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Abstract

Almost Normal Heegaard Splittings

by
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The study of three-manifolds via their Heegaard splittings was initiated by Poul

Heegaard in 1898 in his thesis. Our approach to the subject is through almost normal

surfaces, as introduced by Hyam Rubinstein [28] and distance, as introduced by John

Hempel [12].

Among the results presented is a proof that every closed, orientable three-manifold

has only finitely many Heegaard splittings with distance greater than 4, a new recognition

algorithm for surface bundles over the circle, and a series of results which bound the distance

of a splitting in terms of its structure as an almost normal surface.
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To my parents,

for all their hard work.

INVENTION

I’ve done it, I’ve done it!

Guess what I’ve done!

Invented a light that plugs into the sun.

The sun is bright enough,

The bulb is strong enough,

But, oh, there’s only one thing wrong...

The cord ain’t long enough.

By Shel Silverstein
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Chapter 1

Introduction

This thesis studies three-manifolds from the combinatorial point of view. As such,

our theorems discuss algorithmic issues and questions of finiteness. We make a special effort

to understand, for a fixed three-manifold, the set of Heegaard splittings of that manifold.

In Chapter 2 we lay out the many of the necessary definitions. Almost all of

the concepts that we require and which also may be found in the literature are contained

within. Material newly introduced in this thesis is, for the most part, contained in the

relevant chapter.

Chapter 3 picks up the theme of Heegaard splittings. We prove that a closed

orientable three-manifold has only finitely many Heegaard splittings of distance 5 or higher.

Along the way the elementary yet important concept of blocks is introduced.

Chapter 4 introduces the tightening sequence; a restricted version of Haken’s nor-

malization procedure. The somewhat technical distinction between these is explained in

the introduction to Chapter 4. We should point out that the tightening procedure may be

treated as a black box whose input is a reasonably behaved surface S and whose output is a

compression body C with ∂+C equal to S and ∂−C being normal. Furthermore, C satisfies

several minimality properties used in later chapters.

Pursuing the combinatorial aspect, in Chapter 5 we study how the exchange annuli

of a Haken sum lie inside the containing three-manifold. In particular, we make used of

the concept of a strongly irreducible surface homeomorphism; we show that some fibre of a

mapping torus with strongly irreducible monodromy must be a fundamental normal surface.

Delving deeper into the particulars of triangulations, Chapter 6 uses practically

every tool introduced thus far to study surface bundle structures. We show that if a closed
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Figure 1.1: The dependencies of the chapters

orientable manifold has a given surface bundle structure F and a triangulation T then there

is a dicing collection of normal and almost normal surfaces which are isotopic to fibres of

F . Combining this with work of Tollefson and Wang [36] procures a new algorithm which

decides whether or not a closed, orientable, irreducible, atoroidal three-manifold is a surface

bundle over the circle.

Finally, Chapter 7 again picks up the theme of Heegaard splittings. The goal of

this chapter is to provide bounds on the distance of a Heegaard splitting provided data

about its presentation as a normal or almost normal surface. A representative theorem:

There is a constant d2 ∈ N such that if H is an almost normal splitting which is least

weight (in a certain sense) and has almost normal piece an annulus then the distance of H

is at most d2 times the number of tetrahedra in the triangulation of M . The theorems in

this last chapter should be thought of as progress towards a more effective version of the

main theorem of Chapter 3.

Figure 1.1 shows how the chapters depend upon each other. Chapter 7 relies

mainly on the ideas of Chapter 4 and does not draw on the theorems in Chapter 3.
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Chapter 2

Background Material

This chapter develops the basic tools we require. The expert reader and perhaps

even the novice may safely skip most of this material, referring back to it as necessary.

Unfortunately, there is no one reference which collects all of the required definitions in one

place. The reader should, however, read Section 2.1 in order to familiarize themselves with

our notation.

In addition to the underlying material we also reproduce a few of the main theorems

in the field as a form of motivation. We assume a basic familiarity with common notions in

three-manifold topology, all of which may be found in [13] or [14].

2.1 Notation

This section sets out the various notations in use throughout the rest of the thesis.

M3 will always denote a three-manifold. The superscript will occasionally be

dropped. We use ηA(B) (ηA(B)) to denote an open (closed) regular neighborhood of the

submanifold B inside of the manifold A.

The notation XrY denotes the set obtained by intersecting X with the comple-

ment of Y . We use A B to mean ArηA(B); here A B is the space obtained by cutting

A along B. Also, define |A| to be the number of connected components of A as a topo-

logical space; occasionally we will abuse this notation and apply it to a finite set without

topological structure. If B ⊂ A then frA(B) will denote B ∩ArB; the frontier of B inside

of A. The subscript is omitted when the containing space is clear from context.

If F ⊂ M is a properly embedded, 2-sided surface — that is, |ηM (F ) F | = 2 —
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then the transverse orientation is often made explicit in figures by drawing arrows pointing

in the appropriate direction. The side of F pointed towards will be called the tail side,

while the opposite side (pointed away from) will be called heads.

A thickening of F is a closed, regular, product neighborhood ι : F × I → M . The

side ι(F × 1) is the heads side and correspondingly ι(F × 0) is the tails side. Also, if F is a

map and A is a subset of the domain then F|A is the restriction of F to A.

Finally, if α and β are two simple closed curves in a surface F then i(α, β) denotes

the minimal geometric intersection number of α and β.

2.2 Heegaard splittings

A pleasant introduction to Heegaard splittings, with an extensive collection of references

may be found in Scharlemann’s survey article [29].

2.2.1 Compression bodies

Definition. A compression body V is a three-manifold which has a decomposition as

H × I
⋃

(∪ Di × I)
⋃

(∪ Bj)

where H is a closed connected orientable surface, the Di × I are thickened disks attached

to the head of H × I along ∂Di × I, and the Bj are three-balls capping off some of the S2

boundary components of ∂V r(H × 0).

Note that a compression body need not be irreducible. (For a variant definition

see [3].) It is standard to divide the boundary of V into two components, ∂+V = H × 0

and ∂−V = ∂V r∂+V , the latter of which may be empty. This gives:

Definition. If V is a compression body with ∂−V = ∅ then V is a handlebody.

Note that the Euler characteristic of a handlebody, χ(V ), equals 1 − g(H) where

g(H) is the genus of H.

We are now equipped to define:

Definition. A Heegaard splitting of a closed, orientable three-manifold M is a closed, con-

nected, embedded, orientable surface H ⊂ M such that M H is a disjoint union of two

handlebodies.
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For the most part we will choose notation so that M H = V q W . Note that

there is a natural identification of the three surfaces H, ∂V , and ∂W because η(H) is a

product neighborhood.

The genus of the splitting is simply the genus g(H) of the splitting surface. The

terms “genus of the splitting” and “genus of the handlebody” are used interchangeably

in the sequel. It has long been known that every closed three-manifold has a Heegaard

splitting — this follows quickly from Moise’s Theorem:

Theorem 2.2.1 (Moise [25]). Every closed three-manifold may be triangulated.

One then deduces the existence of a Heegaard splitting by taking V to be a closed

regular neighborhood of the one-skeleton of a given triangulation and taking H = ∂V .

See [29]. It follows that M must have a Heegaard splitting of minimal genus. These

minimal splittings are of special algebraic and topological interest.

2.2.2 Essential disks and irreducibility

This section discusses the various notions of reducibility possible for a Heegaard splitting.

This material is standard, except for the definition of filling given below.

Recall that a closed three-manifold M is reducible if there is a two-sphere in M

which does not bound a three-ball. Otherwise M is irreducible. Also, M is toroidal if M

contains an incompressible torus. If M is not toroidal, it is called atoroidal. Finally, a closed,

orientable, irreducible three-manifold is Haken if it contains a two-sided incompressible

surface.

Definition. A disk D properly embedded in a manifold M is essential if ∂D does not

bound a disk in ∂M . If D is properly embedded and not essential then it is trivial.

If M is given, together with a Heegaard splitting H, then we set DV = {proper

isotopy classes of essential disks in V }. DW is defined similarly.

Definition. A Heegaard splitting H ⊂ M is reducible if there are disks A ∈ DV and

B ∈ DW such that ∂A = ∂B. If no such pair exists then H is irreducible.

This is a natural definition, given the following lemma of Haken:

Lemma 2.2.2 (Haken [6]). If M is reducible then every Heegaard splitting of M is re-

ducible.
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Remark 2.2.3. In some sense this is a model theorem for much of the work discussed in

this section — a bit of topological information about M yields significant restrictions on

the set of all Heegaard splittings of M .

There is another standard definition to be made:

Definition. A Heegaard splitting H ⊂ M is stabilized if there are disks A ∈ DV and

B ∈ DW such that |∂A ∩ ∂B| = 1.

Note that if M is irreducible then a Heegaard splitting is reducible if and only if it

is stabilized. This is a nontrivial result, following from Waldhausen’s complete classification

of splittings of the three-sphere [37].

Most modern treatments of Heegaard splittings have as their starting point the

following definition due to Casson and Gordon [3]:

Definition. A Heegaard splitting H ⊂ M is weakly reducible if there are disks A ∈ DV and

B ∈ DW such that ∂A ∩ ∂B = ∅. If no such pair exists then H is strongly irreducible.

Strongly irreducible splittings are a natural starting point for the study of non-

Haken three-manifolds. This is because of:

Theorem 2.2.4 (Casson, Gordon [3]). If M is non-Haken then every weakly reducible

splitting of M is reducible.

It is a somewhat surprising fact, shown by combining the work of Casson and

Gordon [2] and Parris [27], that there are certain Haken manifolds each admitting infinitely

many pairwise non-isotopic strongly irreducible Heegaard splittings. See [23] or [31].

We end this section with Thompson’s disjoint curve property:

Definition. A Heegaard splitting H ⊂ M has the disjoint curve property if there are disks

A ∈ DV and B ∈ DW and an essential simple closed curve γ ⊂ H such that

∂A ∩ γ = γ ∩ ∂B = ∅.

If no such pair exists then the Heegaard splitting H is filling.

The notion of a filling splitting is essentially due to Hempel [12] but this terminol-

ogy is new. For further discussion of filling splittings see Chapter 3.
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Lemma 2.2.5 (Thompson [34], Kobayashi [22]). If M is toroidal then every Heegaard

splitting of M has the disjoint curve property.

We should also point out:

Theorem 2.2.6 (Hempel [12]). If M is a Seifert fibred space then every Heegaard splitting

of M has the disjoint curve property.

This follows fairly directly from the remarkable classification theorem of Moriah

and Schultens [26].

Remark 2.2.7. It is now a straight-forward observation that if M admits a filling splitting

then M is irreducible, atoroidal, and not a Seifert fibred space.

2.3 Distance

This section presents Hempel’s notion of the distance of a Heegaard splitting (see [12]) and

the translation distance of a surface homeomorphism (see [24].)

2.3.1 The curve complex

Let H be a closed orientable surface and let ∆0(H) be the set of isotopy classes of essential

simple closed curves in H. Following Harvey [8] we define the graph ∆1(H), the one-skeleton

of the curve complex on H, which has ∆0(H) as its vertex set and has an edge between

isotopy classes [α], [β] ∈ ∆0(H) if and only if there are α′ ∈ [α] and β′ ∈ [β] such that

α′ ∩ β′ = ∅. We bestow a metric on ∆1(H) by assuming that every edge is isometric to the

unit interval in R1.

For the most part the distinction between a curve and its isotopy class will be

suppressed.

Definition. The distance dH(α, β) between vertices α, β ∈ ∆0(H) is the length of the

shortest path in ∆1(H) connecting α to β.

Lemma 2.3.1 (Hempel [12]). If H is a closed orientable surface and α, β are vertices of

∆0(H) then

dH(α, β) ≤ 2 log2(i(α, β)) + 2.
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Reducible

Weakly reducible

Disjoint curve property

Filling

Strongly irreducible

Irreducible

≥ 3 012

Figure 2.1: The set of Heegaard splittings of M .

2.3.2 Distances of Heegaard splittings

Definition. If V and W are subsets of ∆0(H) then set

dH(V,W) = min{dH(α, β) | α ∈ V, β ∈ W}.

Now take H ⊂ M a Heegaard splitting and set V = {essential simple closed curves

in H which bound disks in V }. Define W similarly.

Definition. The distance of a Heegaard splitting H ⊂ M is d(H) = dH(V,W).

This definition of Hempel’s [12] is a far-reaching extension of the notions introduced

in Section 2.2. It is straight-forward to verify:

• H is reducible or stabilized ⇐⇒ d(H) = 0.

• H is weakly reducible ⇐⇒ d(H) ≤ 1.

• H has the disjoint curve property ⇐⇒ d(H) ≤ 2.

Remark 2.3.2. We may rephrase Remark 2.2.7 as follows: If M is reducible, toroidal, or

Seifert fibred then all splittings of M have distance less than or equal to 2.



CHAPTER 2. BACKGROUND MATERIAL 9

Remark 2.3.3. Hartshorn, in his thesis [7], gives a result similar in spirit. Let Hi ⊂ M be a

sequence of Heegaard splittings produced via the Casson-Gordon-Parris method. Hartshorn

demonstrates that all of these, except perhaps H0, have distance less than or equal to two.

We end this portion by giving a rough diagram of the “set of all Heegaard split-

tings” in Figure 2.1. Note that the above remarks are far from the end of the story:

Theorem 2.3.4 (Hartshorn [7]). If M is a Haken manifold containing an incompressible

surface of genus g then every Heegaard splitting H ⊂ M has d(H) ≤ 2g.

Theorem 2.3.5 (Hempel [12], Feng Luo). For every n ∈ N there is a closed orientable

manifold M and a Heegaard splitting H ⊂ M with d(H) ≥ n.

2.3.3 Surface bundles and translation distance

Here we collect a few necessary definitions regarding surface bundles over the circle. This

material is standard, except for the definition of strongly irreducible given below.

