γ′ and γ′′ have exactly one spot in common with γ. Now, if
α′ ∩ ∂D = ∅ then one of γ′, γ′′ meets ∂D once and the other is disjoint.
On the other hand, if α′ ∩ ∂D 6= ∅ then α′ meets ∂D once. Thus one of
γ′, γ′′ meets ∂D once and the other meets ∂D twice. In either case we
are done. �

Recall that if α ∈ A(D) is an arc then Eα is the associated simple
dual.

Claim. If α, β ∈ A(D) are disjoint arcs, with at most one spot in
common between their endpoints, then there is an edge-path in dual(D)
of length at most four between Eα and Eβ.

Proof. If α and β share no spots then {Eα, Eβ} is a path of length one.
Suppose that α and β share a single spot. Let A,B,C be the three
spots that α and β meet, with both meeting C. Let α′, β′ be the subarcs
of α, β connecting C to ∂D. There are two cases: either α′ and β′ are
incident on the same side of ∂D or are incident on opposite sides.

Suppose that α′ and β′ are incident on the same side of ∂D, as shown
on the left side of Figure 7.4. Then α′ and β′, together with subarcs
of ∂C and ∂D bound a disk ∆ ⊂ ∂U . Note that ∆ may contain spots,
but it meets A ∪ B ∪ C only along the subarc in ∂C. It follows that
the disk F , defined to be the frontier of

N((A ∪B ∪ C) ∪ (α ∪ β) ∪∆),

is dual to D. The disk F is also essential as it separates at least three
spots from a solid handle. So {Eα, F, Eβ} is the desired path.

Suppose that α′ and β′ are incident on opposite sides of ∂D, as shown
on the right side of Figure 7.4. Let d ⊂ ∂D be either component of
∂D−(α∪β). Let α′′ = α− α′ and define β′′ similarly. Define γ ∈ A(D)
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by forming the arc α′′ ∪ d ∪ β′′ and using a proper isotopy of ∂+U to
make γ transverse to ∂D. Now apply the previous paragraph to the
pairs {α, γ} and {γ, β} to obtain the desired path of length four. �

Figure 7.4. The two ways that disjoint dual arcs, shar-
ing a spot, can meet the meridian disk D.

Claim. For every dual E ∈ dual(D) there is a simple dual connected to
E by an edge-path, in dual(D), of length at most two.

Proof. The dual disk E is either separating or non-separating as shown
on the left and right sides of Figure 7.5, respectively. In either case,
the graph ∂E ∪ ∂D cuts ∂U into a pair of disks B,C and an annulus
A. Each of B,C contain at least one spot.

Figure 7.5. The two ways that a dual disk E can meet
the meridian disk D.

When E is separating the disks B,C are adjacent along an subarc of
∂D. Connect a spot in B to a spot in C by an arc α that meets ∂D
once and that is disjoint from ∂E. Thus Eα is disjoint from E.

Suppose E is non-separating, as shown on the right side of Figure 7.5.
Then the two disks B,C meet only at the points of ∂D ∩ ∂E. Now, if
the annulus A contains a spot then we may connect a spot in B to a
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spot in A by an arc α meeting ∂D once and ∂E not at all. In this case
we are done as in the previous paragraph.

If A contains no spots then, breaking symmetry, we may assume that
B contains at least two spots while C contains at least one. Let δ ⊂ B
be a simple arc meeting each of ∂0U and E in a single endpoint. Let
B′ ⊂ ∂0U be the spot meeting δ. Let N be a regular neighborhood of
B′ ∪ δ ∪ E. Then the frontier of N contains two disks. One of these is
isotopic to E while the other, say E ′, is non-separating, dual to D, and
divides the spots as described in the previous paragraph. �

Thus equipped we can prove connectivity of dual(D).

Proof of Lemma 7.3. The first two claims imply that the set of simple
duals in dual(D) is contained in a connected set. The third claim shows
that every vertex in dual(D) is distance at most two from the set of
simple duals. Thus dual(D) is connected. �

8. Crawling through the complex of duals

Let D = {Di} be a cut system for V .