Definition. If H is a closed orientable surface then the mapping class group of H is the

group of isotopy classes of homeomorphisms h : H → H.

We typically will not distinguish between a homeomorphism and the element of

the mapping class group which it represents. Note that the mapping class group of H acts

on the complex of curves in a natural way: [h] · [α] = [h(α)].

Definition. If h is an element of the mapping class group then the translation distance of

h is

d(h) = min
{
dH(γ, h(γ)) | γ ∈ ∆0(H)

}
.

Definition. A mapping class element h is strongly irreducible if d(h) ≥ 2. Equivalently, h

is strongly irreducible if γ ∩ h(γ) 6= ∅ for every essential simple closed curve in H.

This simple definition does not, to my knowledge, appear in the literature.

Definition. Suppose that h : H → H is a homeomorphism. The mapping torus of h is the

space H × I/∼ where the equivalence relation is given by (x, 1) ∼ (h(x), 0).

Definition. Suppose that M is a three-manifold. A surface bundle structure on M is a pair,

(h, φ), where h is an element of the mapping class group of H and φ is a homeomorphism

between the mapping torus of h and M .



CHAPTER 2. BACKGROUND MATERIAL 10

The mapping h is the monodromy and the genus of H is the genus of the bundle

structure on M . A surface bundle is occasionally presented in the form of a foliation, F , in

which all leaves are fibres of the bundle.

For further discussion of strongly irreducible bundle structures on a fixed three-

manifold see the last section of Chapter 5.

2.4 Position with respect to a product structure

This section defines thin and bridge position of one-manifolds properly embedded in a three-

manifold. Let C be a three-dimensional submanifold of M , called the core of M . Let F be

a compact surface and let K ⊂ M be a properly embedded one-manifold.

Definition. A product structure F on (M, C) is a homeomorphism F : F × I → (M C).

We refer to Fr = F(F × r) as a level of the product structure. A fruitful example

to have in mind is when M is given together with a Heegaard splitting H. C is then the

union of the cores of the two handlebodies V and W and we take H = F1/2 = F(F × 1/2).

Let F be a product structure on (M, C). Following [33] we adapt Gabai’s notion

of thin position (see [4]) to our situation. In order to set up the machinery of thin position

we must discuss how the given one-manifold meets levels of a product structure.

Definition. The weight, wK(S), of a surface S ⊂ M is the number of points in S ∩ K.

Definition. A properly embedded one-manifold K and a product structure F are transverse

if the following conditions hold:

1. K is transverse to ∂C.

2. All but finitely many levels of F are transverse to the one-manifold K.

3. Each nontransverse level Si, i ∈ {1, . . . , n}, has exactly one singular intersection

with K. Furthermore, every such intersection is either a local maximum or a local

minimum. “Cubic” intersections are not allowed.

All nontransverse intersections of K with a level of F look like local maxima

or minima. The open submanifold obtained by taking the union of all levels between a

maximum immediately above and a minimum immediately below is called a thick region.
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Thick

Thin

Figure 2.2: Thick and thin regions

Similarly a thin region is contained between a minimum above and a maximum below. See

Figure 2.2.

The set {c ∈ [0, 1] | Fc is not transverse to K} is the set of critical points. Chose

now a collection of points in the interval, R′ ⊂ [0, 1] such that for each adjacent pair of

critical points there is exactly one point of R′ between them. Let R = R′ ∪ {0, 1}.

Definition. The width of a given product structure F with respect to a transverse K is

wK(F) =
∑
r∈R

wK(Fr).

Definition. F realizes thin position for K and K is thin if K is transverse to F and

wK(F) ≤ wK′(F) for all K ′ which are both transverse to F and ambiently isotopic to K

relative to C.

Definition. F realizes bridge position and K is in bridge position if K is transverse to F
and F contains no thin region.

Definition. Suppose that F is transverse to K and F is a level of F . If D is a disk properly

embedded in M (K ∪C) with ∂D = α∪β, α properly embedded in F K, β ⊂ ∂(η(K)),

and D is attached to F ’s head (tail) then D is an upper (lower) disk for F . If D ∩ F = α

then D is a strict upper (lower) disk for F .
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2.5 Triangulations and normal surfaces

This section develops a few rudiments of normal surface theory. For a more complete

treatment see [18] or [33].

2.5.1 Common notions

Given a triangulated manifold (M, T ) there is a standard notion of equivalence for subman-

ifolds:

Definition. An isotopy H : M × I → M is a normal isotopy if Hr(σ) = σ for all r ∈ I and

for every simplex σ in T .

Two submanifolds in M are normally isotopic if there is a normal isotopy taking

one to the other.

Let S be a surface properly embedded in a triangulated three-manifold M and

assume that S is transverse to the skeleta of M . Denote the i-skeleton of (M, T ) by T i. At

this point we overuse notation slightly and again define w(S) = wT (S) = |S ∩T 1| to be the

weight of S.

Note that the triangulations considered need not be simplicial. In fact, most of

the triangulations discussed in this thesis have a single vertex. Finally, when discussing a

simplex in a triangulation, we routinely disregard its structure as a subset of M and treat

it as the regular Euclidean simplex of side-length one.

2.5.2 Normal surfaces

Remark 2.5.1. If we wish to study a three-manifold M via the surfaces M contains then it

is useful to have a well-behaved set of surfaces. Hopefully this set will include all surfaces of

interest. We achieve this goal by picking a cell structure on M . The philosophy of normal

surface theory now requires that every surface under consideration intersect cells in the

simplest possible fashion.

Fix T , a triangulation of M . Let t be a tetrahedron of T and let f be a triangular

face of t. Define a normal arc in f to be an arc properly embedded in f with its endpoints

in distinct edges of f . A normal curve in ∂t is a simple closed curve, embedded in ∂t, which

is transverse to the edges of t and whose intersection with each face of t is a collection of

normal arcs.
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Figure 2.3: Normal disks

Define the length of a normal curve to be the number of normal arcs it contains.

A normal curve is short if its length is four or less. Otherwise it is long. Here are a few

standard facts about normal curves.

Lemma 2.5.2. Every normal curve α bounds a disk in ∂t containing 1 or 2 vertices. In

the former case the length of α must be three.

Lemma 2.5.3. If a nonempty normal curve α does not meet an edge of ∂t then α is short.

Lemma 2.5.4. All long normal curves have length a multiple of 4.

Each normal curve bounds a disk in t. Disks with boundary of length three are

normal triangles and those with boundary of length four are normal quadrilaterals or “nor-

mal quads.” Collectively the normal triangles and quads are referred to as the normal disks.

They are illustrated in Figure 2.3.

Definition. A surface S properly embedded in (M, T ) is called normal if it intersects each

tetrahedron of T in a collection of normal triangles and quads.

Definition. A surface S properly immersed in (M, T ) is called immersed normal if S has

no triple points and intersects each tetrahedron of T in an immersed collection of normal

triangles and quads.

A reasonable example to bear in mind is the union of a pair of normal surfaces

which meet transversely.

One of the main reasons why normal surfaces are interesting is:

Theorem 2.5.5 (Haken [5]). If F in an incompressible and boundary-incompressible

surface in (M, T ) then F is isotopic to a normal surface.
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2.6 Haken sum

To state stronger results along these lines we must discuss the elementary linear algebra

implicit in the definition of normal surfaces. See [5], [30], or the more recent paper [11].

Fix, for the remainder of this section, a triangulated three-manifold (M, T ). To

every one of the 7 · |T | types of normal disk we now assign a variable, xi, and thus fix once

and for all an order on the normal disk types. Given a normal surface, F , we obtain a

vector v(F ) of natural numbers, where the ith entry counts the number of normal disks of

that type. This is the coordinate vector of F .

If F1 and F2 are a pair of surfaces such that v(F1) + v(F2) = v(F ) then F is

realized as the Haken sum of F1 and F2. In this case we write F = F1 + F2. Any pair of

surfaces which have the property that their coordinate vectors may be added to obtain the

coordinate vector of another normal surface are called compatible.

Definition. A normal surface is fundamental if it cannot be realized as a nontrivial Haken

sum.

The following lemma is used throughout this thesis:

Lemma 2.6.1. There is a constant a1 ∈ N such that if (M, T ) is a triangulated three-

manifold and S ⊂ M is fundamental then w(S) < 2a1·|T |.

It suffices to take a1 ≥ 16. See Lemma 6.1 of [11] for a proof of this fact. There is

a yet stronger notion of indecomposibility:

Definition. A normal surface F is a vertex surface if every positive integer multiple of F

only decomposes as a sum of copies of F .

In many theorems it is possible to conclude that a particular surface is not only

fundamental, but is in fact a vertex surface. This is a desirable improvement as, given a

particular triangulation, there are often strictly fewer vertex surfaces and such are often

strictly less complex in their intersection with the one-skeleton. However, in this thesis

vertex surfaces will not play a major role.

Lemma 2.6.2. A triangulated three-manifold contains only finitely many fundamental nor-

mal surfaces.



CHAPTER 2. BACKGROUND MATERIAL 15

This follows immediately from Lemma 2.6.1. Nonetheless, Lemma 2.6.2 eventually

leads to many finiteness and algorithmic results in three-manifold topology. For example:

Theorem 2.6.3 (Jaco, Oertel [16]). If M is a Haken manifold, with triangulation T ,

then there is a 2-sided incompressible surface among either the fundamental surfaces or

their doubles.

This quickly leads to:

Corollary 2.6.4 (Jaco, Oertel [16]). There is an algorithm to decide whether or not an

irreducible three-manifold is Haken.

To see this one must understand that Haken sum is a geometric operation. Fix

(M, T ) a closed, triangulated three-manifold.

Definition. Suppose that F and G are normal surfaces in (M, T ). F and G intersect neatly

if they are compatible and the following conditions hold:

1. F and G intersect transversely.

2. F ∩ G intersects the two-skeleton of T transversely.

3. G minimizes the lexicographic complexity

(|F ∩ G′|, |(F ∩ G′) T 2|)

among all G′ normally isotopic to G such that F and G′ satisfy the first two conditions.

If F and G intersect neatly then the curves Γ = {F ∩ G} are regular curves of

intersection. The following lemma is an immediate consequence of our definitions:

Lemma 2.6.5. If α ∈ Γ is a regular curve of intersection then, for all t ∈ T 3, the connected

components of α ∩ t are arcs properly embedded in t. Each of these has its two endpoints

on distinct faces of t.

See Figure 2.4 for some of the ways F ∪ G may intersect a triangle of the two-

skeleton.

Note that there is a natural cut-and-paste operation on each curve in Γ which

is completely determined by the intersection of F ∪ G with the two-skeleton. These are

called regular exchanges. See Figure 2.5 and [16]. Note further that if a regular exchange

is performed on an intersecting pair of normal disks then another pair of normal disks, of

the same type, is obtained.
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Figure 2.4: Intersecting surfaces

Figure 2.5: Regular exchanges

Lemma 2.6.6. Suppose the F and G meet neatly. The surface obtained by doing regular

exchanges along Γ is normally isotopic to F + G.

Proof. Let H be the surface obtained by doing regular exchanges. It is enough to show

that H is normal. This is because F + G is normal and two embedded normal surfaces are

normally isotopic if and only if they have the same weight on each edge of the one-skeleton.

Fix a tetrahedron t ∈ T 3. Again, it is enough to show that t ∩ H is an embedded

collection of normal disks. This is easily done by inducting on the number of normal arcs

in F ∩ ∂t.

The same proof gives:

Lemma 2.6.7. Suppose the F and G meet neatly. The surface obtained by doing regular

exchanges along Γ′ ⊂ Γ is an immersed normal surface.

Carrying out the other cut-and-paste operation is called performing an irregular

exchange and is depicted in Figure 2.6.
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Figure 2.6: Irregular exchanges

F

G

γ

Regular exchange

Cγ

Figure 2.7: The exchange band for γ.

Let γ be a curve of Γ and set N = ηM (γ), A = N∩F , and B = N∩G. Since N is an

I2-bundle over γ we may assume that F ∪G locally cuts N into four pieces, N0, N1, N2, N3.

Then the Ni ∩ fr(N) are locally the four sides of the square fibre: I × 0, 1 × I, I × 1, and

0 × I.

Suppose that the regular exchange along γ is obtained by replacing A ∪ B by

(0× I)∪ (1× I). After performing the regular exchange there is an exchange band Cγ such

that Cγ ’s intersection, locally, with the square fibre is I × 1/2. This band is an I-bundle

over γ and thus is either a disk, annulus, or Mobius strip. See Figure 2.7.

Remark 2.6.8. In the case where Cγ is a Mobius band, both A and B are as well. If Cγ

is an annulus then both of A and B are annuli. That is, γ always preserves orientation in

M regardless of the orientability of M . This follows because F and G are distinct and γ

admits a regular exchange.

Definition. If F and G are normal and meet neatly then the curves of

Γ′ =
{
∂Cγr∂M | γ ∈ Γ

} ⊂ F + G
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Regular exchange

Figure 2.8: Alternation of patches

are called the seams (or trace curves) of F + G.

Definition. The connected components of (F + G) Γ′ are called the patches of F + G.

Remark 2.6.9. Note that the patches of F + G are labeled by the surface, F or G, which

the patch comes from and that this labeling alternates as a seam is crossed.

Remark 2.6.10. Notice that if we choose a transverse orientation for a exchange annulus or

disk A of H = F +G then we will obtain a induced transverse orientation on ∂Ar∂M ⊂ H.

This induced orientation points to a patch coming from F along one boundary component

while pointing to a patch of G along the other boundary component. See Figure 2.8. This

trick will even work for a boundary compressible Mobius strip: Double the Mobius strip

to obtain an annulus, A. Transversely orient A so that the orientation points away from

the Mobius strip and towards D, the boundary compressing disk. Again, the transverse

orientation on the two ends of A point into differently labeled patches. This merely reflects

the fact that the boundary of the Mobius strip is two-sided in H and the arc D∩H connects

the two sides.

Remark 2.6.11. It follows from the above discussion that if two normal surfaces F and G

can be made disjoint by a normal isotopy then they are compatible. The sum F + G is the

disjoint union of F and G if and only if such an isotopy exists.

We end this section with a notion due to Jaco and Rubinstein [17] and, indepen-

dently, Casson.

Definition. If (M, T ) is a closed triangulated three-manifold then we say T is 0-efficient or

simply efficient if every normal two-sphere in M is the boundary of a regular neighborhood

of a vertex of T 0. Such two-spheres are called vertex links.



CHAPTER 2. BACKGROUND MATERIAL 19

Figure 2.9: Almost normal pieces

Remark 2.6.12. Note that the only orientable prime three-manifolds which do not admit

such triangulations are RP3 and S2 × S1. This is due to Jaco and Rubinstein [17] and may

also be found in unpublished work of Casson’s. Jaco and Sedgwick [19] have further shown

that all other lens spaces (including S3) admit infinitely many efficient triangulations.

Remark 2.6.13. As shown in Lemma 4.1.4 if M is a closed, efficiently triangulated three-

manifold with more than one vertex then M is homeomorphic to the three-sphere. Jaco

and Segdwick [19] have given an argument to prove that an efficient triangulation of S3 has

at most two vertices; Ben Berton has given an infinite collection of such triangulations of

S3 [15].

2.7 Almost normal surfaces

In order to capture certain behaviors we often allow surfaces to intersect the tetrahedra in

a more varied fashion. This leads us to consider the almost normal surfaces introduced by

Pitts and Rubinstein.

The almost normal pieces shown in Figure 2.9 are one of the three almost normal

octagons and one of twenty-five almost normal annuli. The tubes of the almost normal

annuli are required to be unknotted and parallel to an edge of the containing tetrahedron.

Definition. A surface properly embedded in M is almost normal if it intersects all tetrahe-

dra but one in normal disks and it meets the exceptional tetrahedron in exactly one almost

normal piece (and possibly some normal disks.)

Note that the linear algebra of normal surfaces carries through essentially un-

changed for almost normal surfaces. We simply add variables for the almost normal pieces.
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All of the notions regarding Haken sum and regular exchange are defined identically as

above and the same lemmata are obtained.

The usefulness of almost normal surfaces is underlined by three theorems of Ru-

binstein:

Theorem 2.7.1 (Rubinstein [28], Stocking [32]). Fix (M, T ), a closed orientable tri-

angulated three-manifold. Every strongly irreducible Heegaard splitting of M is isotopic to

an almost normal surface.

Theorem 2.7.2 (Rubinstein [28]). Fix (M, T ), a closed orientable atoroidal triangulated

three-manifold and choose a number g ∈ N. Then there are only finitely many strongly

irreducible Heegaard splitting surfaces of genus g.

Theorem 2.7.3 (Rubinstein [28], Thompson [33]). There is an algorithm to decide

whether or not a given a closed, triangulated three-manifold (M, T ) is homeomorphic to the

three-sphere.

Remark 2.7.4. It should be noted that Thompson’s proof of Theorem 2.7.3 introduced

the idea of placing the one-skeleton of a triangulated three-manifold in thin position with

respect to a product structure. Stocking’s proof of Theorem 2.7.1 relies heavily on this

technique as does our Chapter 6.

Remark 2.7.5. A stronger version of Theorem 2.7.2, which does not rely on normal surface

theory, was previously obtained in the Haken case by Johannson [21]. The genus two

hyperbolic case has been obtained by Hass [9].
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Chapter 3

The Distance Conjecture

This chapter is aimed at obtaining the following theorem:

Theorem 3.0.1. For every closed orientable three-manifold M there is a constant b1(M) ∈
N such that if H ⊂ M is a Heegaard splitting with genus greater than b1(M) then d(H) ≤ 4.

This somewhat technical result leads directly to:

Theorem 3.0.2. Let M be a closed orientable three-manifold. Then, up to isotopy, there

are only finitely many Heegaard splittings of M with distance greater than 4.

Proof. Fix H in M , a Heegaard splitting of distance 5 or higher. Lemma 2.2.5 implies that

M is atoroidal. Theorem 3.0.1 implies that the genus of H is less than or equal to b1(M).

But by Theorem 2.7.2 the manifold M contains only finitely many Heegaard splittings, up

to isotopy, of any given genus. The conclusion follows.

As we will see in Chapter 7 more can be said about the distance of a splitting

given some information about its almost normal structure. Nonetheless, I cannot currently

answer the following:

Question. Can the constant in Theorem 3.0.2 be reduced to 2? That is, does M have only

finitely many filling splittings, up to isotopy?

If true this would be sharp; there are Haken manifolds with infinitely many non-

isotopic distance two splittings.
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Tip

Rectangle

Hexagon

Figure 3.1: The skeletal faces

Remark 3.0.3. Suppose that T is a triangulation of M . The ideas of this chapter yield a

rough counting argument which shows that if the genus of H is greater than 172 · |T | + 80

then H has distance less than 5. This bound on genus can probably be lowered.

Even better would be an answer to:

Question. Must all filling splittings of M be minimal genus splittings?

3.1 Blocks

This section develops the definitions required to prove Theorem 3.0.1.

3.1.1 On the blocks

Fix H ⊂ (M, T ) a normal or almost normal surface. Let f ∈ T 2 be a face of the two-

skeleton. Then, in general, f H is divided into three kinds of connected component: Any

component meeting a vertex and exactly two edges of f is a tip. Any component meeting

no vertices and two edges is a rectangle. All other components are called hexagons. See

Figure 3.1. As we often need to discuss collections of these components we give them the

general name of skeletal faces.

If t ∈ T 3 is a tetrahedron then the possibilities for t H are more varied:

Definition. A connected component of t H is called a block. If a block, B, is adjacent to

exactly two normal disks of H of identical type then B is a product block. All other blocks

are called core blocks.
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The product blocks

A few core blocks

Figure 3.2: Some of the possible blocks
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See Figure 3.2 for pictures of the two product blocks and six of the 52 possible

core blocks. In the figures I have shaded some of the faces — these are the faces which lie

in the surface H.

Definition. If B is a block then the faces B ∩ H are called the superficial faces of B.

A block is exceptional if one of its superficial faces is an almost normal octagon or

annulus.

Note that the product blocks receive a cell structure in t which is identical to the

cell structure on N × I; here N is the corresponding normal disk. Take ι : t → M to be the

natural map of t into M and take B ⊂ t to be a product block. It follows that ι(B) is an

I-bundle over ι(N × 1/2). Note that ι(B) is not necessarily a product.

We adopt the following naming convention: any block which is not exceptional,

i.e. not adjacent to an almost normal piece of H, and which does not contain a vertex of

t is called a 5, 6, 7, or 8-sided block, depending on the total number of faces of the block.

Again, see Figure 3.2. These blocks may be familiar to the reader of Haken’s paper [6] where

product blocks are referred to as “good regions” and the other non-exceptional blocks are

referred to as “bad regions.”

3.1.2 Blocked submanifolds

We will need to consider two kinds of submanifold of (M, T ).

Definition. A three-dimensional submanifold V ⊂ M is blocked if V is realized as a union

of blocks and frM (V ) is a normal or almost normal surface.

If X is contained in V , a blocked submanifold, and there exists a union of blocks

X̂ ⊂ V such that X = X̂ frV (X̂) then X is a shrunken submanifold of V . Note that if X

is shrunken inside of V then X uniquely determines and is uniquely determined by X̂.

We will use the following lemma heavily:

Lemma 3.1.1. There is a constant b2 ∈ N such that if V is any blocked submanifold of any

(M, T ), X is any shrunken submanifold of V , and B′ is any block of X̂ then Y = X B′

is also shrunken and χ(Y ) ≤ χ(X) + b2.

Proof. The submanifold Y is clearly shrunken, as Ŷ = X̂rB′ is the required union of blocks.
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Let B = X ∩ η(B′) and let A = Y ∩ B. Note that B equals B′ after shrinking

slightly along the skeletal faces of B′ which are in frV (X̂) and expanding slightly across all of

B′’s other skeletal faces. As X = Y ∪B, A = Y ∩B, and X, Y , A, and B are all compact and

cellular we have χ(X) = χ(Y )+χ(B)−χ(A). Rearranging gives χ(Y ) = χ(X)+χ(A)−χ(B).

We will show that the quantity χ(A) − χ(B) is bounded above by bounding the

number of combinatorial types of A and B:

• There are only finitely many possibilities for the block B′.

• There are only finitely many possibilities for the map ι : B′ → (M, T ).

• For every open cell σ ⊂ B′ either ι(σ) is in fr(X̂) or it is not. Also, for each σ, there are

only finitely many possibilities for the preimage ι−1(ι(σ)) and the associated gluing

data.

These choices determine A and B completely. Since there are only a finite number

of possible results, regardless of M , T , V and X, we are done.

Another constant merits attention: Let b3 = max{n ∈ N | n is the number of

skeletal rectangles of some block B}. As we will see in the proof below, if T is a minimal

triangulation of M , it suffices to take b1(M) greater than 8(5b2 + b3 + 16) · |T | + 1.

3.2 The proof

As a bit of notation, if X is an I-bundle, then let πX : X → X/∼ be the natural projection

map.

If Y is a shrunken submanifold of a blocked manifold V then take ∂V Y = Y ∩fr(V );

this is the superficial boundary of Y . When Y is also an I-bundle then the superficial

boundary is referred to as the horizontal boundary of Y while frV (Y ) is the vertical boundary.

If α is arc or curve embedded in Y/∼ then π−1
Y (α) is a vertical surface in Y . All of the

connected components of ∂V Y ∩ frV (Y ) are called corners of Y .

We now are equipped to prove Theorem 3.0.1: that is, we can now show that if

the genus of a Heegaard splitting is sufficiently large then the splitting has small distance.

Proof. Fix M , a closed, orientable three-manifold and let T be a minimal triangulation of

M . Let H be a Heegaard splitting of M . Note that if H is weakly reducible then H has

distance less than 2 and we are done. Assume, therefore, that H is strongly irreducible.
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Using Theorem 2.7.1 isotope H to be normal or almost normal with respect to T .

Cut along H to obtain M H = V q W , a disjoint union of blocked handlebodies. Recall

that χ(V ) = χ(W ) = 1 − g(H).

Remove all of the core blocks from V to obtain the shrunken submanifold VI which

is the “I-bundle part” of V . Define WI similarly. As |T | ≥ 1 and V contained at most

6 · |T |+ 2 core blocks χ(VI) ≤ χ(V ) + 8 · |T |b2 by Lemma 3.1.1. Also, frV (VI) inherits a cell

structure from frV (V̂I) which is a union of skeletal rectangles. Thus |frV (VI)| ≤ 8 · |T |b3.

VI is not yet small enough. Remove from VI all product blocks of V̂I which are

adjacent to a core block of W ; call the shrunken submanifold obtained X. Again, X is

produced by removing all product blocks of V̂I which are adjacent across a superficial face

to a core block.

As each core block has at most four normal superficial faces, by Lemma 3.1.1,

χ(X) ≤ χ(VI) + 4(8 · |T |)b2. Similarly, as each product block contains at most four skeletal

rectangles, |fr(X)| ≤ |fr(VI)| + 16(8 · |T |).
Let Q = X/∼ be the base space for the I-bundle X. Define Q′ to be the surface

obtained by capping off all of Q’s boundary components with disks. We compute:

χ(Q′) = χ(Q) + |∂Q|
= χ(X) + |fr(X)|
≤ χ(VI) + |fr(VI)| + (4b2 + 16)(8 · |T |)
≤ χ(V ) + (5b2 + b3 + 16)(8 · |T |)
≤ 1 − g(H) + (5b2 + b3 + 16)(8 · |T |).

We deduce if g(H) > 8(5b2+b3+16)|T |+1 then χ(Q′) is strictly negative. Assume

that the genus of H is at least this large. It follows that Q′ is non-empty and contains as

a subsurface a once-punctured torus T2 D2. We may assume that this torus lies inside of

Q.

To be concrete, let R equal the connected component of Q which contains the

punctured torus and let Y = π−1
X (R). Note that Y is again a shrunken submanifold of V .

Let α and α′ be any pair of curves in this torus summand of R such that |α ∩ α′| = 1. Let

A = π−1
Y (α) and A′ = π−1

Y (α′) be the vertical annuli lying above α and α′.

Using A′ it is easy to deduce that A is not boundary parallel into H and that
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∂A is essential in H. That is, A is disk-like. See also Lemma 5.1.2. Thus A compresses

or boundary compresses in V yielding an essential disk, DA. Note that DA ∩ A = ∅. A

similar construction gives a disk-like vertical annulus B ⊂ WI and a disjoint essential disk

DB ⊂ W .

Let Z be the connected component of WI which contains B. Let Γ be the set of

corners of Z. B is disjoint from the corners of Z because B is vertical inside of Z. The

annulus A is disjoint from Γ by the definition of the shrunken submanifold X.

Claim. There is a corner of Z, γ ∈ Γ, which is essential in H.

Suppose not. Then every γ ∈ Γ bounds a disk D ⊂ H. These disks do not contain

the horizontal boundary of Z because ∂W Z is nonplanar.

Note that every component of frW (Z) is a vertical annulus because each such

component is two-sided in W . Let C be such a vertical annulus in frW (Z) with ∂C = γ q γ′.

Let D, D′ be the subdisks of H which γ, γ′ bound. Thus S = D ∪ C ∪ D′ is a two-sphere

embedded in W . As W is irreducible S bounds a three-ball, U ⊂ W . Note that U ∩Z = C

as B cannot be contained in U .