Lemma 8.1. Suppose that φlink ∈ Aut(D(V )) fixes D and link(D),
vertex-wise. For any E ∈ duali(D) the disks E and φ(E) differ by some
power of Ti, the Dehn twist about Di.

Proof. As usual, it suffices to prove this for D = D1. Let U = U1, the
result of cutting V along all disks of D except D1.

Let X ⊂ U be the four-spotted ball filled by D and the dual disk E.
Isotope X to be cleanly embedded. Let F be the components of ∂0X
which are not spots of U . Note that φlink fixes D as well as every disk
of F. This, together with Lemma 7.2, implies that φlink preserves the
set of disks that are contained in X and dual to D.

Since D(X) equipped with the duality relation is a copy of F , the
Farey graph, it follows that E and F = φlink(E) differ by some number
of half twists about D. If E and F differ by an odd number of half
twists then E and F have different topological types in U , contradicting
Lemma 5.1 applied to φlink|D(U). Thus E and F differ by an even
number of half twists, as desired. �

Let E = {Ei} be a collection of duals for the cut system D: that is,
Ei ∈ duali(D).

Lemma 8.2. Suppose that φdual ∈ Aut(D(V )) fixes D, link(D), and E,
vertex-wise. Then φdual fixes every vertex of duali(D), for all i.
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Proof. As usual, it suffices to prove this for D = D1. Let dual(D) =
dual1(D), let E = E1, and let U = U1. We crawl through dual(D), as
follows.

Suppose that F,G ∈ dual(D) are adjacent vertices and suppose that
φdual(F ) = F . By Lemma 8.1, the disks G and G′ = φdual(G) differ
by some number of Dehn twists about D. Also, as φdual is a simplical
automorphism the disks F and G′ are disjoint. Let X be the four-
spotted ball filled by D and F . If G and G′ are not equal then G ∩X
and G′∩X are also not equal and in fact differ by some non-zero number
of twists; thus one of G ∩X or G′ ∩X must cross F , a contradiction.

By hypothesis φdual(E) = E. Suppose that G is any vertex of dual(D).
Since dual(D) is connected (Lemma 7.3) there is a path P ⊂ dual(D)
connecting E to G. Induction along P completes the proof. �

9. Crawling through the disk complex

Before continuing we will need the following complex.

Definition 9.1 (Wajnryb [33]). The cut system graph CG(V ) is the
graph with vertex set being isotopy classes of unordered cut systems in
V . Edges are given by pairs of cut systems with g − 1 disks in common
and the remaining pair of disks disjoint.

Theorem 9.2 (Wajnryb [33]). The cut system graph CG(V ) is con-
nected. �

For the remainder of this section suppose Φ = φdual is an automor-
phism of D(V ) and D is a cut system so that Φ fixes D, link(D) and
dual(D), vertex-wise.

For the crawling step, suppose that E and F are cut systems that
are adjacent in CG(V ). Suppose that Φ fixes E, link(E) and dual(E)
vertex-wise. Let G be a pants decomposition obtained by adding the
new disk of F to E and then adding non-separating disks until we have
3g − 3 + n disks. Since F,G ⊂ E ∪ link(E) it follows that Φ fixes F and
G, vertex-wise.

Define Xi to be the non-pants component of

V − n(G− {Gi}).
Note that Xi

∼= V0,4, as all disks in G are non-separating. Choose
H, I = {Hi}, {Ii}, collections of disks, so that Hi, Ii are contained in Xi

and Gi, Hi, Ii are pairwise dual in Xi. This is possible because D(V0,4),
equipped with the duality relation, is a copy of the Farey graph. Note
that G∪H∪ I is contained in E∪ link(E)∪dual(E). Thus Φ fixes those
disks as well.
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Since Φ fixes F it follows that Φ fixes link(F), set-wise. By Theorem 2.1
the automorphism f = Φ| link(F) is geometric. Let f also denote the
given homeomorphism of the spotted ball V ′ = V −n(F). Let G′ = G−F
and H′, I′ be the disks of H, I contained in V ′. Thus f fixes all disks of
G′,H′, I′. Let {Pk} enumerate the solid pants of V − n(G). It follows
that f permutes the solid pants {Pk}.