The ball U admits an I-bundle structure over D2 where D ∪ D′ is the horizontal

boundary, C is the vertical boundary, and the induced fibration of C agrees with the

fibration of C coming from the I-bundle structure on Z. Thus Z ∪U is again an I-bundle.

In this way cap off all of the vertical boundary components of Z with I-bundles

over D2. It follows that W is homeomorphic to an I-bundle over a closed surface. This

contradiction establishes the claim.

Let γ ∈ Γ be an essential corner of Z. Then,

DA ∩ A = A ∩ γ = γ ∩ B = B ∩ DB = ∅.

It follows that the distance of H is four or less.

Remark 3.2.1. It is possible to improve this 4 to a 3 with a finer analysis. I plan to present

this stronger theorem in a later paper.

Remark 3.2.2. There is a folk-lore theorem that a closed three-manifold contains only

finitely many acylindrical surfaces. A proof of this proceeds along the same lines as the

above — however we no longer need worry about producing the annulus B or the curve γ.

Theorem 2.7.2 is replaced by a similar result for incompressible surfaces (see Corollary 2.3

of [16].)
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Chapter 4

Tightening Almost Normal

Surfaces

This chapter investigates a technique for obtaining, from a given almost normal

surface, a compression body with many pleasing properties. Our technique, the tightening

sequence, is a specialization of Haken’s normalization procedure to the case of almost normal

surfaces.

As a justification of this seeming repetition, note that if the almost normal surface

in question is compressible (as in the case of a Heegaard splitting) then we are not so

interested in the normal surface obtained via Haken’s procedure. Instead, we most likely

are interested in how the surface compresses. Also, we wish to control the complexity of the

compressing disk. Our main theorem, exactly capturing this notion, is stated in the first

section after a technical preliminary.

It should be remarked that our theory has many formal similarities to the theory of

barrier surfaces and shrinking as developed by Jaco and Rubinstein in [17]. They deal with

a far wider range of surfaces. However, by restricting ourselves to almost normal surfaces

we obtain more sensitive information in the form of the canonical compression body. See

Section 4.1.1. The interested reader should consult both the chapter that follows as well as

their paper.

Finally, I should point out that our Corollary 4.2.2 only became clear to me after

early conversations with Professor Jaco on this subject.
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4.1 Constructions

4.1.1 Canonical compression bodies

Let S ⊂ M be a closed transversely oriented surface. Let VS be the set of all compression

bodies V based over S such that ∂−V = ∂V r(S×0) is normal. If we only consider elements

of VS up to normal isotopy then there is a natural partial order on the set VS . Namely,

V ≤ V ′ if V ⊂ V ′, perhaps after a normal isotopy. Note that the product neighborhood

S × I is only an element of VS when S itself is normal.

We may now state the main theorem of this chapter:

Theorem 4.1.1. Let S ⊂ M be a transversely oriented almost normal surface. Then the

partially ordered set VS has a unique minimal element.

This is proved in Section 4.2.2. However, we may immediately deduce Lemma 1

of [32]:

Lemma 4.1.2. Suppose that T is a one-vertex triangulation of M , a three-manifold. Let

S ⊂ M be a closed, two-sided, almost normal surface which is incompressible on one side.

(∗) Assume that M is efficiently triangulated and S is not a sphere. Then there is an

embedding F : S × I → M with the following properties:

1. F(S × 0) = S.

2. F(S × 1) is normal.

3. F(S × I) is on the incompressible side of S.

Proof. Choose the transverse orientation on S so that it points towards the incompressible

side. Let V be the unique minimal element supplied by Theorem 4.1.1. We have ∂−V = {S′

together with a collection of normal spheres}, where S′ is homeomorphic to S and, by

efficiency, all of the normal spheres are vertex links. It follows that there is at most one

copy of each vertex link.

We may cap off these spheres (if they occur) with regular neighborhoods of the

relevant vertices. Note that these neighborhoods do not intersect S′ because S′ is a not

a sphere and thus contains normal quads. Call the capped off compression body V ′. V ′

admits the desired product structure by the incompressibility of S and we are done.
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Remark 4.1.3. The technical assumption (∗) in the lemma above may be replaced by the

following: M is irreducible and S is not contained in a three-ball which is embedded in M .

At this point we can also show that most efficient triangulations have exactly one

vertex.

Lemma 4.1.4. Suppose that (M, T ) is an efficiently triangulated closed three-manifold. If

|T 0| > 1 then M is homeomorphic to S3.

Proof. As M is connected, so is T 1. Suppose that x and y are distinct vertices of T 0 which

are connected by an edge, e ∈ T 1. Let Sx and Sy be the vertex links about x and y ,

respectively. Let t be a tetrahedron adjacent to e. Connect Sx to Sy by an unknotted tube

which is parallel to e inside of t. Call the almost normal two-sphere obtained S.

By Theorem 4.1.1, there is a pair of canonical compression bodies, V and W ,

based on S’s head and tail. Each of these is homeomorphic to a three-ball, perhaps with

a collection of smaller three-balls removed; i.e. is a “punctured three-ball.” Also, the

boundary of V ∪ W is a collection of vertex links. It follows that M ∼= S3.

Remark 4.1.5. This is a version of Thompson’s Lemma 2 in [33].

4.1.2 Non-normal surfaces and surgery

Let S be a surface properly embedded in a triangulated three-manifold M . Assuming that

S is transverse to the skeleta of M we will characterize some of the ways S can fail to be

normal.

A bent arc of S in a triangle f ∈ T 2 is a properly embedded arc of S ∩f with both

of its endpoints contained in a single edge of f . Also, a simple curve a properly embedded

closed curve of S ∩ f in the interior of f . Both of these are drawn in Figure 4.1. Outermost

bent arcs and innermost simple curves of S in f are defined in the natural way.

Definition. An embedded disk D is a tightening disk for S if ∂D = α∪β where D∩S = α,

D ∩ T 1 = β and β does not meet T 0.

There is a tightening isotopy of S across D: Push, via ambient isotopy of S, α

along the disk D until we have moved α past β. This procedure reduces w(S) by exactly

two. Note that any outermost bent arc of S determines a tightening disk.
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Figure 4.1: Non-normal curves

Definition. An embedded disk D is a surgery disk for S if ∂D = α is embedded in S,

D ∩ S = α and D ∩ T 1 = ∅.

We may surger S along D: Remove a small neighborhood of α in S and cap off

the boundaries thus created with disjoint, parallel copies of D. Any innermost simple curve

of S ∩ T 2 determines a surgery disk. Note that we do not require α to be essential in S.

Suppose S contains an almost normal octagon. There are two tightening disks

on opposite sides of the octagon both giving tightening isotopies of S to a possibly non-

normal surface of lesser weight. (A more complete description is given in [33].) These are

the exceptional tightening disks . If S contains an almost normal annulus then the tube is

parallel to at least one edge of the containing tetrahedron. For every such edge there is an

exceptional tightening disk. Also, the disk which surgers the almost normal annulus is the

exceptional surgery disk.

4.1.3 Tightening sequences

In this section we define this chapter’s main tool, the tightening sequence.

Suppose that S is a transversely orientable almost normal surface with respect to

some triangulation of M . We wish to isotope S off of itself while reducing the weight of S as

efficiently as possible. We will later analyze the tracks of these isotopies and show that they

yield bridge position for part of the one-skeleton and give rise to “nice” blockedsubmanifolds.

As S has at most one exceptional surgery disk choose a transverse orientation for

S which points towards an exceptional tightening disk, D.

We construct a tightening map:

1. Thicken S to obtain F0 : S × I → M . Note that F0(S × 0) = S. Set F0 = F0(S × 1).

F0 is almost normal, transversely oriented, and has an exceptional tightening disk,
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D′ = D F0, which does not intersect the image of F0.

2. Do a small normal isotopy of F0 in the transverse direction. Tighten F0 along D′ to

obtain a possibly non-normal surface F1. Extend F0 to F1, with F1 = F1(S × 1). F1

inherits a transverse orientation from F0.

3. Let i ∈ {1, 2, 3, . . .}. If Fi has no outermost bent arc with transverse orientation

pointing towards a tightening disk D then the construction is complete. Otherwise

extend Fi to Fi+1 by doing a small normal isotopy of Fi in the transverse direction and

then tightening Fi across D. This produces Fi+1 together with its induced transverse

orientation.

Remark 4.1.6. As w(Fi+1) = w(Fi) − 2 this process terminates.

Let Fn be the last surface produced.

Definition. The map F = Fn : S × I → M is called a tightening map. The tightening

sequence corresponding to S and F is comprised of the ordered collection of tightening disks

which were used to produce F .

By construction F(S × 0) = S. We may assume that each Fi in the construction

is represented by some ri ∈ I, i.e. F(S × ri) = Fi and rn = 1. Thus Fi = F|[0, ri].

4.2 Building a compression body

4.2.1 Tracking an isotopy

In this section we analyze how F intersects the skeleta of the triangulation. Let S ⊂ M be a

transversely oriented almost normal surface. Let F , Fi, and Fi be as defined in Section 4.1.3.

In Figures 4.2 and 4.3 we display a few of the possible types of intersection,

image(Fi) ∩ T 2, were Fi an embedding. Abusing notation we have:

Definition. The shaded regions in Figures 4.2 and 4.3 are called skeletal faces.

Lemma 4.2.1 below shows that this collection is complete up to symmetry. Note

that the arcs bounding the skeletal faces receive a transverse orientation from the surface

they lie in. Arcs of S are always pointed towards while arcs of Fi are pointed away from by
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Critical Temporary

Terminal Terminal

Figure 4.2: Rectangles

the transverse orientation. The two faces with a normal arc of Fi are called critical. Those

with a bent arc are called temporary while the rest are called terminal.

As we will see, the critical skeletal faces can be combined in various ways while a

temporary face always results in a terminal face which is stable. Note also that there is a

second critical rectangle which “points upward.” The non-critical faces may be foliated by

Fi in multiple ways, depending on the order of the tightening disks in the sequence.

Lemma 4.2.1. The tightening map F : S × I → M is an embedding. Furthermore,

Fn = F(S×1) only intersects the two-skeleton in normal arcs and innermost simple curves.

The latter must have transverse orientation pointing toward the bounded surgery disk.

Proof. We will show by induction that for all i;

1. Fi is an embedding.

2. For every f ∈ T 2 the connected components of image(Fi) ∩ f are given, up to sym-

metry, by Figures 4.2 and 4.3.

These claims hold trivially for i = 0, as all components of image(F0) ∩ f are critical rect-

angles.
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Critical Temporary

Terminal Terminal

Figure 4.3: Hexagons

Suppose that they hold at i = k. We now verify the first claim for i = k + 1:

Suppose that α is the bent arc on the boundary of D, the next tightening disk in the

sequence. If interior(D) meets image(Fk) then by the second induction hypothesis some

skeletal face, s, of image(Fk) must meet the interior of D. It follows that the interior of s

must meet α. Thus Fk was not an embedding, a contradiction.

It follows that D ∩ image(Fk) = α. Since the k + 1th stage of the isotopy is

supported in a small neighborhood of D it follows that Fk+1 is an embedding.

The transverse orientation on Fk gives rise to a transverse orientation on Fk+1.

To verify the second claim we list the possible situations arising in a single triangular face

f ∈ T 2. Note that a collection of two or more skeletal faces may be combined only if each

of the faces contains a normal arc of Fk:

1. Two critical rectangles may be combined to produce a temporary rectangle, a terminal

rectangle with a hole, or a critical hexagon.

2. Three critical rectangles may be combined to produce a temporary hexagon or a

terminal hexagon with a hole.

3. A critical rectangle and critical hexagon may be combined to produce a temporary

hexagon or a terminal hexagon with a hole.
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4. A temporary face can lead to either terminal face.

This completes the induction step.

Now, by maximality of the tightening sequence, Fn = F(S × 1) has no outermost

bent arcs with outward orientation. Fn ∩ T 2 cannot contain a bent arc with inward orien-

tation, a simple curve with outward orientation, or a non-innermost simple curve as that

would violate the classification of skeletal faces.

Given that F is an embedding, in the sequel image(Fi) is denoted by Fi.

Corollary 4.2.2. If S′ is any normal or almost surface in M which does not intersect the

exceptional tightening disk of S then F ∩ S′ = ∅, perhaps after a normal isotopy.

Proof. By hypothesis, we may tighten along the exceptional tightening disk of S and obtain

an embedding, F1. We now proceed as in Lemma 4.2.1.

Note that F naturally imposes a product structure on the pair (M, M F), as

defined in Section 2.4. This allows us to examine the intersection of F with the one-skeleton.

Lemma 4.2.3. T 1 ∩ F meets the nontransverse levels of F only in maxima.

Proof. Lemma 4.2.1 shows that F gives a foliation of some submanifold of M . The second

induction hypothesis shows that any bent arc of any Fi is outermost and has a transverse

orientation pointing toward its tightening disk. It follows that all nontransverse levels occur

at maxima of the one-skeleton with respect to F .

Let t be any tetrahedron in the given triangulation of M .

Lemma 4.2.4. For all i, t Fi is a disjoint collection of balls.

Proof. Again we use induction. Our induction hypothesis is as follows: t Fi is a disjoint

collection of balls, unless i = 0 and t contains the almost normal annulus of S.

Let B be a component of t Fk. There are two cases to consider. Either B is cut

by an exceptional tightening disk or it is not. Assume the latter. After the k + 1th stage of

the isotopy B ∩ Fk+1 is a regular neighborhood (in B) of a collection of disjoint arcs and

disks in ∂B. Hence B Fk+1 is still a ball.

If B is adjacent to the almost normal piece of F0 then let D be the exceptional

tightening disk. Set Bε = B D. Each component of Bε is a ball, and the argument of the

above paragraph shows that they persist in the complement of F1.
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A similar induction argument proves:

Lemma 4.2.5. For all i, t ∩ Fi is a disjoint collection of handlebodies.

This lemma is not used in what follows and its proof is accordingly left to the

interested reader. Recall that ∂Fi = S ∪ Fi. A trivial corollary of Lemma 4.2.4 is:

Corollary 4.2.6. For all i, the connected components of t ∩ Fi are planar.

The connected components of t ∩ Fn warrant closer attention:

Lemma 4.2.7. Each component of t ∩ Fn has at most one normal curve boundary compo-

nent. This normal curve must be short.

Proof. Let t ∈ T 3 be a tetrahedron. Let P be a connected component of t ∩ Fn. By

Lemma 4.2.1 ∂P is a collection of simple curves and normal curves. Let α be any normal

curve in ∂P . Let {αj} be the normal arcs of α.

Claim. α has length 3 or 4.

By the definition of a critical face, each αj lies on a critical rectangle or hexagon.

If no αj is on a hexagon, then α is parallel to a normal curve β ⊂ S. The first step of the

tightening procedure prevents β from being a boundary of the almost normal piece of S. It

follows that α must be short.

Otherwise α1 is on the boundary of a critical hexagon h ⊂ f . Let β be a normal

curve of S incident on h and let β1 ⊂ β be one of the normal arcs in ∂h. Let e be the edge

of f which α1 does not meet. This edge is partitioned into three pieces; eh ⊂ h, e′, and e′′.

We may assume that β1 separates eh from e′. Note that a normal curve of length ≤ 8 has

no parallel normal arcs in a single face. Thus β meets e′ exactly once, at an endpoint of e′.

Since α and β do not cross it follows that β separates α from e′ in ∂t.

Similarly, α is separated from e′′. Thus α does not meet e at all. Lemma 2.5.3

implies that α is short.

Claim. P , the component of Fn ∩ t in question, has at most one boundary component

which is a normal curve.

Suppose that P has two such: α and β. Let A be the annulus cobounded by α and

β in ∂t. Suppose the transverse orientation Fn induces on α points away from A. There

are several cases, depending on the length of α and the types of skeletal faces to which α is

adjacent.
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1. Suppose α has length three:

(a) If α meets only critical rectangles then a normal triangle of S separates α from

β.

(b) If α meets one critical hexagon then the almost normal octagon and the excep-

tional tightening disk together separate α from β.

(c) If α meets two critical hexagons then either a normal triangle or normal quad of

S separates α from β.

(d) If α meets only critical hexagons then a normal triangle of S separates α from

β.

2. Suppose α has length four:

(a) If α meets only critical rectangles then a normal quad of S separates α from β.

(b) If α meets one critical hexagon then S could not have been an almost normal

surface.

(c) If α meets two critical hexagons then a normal triangle of S separates α from β.

In all cases except 1(b) and 2(b), observe that S ∩ P 6= ∅ and thus S ∩ Fn 6= ∅.
This contradicts the fact that F is an embedding (Lemma 4.2.1.) In case 1(b), P must

intersect either S or the exceptional tightening disk whereas in case 2(b) S could not have

been almost normal. Both are impossible.

We deduce that the transverse orientation which Fn gives α must point toward A.

Let γ be an arc which runs along P from α to β. Let α′ be a push-off of α along A, towards β.

This push-off bounds a disk in one of the components of t F , by Lemma 4.2.4. This disk

does not intersect P ⊂ Fn ⊂ F and hence fails to intersect γ. This is a contradiction.

Remark 4.2.8. By Lemma 4.2.1 all simple curves of Fi are innermost. It follows that

the “tubes” analyzed in the lemma above do not run through each other. Furthermore,

Lemma 4.2.5 implies that these tubes are unknotted, but this fact is not needed in the

sequel.

We have a corollary which is easy to deduce from Lemma 4.2.4, Lemma 4.2.7, and

Corollary 4.2.6:

Corollary 4.2.9. The surface obtained by surgering all simple curves of Fn is a disjoint

collection of two-spheres, disjoint from the two-skeleton of T , and normal surfaces.
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4.2.2 Main theorem and corollaries

In this section we give the proof of Theorem 4.1.1 and a few curious corollaries.

Proof. (of Theorem 4.1.1) There are two cases: If the surgery disk of the almost normal

annulus is on S’s head then thicken S and attach a thickened copy of the exceptional surgery

disk, D, to obtain the submanifold V . We must show that V is the desired minimal element

as defined in Section 4.1.1.

Let V ′ be any other compression body in VS . Note that ∂−V ′ is normal and

disjoint from S ∪ D. It follows that we may normally isotope V inside of V ′.

Now suppose that there is a tightening disk above S. Let F be the tightening map.

We attach thickened surgery disks along every simple curve of Fn. As in Corollary 4.2.9,

this cuts Fn into surfaces which are either normal or contained in a single tetrahedron.

The latter are all spheres by Lemma 4.2.4 so we may cap them off with balls. Call this

compression body V .

Again, suppose that V ′ is another element of VS . Let F ′ = ∂−V ′. By Corol-

lary 4.2.2 we may assume that F ′ ∩ F = ∅. Also, as F ′ is normal it cannot meet the given

surgery disks of Fn. It follows that F ′ is disjoint from V and we are done.

Let S be a separating almost normal surface containing an almost normal oc-

tagon. There are two exceptional tightening disks, one above and one below S. These allow

us to construct a pair of product structures, F+ and F−. These intersect only at S by

Lemma 4.2.1. Let FS = F+ ∪ F−.

Lemma 4.2.10. Let T be a one-vertex efficient triangulation of M . Suppose that M con-

tains S, an almost normal two-sphere with exceptional piece an octagon. Then M = S3 and

FS is isotopic (rel T 1) to a product structure realizing bridge position for K = T 1 ∩ FS.

Proof. By Theorem 4.1.1, we can form the minimal compression bodies above and below S.

Call these V and W respectively. Since both of these must have normal boundary consisting

of a disjoint union of spheres we may assume that V has normal boundary equal to the

vertex link and W has empty normal boundary. Since S was not contained in B, a regular

neighborhood of the vertex, we see that M = V ∪ W ∪ B and conclude that M = S3.

Remove the last ball which was added to W . Note that V and W are homeomor-

phic to S2 × I and that both are alterations of F± only off of a regular neighborhood of
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the one-skeleton. It follows that F± are isotopic to V and W via an isotopy fixing T 1. By

Lemma 4.2.3, K must be in bridge position with respect to FS and we are done.

Theorem 4.2.11. Suppose that T is an efficient, one-vertex triangulation of S3. Then any

thin position of the one-skeleton realizes bridge position.

Proof. Suppose that T is an efficient triangulation of S3. Let F be a product structure on

(S3, B ∪B′) where B is a regular neighborhood of the unique vertex and B′ is a small ball

inside some tetrahedron. Assume that F realizes thin position of K = T 1∩ (M (B∪B′)).

Suppose there exists a minimum at level Fb immediately above a maximum at level Fa.

That is, F|[a, b] is a thin region.

By Claims 4.1 – 4.5 of Thompson’s paper [33] there is a level F ′ in the first thick

region of F which contains (after surgering F ′ along simple curves and possibly other surgery

disks each contained in the interior of a tetrahedron) a connected component which is an

almost normal sphere S. Since none of the surgery disks meet the one-skeleton we have

w(S) ≤ w(F ).

Now we must estimate the width of F . Suppose that the number of edges in the

one-skeleton is k. The weight of F0 = ∂B is 2k. Recalling that there is a minimum above

F ′, we have:

w(F) ≥ (w(F ′) + (w(F ′) − 2) + . . . + 2k) + ((w(F ′) − 2) + . . . + 2) + 4

The +4 in the above sum is contributed when the weight goes up at the minimum at level

Fb.

As above consider FS . By Lemma 4.2.10, FS can be isotoped (rel T 1) until it

realizes bridge position for the one-skeleton. The width of FS is:

w(FS) = (w(S) + (w(S) − 2) + . . . + 2k) + ((w(S) − 2) + . . . + 2)

Recalling that w(S) ≤ w(F ) this gives a contradiction to the assumed thinness of F .

Remark 4.2.12. It follows from this that there is an algorithm to compute the bridge

number of the one-skeleton of a one-vertex, efficient triangulation T of S3. By the above

theorem, minimal bridge position is thin. Every such may be isotoped relative to T 1 so that

the thick region contains an almost normal S2. By Lemma 5 of Thompson’s paper [33], all

almost normal (with octagon) two-spheres of least weight are fundamental.
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Thus to find the bridge number of the one-skeleton we need only list the fundamen-

tal almost normal two-spheres and pick one with smallest weight. One-half of this weight

is the bridge number.

4.3 Generalizations

We end this chapter with a collection of remarks. The lemmata proved in Section 4.2.1

are quite forgiving — there are several possible generalizations. Here are two which will be

used later in this thesis.

Remark 4.3.1. Suppose that S is a properly embedded, two-sided surface inside of (M, T )

such that, for all but one tetrahedron t′ ∈ T 3, S intersects the tetrahedra of T in disjoint

collections of normal disks. S ∩ t′ is a disjoint collection of normal triangles together with

exactly two almost normal octagons of the same type.

In this case the the construction of the tightening sequence goes through without

change and almost all of the lemmata of Section 4.2.1 are unaltered. We cannot obtain

Lemma 4.2.7 as Fn may contain exactly one of the two original octagons. However we still

find that all other normal curves of Fn are short and all planar components of Fn ∩ t have

at most one normal boundary component, which must be short.

If this occurs then tighten along the surgered Fn in the direction indicated by

the induced transverse orientation. We finally obtain a possibly empty normal surface

cobounding a compression body with S. This technique is used in Lemma 5.1.7.

Remark 4.3.2. Suppose that S is a normal, two-sided surface inside of (M, T ) such that

S decomposes as a Haken sum. Suppose that A is an exchange annulus which is a tunnel;

A is boundary parallel in M S, relative to ∂A. Let X be the solid torus which S and

A cobound. Form S′ by doing an irregular exchange along A. S′ is a disjoint union of a

surface F0 isotopic to S and the surface ∂X. See Figure 4.4.

As S is two-sided, we may chose a transverse orientation on S which points towards

A. This induces on F0 a transverse orientation pointing away from X. We wish to tighten in

this direction. However, it is easy to see that the second induction hypothesis of Lemma 4.2.1

does not hold.

We proceed as follows. Let F0 : S × I → M be an embedded isotopy of S to

F0 such that image(F0) is equal to a regular neighborhood of S ∪ X. The classification
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Figure 4.4: An irregular exchange along A

XX

X
X

X
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of skeletal faces is now more complicated, as indicated by Figure 4.5. (The dotted lines

indicate an intersection between the annulus A and the face f ∈ T 2.) Nonetheless, using

this enlarged classification we may again prove Lemmata 4.2.1, 4.2.4, and 4.2.7. Thus we

obtain a tightening sequence with all of the desired properties. This technique is used in

Theorem 7.2.3.

Remark 4.3.3. I believe that the surfaces discussed in this section, as well as almost

normal surfaces, are all barrier surfaces in the sense of of Jaco and Rubinstein [17] (See

Lemma 3.1 and Corollary 3.5 of that paper.) I cannot resist posing the following question,

which surely has an affirmative answer:

Question. Suppose that (M, T ) is a triangulated irreducible three-manifold and that B is

a two-sided barrier surface for some connected component N ⊂ (M B). Shrink B inside

of N . The track of this shrinking process gives an (embedded?) submanifold C ⊂ N . Is C

a canonical compression body?

A “yes” answer would indicate that the theory developed in this chapter is, in

part, subordinate of that of [17].
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Chapter 5

Decomposition Lemmata

This chapter studies an issue of crucial importance to normal surface theory.

Namely, how do the exchange annuli of a decomposition lie in the given three-manifold?

There is a straight forward classification possible for the trivial exchange annuli.

The classification in the last section, together with standard normal surface theory

techniques, will prove that certain surfaces inside a given three-manifold must be funda-

mental. For example, given weak conditions on the triangulation of the three-manifold in

question, it follows that acylindrical surfaces are always fundamental.

5.1 Annuli

5.1.1 Trivial annuli

Fix M , an irreducible, orientable three-manifold with non-empty boundary.

Definition. An annulus A properly embedded in M is trivial if it is compressible or

boundary compressible in M and performing some compression or boundary compression

on A yields a collection of trivial disks in M .

An annulus A is a tunnel if it is parallel relative to its boundary into ∂M . A is

a tube if A is the boundary of a regular neighborhood of an arc properly embedded in M .

Finally, A is a tent if ∂A bounds an annulus B inside of ∂M , A ∪ B bounds a “cube with

a knotted hole” inside of M , and ∂+A bounds a disk in ∂M .

Note that these possibilities are not mutually exclusive. For example, if a tent A

cuts a solid torus from M instead of a cube with a knotted hole then A is also a tunnel.
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Figure 5.1: The trivial annuli

Also, if M is a three-ball then an unknotted tube is also a tunnel while a knotted tube is

also a tent, etc. See Figure 5.1.

Lemma 5.1.1. Every trivial annulus is either a tunnel, tube, or tent.

Proof. Suppose that A is a trivial annulus in M . Suppose that A may be boundary com-

pressed along a disk D to obtain a trivial disk D′. D′ cuts a ball, X, from M . There are

two cases:

1. If D ⊂ X then A is an unknotted tube, contained inside of X.

2. If D is not contained in X then A is a tunnel.

On the other hand, suppose that A compresses along a disk D yielding a pair of

trivial disks, D′, D′′ cutting out the balls X ′, X ′′. Again there are two cases:

1. If X ′ ⊂ X ′′ then A is a tent.

2. If the two balls are disjoint then A is a tube.
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There are several simple obstructions which prevent an annulus from being trivial.

Here is a useful one:

Lemma 5.1.2. If A is an annulus, properly embedded in M , and there is a closed curve

γ ⊂ ∂M such that γ meets ∂A once transversely then A is not trivial.