If f nontrivially permutes {Pk} then, since each Gi is fixed, we
find that adjacent solid pants are interchanged. This implies that
V ′ = P1 ∪ P2, contradicting our assumption that e(V ) ≥ 3.

So f fixes every Pk. Since all disks in G′ are fixed, f is either
orientation reversing, isotopic to a half twist, or isotopic to the identity
on each of the Pk. Let Gi ∈ G′ be any disk meeting Pk. Then f |Pk
cannot be orientation reversing because the triple Gi, Hi, Ii determines
an orientation on Xi and hence on Pk. If f |Pk is a half twist then Pk
meets two spots of V ′. Thus Gi meets two solid pants Pk, P` so that
Xi = Pk ∪ P`. Now, as e(V ′) ≥ 3, the solid pants P` meets at most one
spot of V ′. Thus f |P` is isotopic to the identity. So if f |Pk is a half
twist then f(Hi) 6= Hi, a contradiction. Deduce that f , when restricted
to any solid pants, is isotopic to the identity. It follows that f is isotopic
to a product of powers of Dehn twists about the disks of G′. As f fixes
the disks of H′ these powers are trivial and f is isotopic to the identity
on V ′, as desired. It follows that Φ| link(F) = Id.

As Φ fixes duals to F by Lemma 8.2 the automorphism Φ restricts to
give the identity on dual(F). This completes the crawling step. Since
every non-separating disk lies in some cut system and every separating
disk lies in the link of some cut system, deduce that Φ is the identity
map. This completes the proof of the main theorem.

Theorem 9.3. If a handlebody V = Vg,n satisfies e(V ) ≥ 3 then all
elements of Aut(D(V )) are geometric. �

Note that Theorem 9.3 is sharp, as is its consequence Theorem 9.4:
when e(V ) ≤ 2 the conclusions are false. See Section 4.

Theorem 9.4. If a handlebody V = Vg,n satisfies e(V ) ≥ 3 then the
natural map H(V )→ Aut(D(V )) is an isomorphism.

Proof. Theorem 9.3 shows that the natural map is surjective. Suppose
that the mapping class f lies in the kernel. As in the discussion
of crawling through CG(V ) given above, let G = {Gi} be a pants
decomposition of V so that all of the Gi are non-separating. Let {Pk}
enumerate the solid pants of this decomposition. Let Xi = Pj ∪ Pk be
the four-spotted ball containing Gi in its interior. Let H, I = {Hi}, {Ii}
be collections of disks so that Hi, Ii are contained in Xi and Gi, Hi, Ii
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are pairwise dual in Xi. All of these disks are fixed by f . It follows
that f is isotopic to the identity. �

10. Automorphisms of the handlebody group

As with Theorem 1.5, combinatorial rigidity of the disk complex leads
to algebraic rigidity of the handlebody group.

Theorem 10.1. If e(V ) ≥ 3 then the outer automorphism group of the
handlebody group is trivial.

Since H = H(V ) is centerless this may be restated as Aut(H) ∼= H. If
g = 0 then Theorem 10.1 follows from Lemma 2.2 and the first author’s
thesis [19, Theorem 3]. For the rest of this section we restrict to the
case g ≥ 1 and we assume that e(V ) ≥ 3.

The idea of the proof is to turn an element φ ∈ Aut(H) into an
automorphism of the disk complex D(V ). We do this, following [14],
by giving an algebraic characterization of Dehn twists inside of H.
We then apply Theorem 9.3 to φ to find the corresponding geometric
automorphism. Using Lemma 10.3 and following [15, Section 4] then
gives the desired result.

The following lemmas follow from the identical statements for the
mapping class group of a surface [17].