Proof. Suppose that A is a trivial annulus. The two boundary components of A either

bound disks or cobound an annulus in ∂M . Thus if γ is any closed curve in ∂M which is

transverse to ∂A then γ meets ∂A an even number of times.

The situation for Mobius strips is very simple:

Definition. A Mobius strip, properly embedded in M , is trivial if its double is a trivial

annulus.

Remark 5.1.3. Note that trivial Mobius strips only appear in components of M which are

solid tori or once punctured RP3’s.

5.1.2 Exchange annuli

We will need the following structure lemma for the exchange bands of a neat Haken sum:

Lemma 5.1.4. Suppose that H is a normal or almost normal surface (with exceptional

piece an octagon) and H is a neat Haken sum H = F + G. Let C ′ be an exchange band of

F + G. Fix a tetrahedron t ∈ T 3 and a block B of t H. Let C be a component of B ∩C ′.

Then:

1. C is properly embedded in B.

2. |C ∩ H| = |C ∩ T 2| = 2.

3. C ∩ T 1 = ∅.

4. If H is normal then C meets each face of t in at most one connected component.

5. C meets each disk of H in at most one connected component.

Proof. This follows directly from the definition of an exchange band, the minimality as-

sumption in the definition of a neat intersection, and Lemma 2.6.7.
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Figure 5.2: Possible seams on an octagon

Remark 5.1.5. If the hypotheses of Lemma 5.1.4 hold and f is a face of t then we imme-

diately deduce that C ′∩f is a disjoint collection of arcs properly embedded in f H which

avoids T 1. Furthermore, each of these arcs has endpoints on distinct normal arcs of H.

Lemma 5.1.6. Suppose H has almost normal piece an octagon and that t, B, C ′, and C

are defined as above. Suppose further that H is two-sided, C is a tent or a tunnel, B is

an exceptional block, and B ∩ interior(C) is nonempty. Then Figure 5.2 shows all possible

intersections of C with the octagon in H.

Proof. It follows from our hypotheses that C is attached to only one side of each normal

or almost normal disk of H. The conclusion may now be obtained by enumerating all

curves in ∂B which meet the one-skeleton of B four times and obey the constraints of

Lemma 5.1.4.

5.1.3 Trivial exchange annuli

Fix (M, T ), an orientable triangulated three-manifold. An exchange annulus A of the Haken

sum H = F + G is trivial if A is a trivial annulus inside of M H. Define trivial exchange

Mobius strips similarly.

We now restrict our attention to efficient triangulations of M and to surfaces which

are either normal or have almost normal piece an octagon:

Lemma 5.1.7. Suppose that
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1. (M, T ) is a orientable, efficiently triangulated three-manifold not homeomorphic to S3

and

2. H is a normal surface or almost normal surface with exceptional piece an octagon and

3. H is two sided.

Then no neat Haken decomposition of H admits an exchange annulus which is a tent in

M H.

Proof. The first condition forces T to have a single vertex, v, by Lemma 4.1.4, and also

forces M to be irreducible.

Suppose that H admits a tent A as an exchange annulus of the neat Haken de-

composition H = F + G. Set ∂A = α′ q α′′ and suppose that A arises as the exchange

annulus along the curve of intersection α ⊂ F ∩ G. Choose the notation so that B ⊂ H is

the annulus bounded by ∂A, α′′ bounds a disk D in H, and D ∩ α′ = ∅.
Let D′ be a disk in M such that ∂D′ ⊂ interior(A) and D′ is normally isotopic

and parallel to D. Let A′ be the component of Ar∂D′ containing α′. Take H ′ equal to the

closure of Hr(B ∪ D).

Let S = D′∪A′∪B∪D. Note that S is an embedded two-sphere which is disjoint

from H. Furthermore S bounds a three-ball, X, which does not meet H. A cross-sectional

view is shown in Figure 5.3. Our aim is to show that the existence of S contradicts the

efficiency of T .
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Claim. There is a connected arc ε ⊂ T 1, which does not meet the unique vertex v of T ,

such that ε is properly embedded in X.

To see this restrict attention to a single face f ∈ T 2 which meets A. Let E be a

4-gon of f (H ∪ A) which has one edge in e ∈ T 1, two edges in H, and one edge in A.

There are two possibilities: either D (and thus D′) meets the edge e or B meets the edge

e. In either case we obtain the desired edge ε.

It follows that X is not a regular neighborhood of v.

Claim. S is not normal.

Suppose that S were normal. Then S is a copy of the vertex link and bounds a

regular neighborhood of the vertex v. Since X 6= Y it follows that M S is a disjoint union

of two balls and M ∼= S3, a contradiction.

Claim. For every face f ∈ T 2, f ∩ S is a collection of normal arcs.

This is straightforward: Every component of f ∩ S is contained inside of a single

component of f H because H is two-sided. Also, each component of f ∩ S meets each

component of t ∩ A at most once.

Claim. The disk types of S are a subset of the disk types of H.

This is similar to the previous claim.

Claim. S contains at most two almost normal octagons. If S contains exactly two then

they are parallel and the region between them is contained inside of X.

Suppose that H contains an almost normal octagon, N . By Lemma 5.1.6 there is

exactly one component of of N A which meets opposite edges of N . Call this component

N ′. Depending on whether N ′ is contained inside of H ′, B, or D the two-sphere S must

contain zero, one, or two octagons. In the latter situation the two octagons are parallel

through X because D and D′ are parallel.

We have shown above that S cannot be normal.

1. If an almost normal octagon is contained in B then S is an almost normal two-sphere.

We may tighten S away from X, the bounded three-ball. By Theorem 4.1.1 and the

efficiency of the triangulation we obtain either a normal two-sphere S1 or the empty

surface. In the latter case we deduce that M ∼= S3, a contradiction. In the former
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case, S1 must be the vertex link. Now, the vertex cannot be on the same side as X

as that side contained an almost normal octagon. It follows that the vertex is on the

other side and, again, M ∼= S3.

2. If S contains a pair of almost normal octagons, one in D and one in D′, then we may

tighten away from X by Remark 4.3.1. We now proceed as in the second case.

This completes our argument.

Tunnels and tubes cannot be ruled out by an assumption of efficiency. However,

if we assume that all exchange bands are annuli and that they are all trivial then we obtain

the following:

Lemma 5.1.8. Suppose that

1. (M, T ) is a orientable, efficiently triangulated three-manifold not homeomorphic to S3

and

2. H is closed, connected, two-sided surface embedded in M which is not a sphere and

3. H is normal or almost normal (with octagon) and

4. H = F +G is a neat Haken decomposition with all exchange bands being trivial annuli.

It follows that there is a Haken decomposition H = H ′ +G′ of H where G′ is nonempty and

H ′ is isotopic to H.

Proof. By Lemma 5.1.7 none of the exchange annuli of F + G are tents. Suppose that A is

an exchange annulus which is a tunnel. Note that the boundary curves of A are essential

in H as A is not a tent. Let B be a annulus component of H ∂A such that A∪B bounds

a solid torus, X, and H is not contained in X. D be a boundary compressing disk for A

which is a meridian disk for X.

Pick a transverse orientation on A which points towards D. By Remarks 2.6.9

and 2.6.10 we deduce that there must be an odd number of seams in B which are all

isotopic to the boundary components of A. It follows that there must be a seam in B which

is parallel to ∂A and which is a boundary component of an exchange annulus, C, on the

other side of H. Since C is trivial C must be another tunnel, as one component of ∂C is

essential in H. See Figure 5.4



CHAPTER 5. DECOMPOSITION LEMMATA 49

H

A

B

C

X

Y

Figure 5.4: A pair of linking tunnels

Let Y be the solid torus cut out of M H by C. We may suppose that α, γ ∈
Γ = F ∩ G are the regular curves of intersection which give rise to the exchange annuli A

and C. Form the surface H ′′ by taking F ∪ G and performing regular exchanges along all

curves of Γr{α, γ}. By Lemma 2.6.7 H ′′ an immersed surface, with double curves along α

and γ.

H ′′ is in fact the union of two normal (almost normal) surfaces: H ′ which is isotopic

to H and G′ which is a torus bounding the solid torus X ∪ Y . See Figure 5.5. This is the

desired conclusion.

Suppose now that all exchange annuli of F + G are tubes. It follows that all of

the seams of F + G bound disks in H. Fix a maximal one of these, ∂+A1, bounding a disk

D1; this is well-defined because H is not a two-sphere. Fixing a transverse orientation on

H, we may assume that A1 is attached to H along ∂+A1 on H’s head side. Note that ∂−A1

cannot attach A1 to H inside of D1 on H’s head side as A1 is not a tent.

Pick a transverse orientation on A1 pointing away from the compressing disk (of

A1) which D1 defines. Note that ∂−A1 also bounds a disk D′ ∈ H. The transverse orienta-

tion on A1 also points away from D′. (If not, then A1 compresses on both sides. Take the

union of the two compressing disks to obtain a sphere. This sphere is non-separating, as it

is disjoint from H, a connected surface, and it meets A along the core circle of A. But a

efficient triangulation cannot contain such a sphere.)

From Remark 2.6.10 and the connectedness of H it follows that ∂−A1 cannot be

outermost. Let ∂+A2 be the outermost seam which bounds a disk, D2, which contains
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Figure 5.5: A new Haken decomposition

∂−A1. In this fashion build a sequence of tubes {Ai} with ∂+Ai outermost and bounding a

disk Di which contains ∂−Ai−1. Since there are finitely many exchange annuli, this sequence

must eventually become periodic. Relabel the annuli so that the sequence starts with A1

and ends with An such that ∂−An ⊂ D1. See Figure 5.6.

Let αi be the curve of intersection of F ∩G corresponding to Ai and let Xi be the

three-ball bounded by Ai ∪ H. Form a surface H ′′ by performing regular exchanges along

all double curves of F ∩ G except the αi.

By Lemma 2.6.7 H ′′ is in fact the union of two normal (almost normal) surfaces:

H ′ which is isotopic to H and G′ which is a torus bounding the solid torus ∪Xi. This is

the desired conclusion.

Remark 5.1.9. We will use the above lemma in Chapters 6 and 7 and in the next section.

Note that the lemma is well suited to comment on normal or almost normal (with octagon)

Heegaard splittings.

5.1.4 Non-trivial annuli

Again, let M be an irreducible, orientable three-manifold with non-empty boundary. We

now consider the non-trivial annuli:

Definition. An annulus properly embedded in M is essential if it is incompressible and

boundary incompressible in M .
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Annuli which are properly embedded in M and which are neither trivial nor es-

sential are called disk-like . Note that if M contains a disk-like annulus then it follows from

the definitions that ∂M is compressible. We will call a Mobius strip essential or disk-like if

and only if its double is.

Remark 5.1.10. When M is closed and triangulated we will abuse notation and call

exchange bands essential or disk-like depending on their status in the cut open manifold

M H.

5.2 Applications

Assume that M is a closed, irreducible, orientable three-manifold not homeomorphic to a

lens space. Further suppose that M is given with an efficient triangulation, T .

5.2.1 Acylindrical surfaces

Definition. A surface, H, embedded in M is acylindrical if it is two-sided, incompressible

and M H admits no essential annuli.

Lemma 5.1.8 thus has the following:
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Corollary 5.2.1. All acylindrical surfaces in M are isotopic to fundamental normal sur-

faces.

Proof. Fix an acylindrical surface H. By Theorem 2.5.5 isotope H to be normal. Pick a

least weight such normal surface, which we will again call H. Suppose that this surface is

not fundamental.

Let H = F + G be a neat Haken decomposition for H. Note that, as H is

acylindrical, all exchange bands must be trivial. If there is a exchange band which is a

Mobius strip, then by Remark 5.1.3 H is either the boundary of a solid torus or M is

homeomorphic to RP3, both contradictions.

It follows that all exchange bands are annuli. By Lemma 5.1.7 none of these are

tents. If there are any tubes or tunnels then by Lemma 5.1.8 there is a surface H ′ isotopic

to N of lesser weight. But this is another contradiction. We conclude that there are no

exchange annuli at all, i.e. H is fundamental.

Remark 5.2.2. The fact that a three-manifold contains only finitely many acylindrical

surfaces is well-know. See, for example, Hass’s paper [10]. In fact, as we shall see, the folklore

normal surface theory proof of this fact is a simpler version of the proof of Theorem 3.0.1.

5.2.2 Surface bundles

Take M to be a closed, orientable surface bundle which is also irreducible. Again, let T

be an efficient triangulation of M . Recall that a surface bundle structure on M is a choice

of monodromy h : H → H together with a homeomorphism between M and the mapping

torus of h. A homeomorphism h : H → H is strongly irreducible if γ ∩ h(γ) 6= ∅ for every

essential simple closed curve γ ⊂ H.

Remark 5.2.3. This behavior is fairly generic. This follows from Lemma 4.6 of Masur and

Minsky’s paper [24]. In fact, they give a much stronger result: Let h be a pseudo-Anosov

map. As n ∈ N goes to infinity the translation distance of hn also goes to infinity.

Corollary 5.2.4. M has only finitely many surface bundle structures with strongly irre-

ducible monodromy and for any of these a fibre can be found amongst the fundamental

surfaces of (M, T ).

Proof. The argument is identical to that of Corollary 5.2.1 with a slight exception: Note

that M H is homeomorphic to H × I and all essential annuli are thus vertical. It follows
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that no exchange annulus, A, can be essential. This is because ∂+A and ∂−A are disjoint

curves on H.

This finiteness result raises several natural questions. For example:

Question. How are the strongly irreducible bundle structures of M distributed on the faces

of the Thurston norm ball in H2(M, R)?

Remark 5.2.5. Corollary 5.2.4 may be improved: Fix M a closed, orientable three-

manifold. There is a positive constant b4 ∈ R such that if F is a surface bundle struc-

ture on M with monodromy h and fibre of genus g then hi is not strongly irreducible for

1 ≤ i ≤ b4 · g. (If b4 · g < 1 then the conclusion holds vacuously.)
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Chapter 6

Bundle Recognition

This chapter investigates manifolds which admit surface bundle structures. As

the reader might expect, our discussion will focus producing bundle structures with “many

normal fibres.” In particular, we will examine how complicated these normal fibres need be

with respect to a fixed triangulation. Our main result is:

Theorem 6.0.1. There is an algorithm to decide whether or not a given closed, orientable,

irreducible, atoroidal, and triangulated three-manifold (M, T ) is a surface bundle over the

circle.

This theorem is not entirely new; the careful reader of the papers of Tollefson and

Wang [36] and of Jaco and Tollefson [20] may have deduced it. However, our approach

yields additional information. In particular, we provide explicit bounds on the complexity

of the one-skeleton with respect to the foliation.

As this chapter is fairly dense we will now give an outline of the sections: In

Section 6.1 we further develop our understanding of blocks. We briefly discuss the behavior

of normal surfaces inside of blocked submanifolds. In Section 6.2 we bound the complexity

of a surface bundle structure on M as a function of the weight of a given fibre. We do

this by finding a dicing set of normal and almost normal fibres. We finish in Section 6.3 by

providing the desired algorithm and indicating why it works.
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6.1 More on blocks

This section discusses the normal surfaces which may arise inside of a blocked submanifold

V ⊂ (M, T ). Recall that a blocked submanifold V ⊂ (M, T ) is a union of closed blocks such

that fr(V ) is a properly embedded normal or almost normal surface (which need not be

connected.)

6.1.1 Allowed surfaces

Definition. A surface F properly embedded in V is normal or almost normal inside of V

if F is normal or almost normal inside of M and F is disjoint from frM (V ).

Remark 6.1.1. Note that this implies that in every product block the normal disks of F are

parallel to the normal disks of frM (V ). It follows that inside every connected components

of VP = V {the core blocks of V } the surface F is a collection of parallel copies of

frM (V ) ∩ VP .

Definition. If F is normal or almost normal inside of V and F does not decompose as a

sum of normal and almost normal surfaces inside of V then F is fundamental inside of V .

We can now deduce that the fundamental surfaces in V are not significantly more

complicated than those in M .

Lemma 6.1.2. There is a constant, c1 ∈ N, such that if F is a fundamental surface inside

of V then w(F ) ≤ w(frM (V ))2c1·|T |

Proof. This follows directly from Lemma 2.6.1 and our Remark 6.1.1.

6.1.2 Decomposition inside of blocked manifolds

Lemmata 5.1.7 and 5.1.8 still apply to normal and almost normal (with octagon) surfaces

contained in V . That is:

Lemma 6.1.3. Suppose that F is a normal surface or almost normal surface with excep-

tional piece an octagon inside of V . Suppose that F is not normally isotopic into frM (V ) and

that F satisfies the hypotheses of Lemma 5.1.8. Then F = F ′ + G′ where G′ is nonempty,

F ′ is isotopic to F , and F ′ is not normally isotopic into frM (V ).
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Proof. Suppose that F ′ is normally isotopic into frM (V ). Then, after this isotopy, F ′ and

G′ are disjoint and it follows that F = F ′ + G′ is not connected, a contradiction.

This is essentially the same trick as that used in Lemma 5 of Thompson’s pa-

per [33]. See also our Remark 2.6.11.

6.2 Collecting surfaces

In this section we outline an inductive procedure which proves:

Theorem 6.2.1. There is a constant c2 ∈ N such that if (M, T ) is a closed, orientable,

efficiently triangulated three-manifold and F ⊂ M is a normal surface which is a fibre of a

surface bundle structure F on M then there is a collection of surfaces {Fi} such that:

1. F = F0 and for all i each of the Fi is a fibre of F .

2. For all i, F2i is normal and F2i+1 is almost normal. Also each F2i+1 has exceptional

piece an octagon except for F1 which contains an almost normal annulus.

3. For all i, there is a pair of surfaces, F2j and F2k, such that F2i+1 tightens to F2j and

F2k. Furthermore, the union of all of these tightening maps gives a foliation isotopic

to F .

4. There are at most 2 · |T | + 2 of the Fi’s.

5. For all i, w(Fi) < w(F0)2c2·|T |2.

The constant c2 can be taken to be 3c1 + 4, with c1 as in Lemma 6.1.2. As usual,

this is an overestimate. Figure 6.1 gives a schematic picture of the desired collection of

surfaces. Such a collection of normal and almost normal surfaces is a dicing of M with

respect to F .

The rest of the section is devoted to the proof of Theorem 6.2.1.

6.2.1 Removing the vertex

To start, we set F0 = F . Let S0 be the link of the unique vertex in T . Let t be any

tetrahedron in T 3 which F0 meets and let e ∈ t ∩ T 2 be an oriented edge which intersects

F0.
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Figure 6.1: A dicing of M by eight fibres

Let x be the first point of e∩S0 and let y be the first point of e∩F0. Let X ⊂ S0

and Y ⊂ F0 be the pair of normal disks in t meeting x and y. Connect X and Y inside of

t by a small unknotted tube parallel to the arc [x, y] ⊂ e. This constructs F1, an almost

normal surface with annular exceptional piece. F1 is isotopic to a fibre of F because it is

isotopic to F0. Note that w(F1) = w(F0) + 2 · |T | + 2.

By Lemma 4.1.2 we may tighten F1 away from the exceptional surgery disk. As

F1 is incompressible, we obtain an isotopic normal surface. Now, if this surface is normally

isotopic to F0 then the collection of surfaces is complete and the construction is finished. If

not then label the new surface F2. Note that w(F2) ≤ w(F1) − 2.

6.2.2 Beginning the induction step

We are now prepared for the general induction step. Let {Fi} be the collection of surfaces

constructed thus far. Suppose that |{Fi}| = r. Let F2j and F2k be a pair of normal fibres

which have already been constructed. We may assume that one of the two components of

M (F2j ∪F2k) contains none of the Fi’s in its interior. Call that component V . Note that

V is not a union of product blocks as F2j is not normally isotopic to F2k.

V has several nice properties — V is efficient and does not contain the unique

vertex of T . F|V is a product structure on V . Abusing notation use F to denote this
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product structure. Take V ∼= F × I with F|0 = F2j below and F|1 = F2k above.

With F fixed set K = T 1 ∩ V . After isotoping K rel(∂V ) assume that F realizes

thin position for K ⊂ V as defined in Section 2.4. We now wish to find an almost normal

fibre F2i in V .

6.2.3 Following Gabai and Thompson

We set aside the proof of Theorem 6.2.1 temporarily. The following theorem is a reworking

of Claims 4.1 – 4.5 of Thompson’s paper [33]:

Theorem 6.2.2. Suppose that (M, T ) is a closed triangulated three-manifold. Let V ⊂ M

be a blocked submanifold such that:

1. V is not a union of product blocks.

2. V contains no normal spheres.

3. V is homeomorphic to F × I, where F is a closed surface.

4. ∂V is a disjoint union of two normal surfaces.

Let C = M V and let F denote the product structure on (M, C). Then there is a closed

almost normal surface S in V such that:

1. S is isotopic to a level of F .

2. The exceptional piece of S is an octagon.

Proof. We only sketch a proof as this sort of thin position argument has appeared several

times in the literature (see [1], [32], or [33].)

Let K = T 1 ∩ V . Isotope K (rel(∂V )) to make K thin with respect to F .

We now proceed in a series of steps.

Claim. F has a thick region.

To see this, suppose the opposite. As V is not a union of product blocks there must

be either a maximum of K directly above ∂+V or a minimum directly below ∂−V That is,

one of the boundary components of V admits a high (low) disk. Recall however that if F

is a normal surface then F T 1 is incompressible in M T 1 (see Claim 1.1 of [33].) Thus
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the high (low) disk cannot be adjacent to a normal boundary component of V . To avoid

contradiction, F must have a thick region.

Let S be a level inside of a thick region, R and let t, t′ be distinct tetrahedra in T .

By Claims 4.1–4.4 of [33] we have:

Claim. S ∩ ∂t contains no parallel normal curves of length greater than or equal to eight.

Claim. S ∩ ∂t contains no normal curve of length greater than eight.

Claim. S ∩ ∂t and S ∩ ∂t′ do not both contain normal curves of length eight.

Claim. We may assume that S in R has no bent arcs.

Note that this last is identical to Thompson’s application of Lemma 4.4 of Gabai’s

paper [4]. Here Gabai’s spanning surface P is the surface V ∩ T 2.

Finally we have a claim which requires proof:

Claim. There is some tetrahedron t ∈ T 3 such that S∩∂t contains a normal curve of length

eight.

For every tetrahedron t ∈ T 3 the collection of surfaces S∩ t = C has all boundaries

on ∂t. Since these curves bound disks in ∂t we may push these disks slightly inside of t and

use them to compress all non-disk components of C. As all of these compressions take place

in the product V (which contains no normal spheres) and as S is incompressible in V these

compressions must be pinching off spheres which do not meet the one-skeleton.

Thus there is an ambient isotopy of S inside of V which leaves the one-skeleton

and the boundary of V pointwise fixed while making S normal or almost normal with an

octagon. However, as S is in a thick region, S must have an upper disk D. As S contains

no bent arcs D is not contained in the two-skeleton. Now, S cannot be normal as normal

surfaces are incompressible in the complement of the one-skeleton. (Again, see Claim 1.1

of [33].) We conclude that S is the desired almost normal surface and Theorem 6.2.2 is

proved.

6.2.4 Finishing the induction

We pick up the thread of Theorem 6.2.1. Recall that we have a blocked submanifold V with

boundary F2j ∪ F2k. By Theorem 6.2.2 we have an almost normal surface S inside of V

which is isotopic to the fibre. By Lemma 6.1.3 there is a normal or almost normal surface
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in V which is fundamental and not normally isotopic into ∂V . Call this surface S′ and note

that w(S′) ≤ w(∂V )2c1·|T | by Lemma 6.1.2.

If S′ is normal we set S′ = F2i (where 2i is the smallest even number not yet used)

and begin the next step of the construction.

If S′ is almost normal we set S = F2i+1 (where 2i + 1 is the smallest odd number

not yet used) and tighten S in both directions to obtain a pair of normal surfaces, S− and

S+. Note that w(S±) < w(S′).

We must check to see if either of S− or S+ is parallel to a surface already in our

collection of surfaces. For ε = ±, if Sε is not normally parallel into our collection then we

add it in, setting Sε = F2i (where 2i is the smallest even number not yet used) and begin

the next step of the construction.

To finish the proof of Theorem 6.2.1 we must show that the construction terminates

and that the weights of the Fi are appropriately bounded. However, each odd surface except

for the first contains an almost normal octagon. Since every pair of odd surfaces is separated

by a pair of even surfaces, the two octagons must be in distinct tetrahedra. It follows that

there are at most |T | odd surfaces containing an almost normal octagon.

Finally, at the rth step of the construction the surface produced, Fi, has weight

bounded by

w(Fi) ≤ w(fr(V ))2c1·|T | ≤ (w(Fj) + w(Fk))2c1·|T | ≤ max{w(Fj), w(Fk)}2c1·|T |+1

where Fj and Fk were constructed at an earlier stage. Thus w(Fi) ≤ w(F0)(2c1·|T |+1)r.

Since the construction halts after at most 2 · |T |+1 stages we obtain the desired bound and

the desired set of dicing surfaces. This concludes the proof of Theorem 6.2.1.

6.3 The algorithm and its correctness

6.3.1 Description of the algorithm

Fix a closed, triangulated three manifold (M, T ).

Definition. Call a collection {S2i+1} of almost normal surfaces in (M, T ) good of weight

less than K if it satisfies the following conditions:

1. After a normal isotopy the S2i+1 are pairwise disjoint, none of the S2i+1 are normally

parallel, and all have weight less than K.
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2. Only S1 contains an almost normal annulus.

3. The octagons of the other surfaces are in distinct tetrahedra.

4. Each of the S2i+1 are connected and two-sided.

5. All of the S2i+1 have the same genus, g > 1.

Remark 6.3.1. Note that for fixed K ∈ N there are only finitely many good collections of

weight less than K. The list of such collections may be algorithmically generated.

We now give our algorithm for recognizing surface bundles. Suppose that (M, T )

is a given closed, efficiently triangulated, orientable, atoroidal three-manifold.

Algorithm. Enumerate all good collections of weight less than 2c2·|T |2+c3·|T |. Check each

of these to decide if it is a dicing collection. If so, then M is a surface bundle over the circle.

If no such collection exists then M is not a surface bundle over S1.

The constant c3 is defined below.

Remark 6.3.2. To decide if a good collection can be extended to a dicing of M construct

both canonical compression bodies for each of the S2i+1. By Corollary 4.2.2 the compression

bodies produced, {Vi}, have pairwise disjoint interiors. {S2i+1}∪{∂Vi} is dicing if and only

if the normal surface boundaries of the Vi may be matched in normally parallel pairs.

6.3.2 Proof of correctness

To demonstrate correctness we must show that if M admits some surface bundle structure

then it admits a dicing of weight less than 2c2·|T |2+c3·|T |.

Theorem 6.3.3. There is a constant, c3 ∈ N such that if (M, T ) is a closed atoroidal three-

manifold which admits a surface bundle structure G then M has a surface bundle structure

F with normal fibre F and w(F ) < 2c3·|T |.

It suffices to take c3 ≥ a1 +2, where a1 is the constant mentioned in Lemma 2.6.1.

The proof of Theorem 6.3.3 follows the ideas of Tollefson and Wang [36]. Please refer to that

paper for an explanation of the concepts used below. The reader might also consult [35] for

an introduction to the Thurston norm ball in H2(M, R).
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Proof. Let G be a fibre of the given fibre bundle structure. Let [G] be G’s homology class.