Lemma 10.2. Suppose D and E are essential disks. The twists TD, TE
commute if and only if D and E can be made disjoint via ambient
isotopy. �

Lemma 10.3. For any twist TD and for any homeomorphism h we
have hTDh

−1 = Th(D). �

Lemma 10.4. For any pair of disks D and E and any non-zero m and
n, if TmD = T nE then D = E and m = n. �

A finite index subgroup Γ < H is pure if every reducible class in Γ
fixes every component of every reducing set. For example, the kernel of
H → Aut(H1(∂+V,Z/3Z)) is pure [14, Theorem 1.2]. An element of a
group is primitive if it is not a proper power in the group. We write
C(G) for the center of a group G. We write CG(g) for the centralizer
of g in G.

Suppose that Γ < H is pure and finite index. Suppose that D is an
essential, non-peripheral disk. Let T = TD be the Dehn twist about D.
It follows that there is a positive power n so that T n lies in Γ. Following
Ivanov [14] observe that C(CΓ(T n)) is generated by a power of T when
D is not a handle disk. When D is a handle disk (and recalling that
e(V ) ≥ 3) the group C(CΓ(T n)) has rank two; the other generator is a
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power of TE, where E is the meridian of the solid handle determined by
D. Equipped with this we may algebraically characterize Dehn twists
on non-handle disks.

Lemma 10.5. Suppose Γ < H is pure and finite index. Then {fi}i∈I ⊂
H is a collection of Dehn twists along a pants decomposition of non-
handle disks in V if and only if the following conditions hold.

• The subgroup A = 〈fi | i ∈ I〉 is free Abelian of rank ξ(V ).
• Each fi is primitive in CH(A).
• For all i ∈ I and all n ∈ N−{0}, if fni ∈ Γ then C(CΓ(fni )) ∼= Z.

Proof. The forwards direction is identical to the forwards direction
of [14, Theorems 2.1, 2.2]. The backwards direction is similar in spirit
to the backwards direction of [14, Theorem 2.1] but some details differ.
Accordingly we sketch the backwards direction.

The mapping class fi cannot be periodic or pseudo-Anosov as that
would contradict the first property. Following [4], let Θ ⊂ S = ∂+V be
the canonical reduction system for the Abelian group A. Let {Xj} be the
components of S − n(Θ) and let {Yk} be the collection of annuli N(Θ).
By [4, Lemma 3.1(2)] the number of annuli in {Yk} plus the number of
non-pants in {Xj} equals ξ(V ). It follows that every non-pants Xj has
complexity one (so is homeomorphic to S0,4 or S1,1).

Fix a power n (independent of i) to ensure that fni ∈ Γ. For each
Xj of complexity one there is some fni so that fni |Xj is pseudo-Anosov.
Suppose that f = fn1 , X = X1 has complexity one, and f |X is pseudo-
Anosov. Let λ± be the stable and unstable laminations of f |X. For
every i, the mapping fni |X is either the identity or pseudo-Anosov. Note
that in the latter case the stable and unstable laminations of fni |X agree
with λ±: otherwise a ping-pong argument gives a rank two free group
in A, a contradiction. Thus, there are powers ki 6= 0 so that for each i
either fnkii |X is the identity or identical to fk|X. (Here k = k1.) For
each i where fnkii |X = fk|X we temporarily replace fnkii by fnkii f−k.

Continuing in this manner we obtain a collection of at least |Θ|–many
elements in A∩ Γ that are supported inside of the union of annuli {Yk}.
Let B < A ∩ Γ be the free Abelian group containing them; note that
B has rank at least |Θ|. Since B is pure, it follows that all elements
of B are compositions of powers of Dehn twists along disjoint curves.
It follows that B has rank exactly |Θ|. Oertel [28, Theorem 1.11] and
McCullough [27, Theorem 1] prove that every curve in Θ either bounds
a disk or cobounds an annulus with some other curve of Θ. However,
each annulus reduces the possible rank of B by one; it follows that every
curve in Θ bounds a disk.
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Let γ be any essential non-peripheral component of ∂X. It follows
that fk commutes with Tγ, that Tγ lies in H by the above paragraph,
and that Tγ to some power lies in C(CΓ(fk)). Deduce that C(CΓ(fk))
has rank at least two, contradicting the third property. It follows that
every component Xj is a pants and that |Θ| = ξ(V ). Thus every
fni is a composition of powers of disjoint twists. Again, by the third
property each fi is some power of a single twist. By the second property
(following [14]) fi is in fact a twist about a disk Di. Finally, if Di is a
handle disk then C(CΓ(fni )) is Abelian of rank two, contradicting the
third property. �

Corollary 10.6. With the notation of Lemma 10.5: all the disks are
non-separating if and only if all of the fi are conjugate. �

It remains to give an algebraic characterization of Dehn twists about
handle disks. Let ξ = ξ(V ).

Lemma 10.7. An element g ∈ H is a Dehn twist on a handle disk
G if and only if there is a collection D = {Di}ξ−1

i=1 of non-handle disks
and another pair of non-separating disks E and F with the following
properties. (Below Ti = TDi

.)

• D ∪ {E} and D ∪ {F} are pants decompositions.
• g commutes with Ti for all i.
• No pair from {TE, TF , g} commutes.
• For any pure Γ < H there are powers m,n so that gn and Tm1

generate C(CΓ(gn)).
• The lantern relation [7, page 333] is satisfied:

TETF · g = T 2
1 T2T3.

In the previous line, when V = V1,3, the twist T3 is omitted.

Proof. We first sketch the forward direction. Suppose that g = TG is
a twist on a handle disk. Let X ∪ Y = V − n(G), where X is a solid
handle with meridian disk D1; so e(Y ) ≥ 2. It follows that Y has a solid

pants decomposition {Di}ξ−1
i=2 where none of the Di are handle disks

in V . Let D = {D1} ∪ {Di}. Let Z be the non-pants component of
V −n(D). Thus Z ∼= V0,4 is a four-spotted ball that contains G. Choose
disks E and F in Z that, together with G, form a Farey triangle of the
correct orientation. Note that E and F are necessarily non-separating.
Also, TE, TF , TG satisfy a lantern relation.

Now we sketch the backwards direction. Suppose that D, E, F and
g are given, with the properties listed. Define Z to be the non-pants
component of V − n(D). Again Z must be a four-spotted ball (and
not a solid handle) as the twists TE and TF do not commute. As in



22 MUSTAFA KORKMAZ AND SAUL SCHLEIMER

Lemma 10.5 the algebraic hypotheses imply that g is a product of
powers of at most two disjoint Dehn twists. These twists are along a
disk G inside of Z and a disk D′ outside of Z. Let T ′ = TD′ . Since
D gives a pants decomposition of the complement of Z, and since g
commutes with all of the Ti, deduce that T ′ agrees with one of the Ti.
Since Tm1 lies in C(CΓ(gn)) it follows that D′ = D1. Since the center of
the centralizer has rank two deduce that G is a handle disk and D1 is
the non-separating meridian of the corresponding solid handle. Thus
there are integers r, s so that

g = T rGT
s
1 .

We now use the hypothesis of the lantern relation.

T 2
1 T2T3 = TETF · g = TETFT

r
GT

s
1

TETF = T−rG T 2−s
1 T2T3.so

Recall that there is a natural map H(V )→MCG(∂+V ) taking a twist
on a disk to a twist on its boundary. Thus, the above equality gives a
relation among Dehn twists in MCG(∂+V ). According to Margalit [23]
the right-hand side is a multi-twist and so, by Theorem 1 from [23], we
find r = 1 and s = 0. Thus g = TG is a Dehn twist on a handle disk, as
desired. �

The proof of Theorem 10.1 now follows, essentially line-by-line, the
proof of either [15, Theorem 2] or [19, Theorem 3]. �

To extend our algebraic characterization of twists inside of H(V )
(Lemma 10.5, Corollary 10.6 and Lemma 10.7) to a characterization of
powers of twists inside of finite index pure subgroups Γ < H(V ) appears
to be a delicate matter. Following Ivanov [15], resolving this would
answer the following.

Problem 10.8. Show that the abstract commensurator of H(V ) is
isomorphic to H(V ). Show that H(V ) is not arithmetic.
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