Since G is a fibre it can be represented by a least-weight taut normal surface, which we will

also refer to as G. Let C be the minimal face of P carrying G. Note that every surface

carried by C is thus a multiple of a lw-taut surface, by Theorem 3.3 of [36].

In fact, by Theorem 3.7 of that paper, C is a complete lw-taut face of the projective

solution space P. That is, C carries every lw-taut normal surface representing the class [G].

Theorem 5.1 of the same paper provides a linear map hG from C to a face C ′ on

the boundary of the Thurston norm ball, inside of H2(M, R). Since G is carried by C every

normal surface carried on the interior of C is carried on the interior of C ′. C ′ is a fibred

face because C ′ carries [G]. Thus every normal surface carried by the interior of C is a fibre

for some bundle structure on M .

Let g be the point which G projects to in C ⊂ P. We may express g as a convex

sum
∑

aivi where the ai are non-negative real numbers and the vi are vertices of C. Note

that the vertex surfaces lying above the vi are compatible as they are all vertices of the face

C.

Choose a subset {hG(vj)} ⊂ {hG(vi)} which is maximal with respect to the prop-

erty of linear independence. Note that |{hG(vj)}| ≤ rank(H2(M, R)). This subset cannot

be contained in a subface of C ′ as that would imply that hG(g) =
∑

aihG(vi) was not in

the interior of C ′, a contradiction.

Finally, let F ′ be the normal surface obtained by Haken summing the vertex sur-

faces which project to the vj ’s. Since C was a lw-taut face, F ′ is a disjoint union of, say,

k-many lw-taut normal surfaces all representing the same homology class, 1
k [F ′]. Let F be

one of these. By our choice of {vj} the homology class 1
k [F ′] lies above the interior of C ′.

We deduce that F is a fibre of a surface bundle structure on M and that

w(F ) ≤ w(F ′) ≤ rank(H2(M, R))2a1·|T | ≤ (|T | + 1)2a1·|T |

as desired.

The effectiveness of our algorithm now follows directly from Theorem 6.3.3 and

Theorem 6.2.1.
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Chapter 7

Effective Bounds on Distance

In this chapter we will explore how the combinatorics of an almost normal Heegaard

splitting can be used to bound the distance of the splitting. This adds a great deal of

information to the broad outline sketched in Chapter 3. In almost all cases, we find a priori

upper bounds, depending only weakly on the combinatorics.

However, as is detailed in Section 7.3 these techniques fail in a peculiar case. Thus

the theorems in this chapter cannot completely bound the behavior of the distance of low

genus splittings.

7.1 Using the normal surface structure

7.1.1 A brute force bound

Suppose that (M, T ) is a closed triangulated three-manifold. Using pure brute force we can

bound the distance of a normal or almost normal Heegaard splitting, in terms of its weight.

Recall that d(H) is the distance of a Heegaard splitting H while w(H) is the weight of the

surface H.

Theorem 7.1.1. There is a constant d1 ∈ N such that if H is a normal or almost normal

Heegaard splitting then d(H) ≤ d1 · w(H).

Proof. Cut M along H to obtain a pair of blocked handlebodies V and W . Note that |V |,
the number of blocks in V , is bounded above by a linear function of the weight of H, as is

|W |. Recall that there are only finitely many kinds of blocks and a finite number of ways

in which a pair of blocks may be glued along a face. Thus there is a constant d2 ∈ N and
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a subdivision of V (W ) yielding a triangulation TV (TW ) such that |TV | and |TW | are both

bounded above by d2 · w(H). Furthermore, we may insist that these triangulations induce

identical triangulations on H.

By Theorem 6.2 of [20] there are essential disks DV ⊂ V and DW ⊂ W which are

fundamental with respect to these new triangulations. By Lemma 2.6.1 there is a constant,

a1 ∈ N, such that w(DV ) < 2a1·|TV | and the same holds for DW . This also is a bound on

the length of ∂DV and ∂DW as normal curves in the triangulation of H.

Since a pair of normal arcs meets at most once in a face

|∂DV ∩ ∂DW | ≤ 2a1(|TV |+|TW |) ≤ 22a1d2·w(H).

Finally, applying Lemma 2.3.1

d(H) ≤ d(∂DV , ∂DW ) ≤ 2 log(22a1d2·w(H)) + 2 = 4a1d2 · w(H) + 2

and we are done.

Remark 7.1.2. This theorem could be thought of as a “haven of last resort.” For example,

suppose we are given a normal or almost normal Heegaard splitting (with exceptional piece

an octagon) of small genus which is fundamental and we are asked to bound the distance.

We cannot apply Theorem 3.0.1 or any of the techniques in the rest of this chapter; they

rely on the given surface either admitting a non-trivial Haken decomposition or containing

an almost normal annulus. As a last ditch measure we might combine the bound on the

weight of a fundamental surface (see Lemma 2.6.1) with Theorem 7.1.1 in order to obtain

a bound which is solely a function of |T |.

7.1.2 Light normal surfaces

Suppose that (M, T ) is a closed, triangulated three-manifold. We will say that a normal or

almost normal surface H is light if it has the smallest weight amongst all of the normal and

almost normal surfaces isotopic to H.

Remark 7.1.3. As an immediate consequence, if H is a light almost normal surface then

neither of the two canonical compression bodies provided by Theorem 4.1.1 may be home-

omorphic to H × I (with some collection of three-balls removed.) That is, H must be

compressible in M and in fact there must be a compressing disk contained in each of the
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canonical compression bodies. It follows that if the almost normal piece of H is an annulus

then the exceptional surgery disk is actually a compression disk for H.

Remark 7.1.4. Suppose for the moment that (M, T ) is orientable, not S3, and efficiently

triangulated. It follows that if H is a light Heegaard splitting, of genus two or more, does not

contain an almost normal annulus, and is not fundamental then every Haken decomposition

of H admits a nontrivial exchange band. This is an immediate consequence of Lemma 5.1.8

and Remark 5.1.3.

7.1.3 The case of the almost normal annulus

Definition. If V is a blocked submanifold of (M, T ) then the two-skeleton K ⊂ V is the

union of an exceptional tightening disk for ∂V (if one is present) together with all skeletal

faces of the blocks of V .

We will need a bit of notation for bookkeeping purposes. Suppose that H is an

almost normal surface and V is the canonical compression body on H’s head. (As given by

Theorem 4.1.1.)

Recall that a tightening isotopy requires the presence of a tightening disk, D.

Recall that D is adjacent to a skeletal face s ⊂ K if D intersects the boundary of s. D

causes s if D is adjacent to s but interior(s) ∩ D = ∅.

Remark 7.1.5. Note that, by the classification given in Figures 4.2 and 4.3, a skeletal face

s contains at most one tightening disk. Note also that any critical skeletal face, as well as

any face which had a hole, contains no tightening disk at all.

Construct a graph Γ by taking the skeletal faces of V , together with the exceptional

tightening disk, as the vertex set and connecting a pair s and s′ by a directed edge from s′

to s if s contains the tightening disk which causes s′. See Figure 7.1.

Observe that Γ contains no directed cycles (see Remark 7.1.5.) Also, all vertices

of Γ have out-degree zero, one, two, or three. To finish this discussion about Γ notice that

the exceptional tightening disk is the only vertex in Γ with positive in-degree and zero

out-degree.

Note that the two-skeleton K naturally has the structure of a branched surface

where the branch locus, the set of points which do not have a disk neighborhood in K, is

contained inside of T 1 ∩ K. Also, the branch locus is a one-manifold. Lastly, the branch
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Figure 7.1: A bit of a K and Γ

direction is given by the graph Γ. That is, faces of K caused by the tightening disk D ⊂ s

“feed into” the face s.

Lemma 7.1.6. All of the connected surfaces carried by this branched surface are disks.

Proof. Let D be a connected surface carried by K. Note that D must have nonempty

boundary, as every sector of K has nonempty boundary. Let γ be a simple closed loop in

D. Note that D inherits a decomposition from the branch locus of K. If γ does not intersect

the arcs of this decomposition then, as all sectors of K are disks, γ must be contractible.

If γ does intersect the preimage of the branch locus, L, then let x be a point of

intersection such that no point of intersection is on an arc of L strictly closer to a preimage

of the tightening disk. Since the sectors of K are disks it follows that γ must meet this

component of L at least twice. That is, we may reduce |γ ∩ L| until we realize that γ is

contractible.

It also follows that each disk is carried at most once by any source sector; a sector

with in-degree zero. We require a final definition:

Definition. Given a skeletal face s ⊂ K the carrier of s, Ks, is the subcomplex of K which

is the union of all skeletal faces s′ ⊂ K which are connected to s in Γ by a directed path

starting at s and ending at s′.

The face s is contained in its own carrier, as s is connected to itself by a path of

length zero. Borrowing a bit a terminology from the language of partially ordered sets, we

will refer to the natural subgraph Γs ⊂ Γ as the downset of s.
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Theorem 7.1.7. There is a constant, d3 ∈ N such that if (M, T ) is a closed, orientable,

triangulated three-manifold and H ⊂ M is an almost normal, light, Heegaard splitting with

almost normal piece an annulus then d(H) ≤ d3 · |T |.

It suffices to take d3 ≥ 8.

Proof. Let W be the handlebody component of M H which contains the exceptional

compressing disk DW . By Remark 7.1.3 DW is a essential disk in W .

Transversely orient H so that the orientation points towards the exceptional tight-

ening disk of H. Let V ′ ⊂ V be the canonical compression body on H’s head. Let K be

the two-skeleton of V ′.

Recall the construction of V ′: We performed a sequence of tightening isotopies to

form an isotopy F of H to a non-normal surface H ′. This H ′ intersected the boundaries of

the tetrahedra of T in short normal curves and in simple curves. We then surgered along

all of the simple curves of H ′ and capped off all two-spheres contained entirely inside of

a tetrahedron. Because H is light, one of the surgery curves must in fact be an essential

curve in H ′, by Remark 7.1.3. Let s′ be the skeletal face of V ′ which contains that simple

curve.

Let K ′ be the carrier of s′ and let D′
V be the surgery disk contained in s′. We

may isotope H ′ back to H, undoing the tightening isotopy F , and carrying ∂D′
V to an

essential curve on H. The reverse of F , extended to an ambient isotopy, also pulls D′
V

to a compressing disk for H in V . Denote this disk by DV . Note that DV is carried by

the branched surface K ′. Every face of K ′ thus receives a positive integer, its multiplicity,

which counts the number of times DV is carried by that face.

Note that |DV ∩ DW | equals the multiplicity of the exceptional tightening disk.

Thus, by Lemma 2.3.1, a bound on this multiplicity gives a bound the distance of H.

Let K̃ ′ be the “directed” universal cover of K ′; the path lifting property holds

only for directed paths. A moment’s thought shows that K̃ ′ is a tree with a copy of s′ as

its root.

The leaves of K̃ ′ are all copies of the exceptional tightening disk. Finally, observe

that there are at most 2 · |T | hexagons in M and the tree contains a node of degree three

only at a hexagon. It follows that K̃ ′ has at most 3 · 22·|T |−1 leaves. Thus,

d(H) ≤ 2 log(3 · 22·|T |−1) + 2 ≤ d3 · |T |.
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Remark 7.1.8. We should pause to note that this approach cannot work when the almost

normal piece is an octagon. In this case we can still find a pair of compressing disks, each

carried on a subcomplex of the skeletal faces. We may even show that the multiplicities of

the two exceptional tightening disks is not too large, as above. However, we have no control

over how many rectangles each of the carriers contains. Thus we have no real control over

how many times the two disks intersect.

7.2 Relations among the annuli

7.2.1 A pair of non-trivial annuli

At this point we should pause and note the following:

Lemma 7.2.1. Suppose M is a closed, orientable three-manifold and that H ⊂ M is a

Heegaard splitting of M . Suppose further that A ⊂ V , B ⊂ W are non-trivial annuli or

Mobius strips (or perhaps one of each.) Then d(H) ≤ 3.

Proof. As A and B are contained in handlebodies they cannot be essential. It follows that

they are both disk-like. Compress or boundary compress both A and B to obtain a pair of

essential disks, DA and DB.

Since ∂DA ∩ ∂A = ∂A∩ ∂B = ∂B ∩ ∂DB = ∅ we have the desired conclusion.

Remark 7.2.2. This could be thought of as the underlying theme of this chapter. If such

a pair of annuli exists then the distance of the given Heegaard splitting H is less than 4.

Stated another way: For all splittings with sufficiently high genus Theorem 3.0.1 bounds

the distance. For all splittings with sufficiently low weight Theorem 7.1.1 will bound the

distance.

Thus, we may assume the remaining splittings admit a variety of Haken decompo-

sitions. Each of these admits a collection of exchange annuli and Mobius bands. In simple

cases, one of these collections will submit to Lemma 7.2.1. However, if such favourable

conditions do not obtain then more technical methods, as in Theorem 7.1.7, must be used.

Theorem 7.2.3. There is a constant d4 ∈ N such that if (M, T ) is a closed, orientable,

irreducible, triangulated three-manifold and H is a light normal or almost normal Heegaard

splitting, admitting a non-trivial exchange band in W and a tunnel in V , then d(H) ≤ d4·|T |.
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It suffices to take d4 = d3 + 2 where a is the constant satisfying Theorem 7.1.7.

Proof. Let DW ⊂ W be the disk obtained by compressing or boundary compressing the

non-trivial band in W . Let A denote the tunnel in V . Set X equal to the solid torus which

A cuts out of V .

By Theorem 7.1.7, if H contains an almost normal annulus then we are done. There

are two remaining cases: either H contains an almost normal octagon or H is normal. In

either case we chose a transverse orientation of H pointing into V .

For the first case suppose that H contains an almost normal octagon. Apply

Theorem 4.1.1 to form the canonical compression body, V ′, on H’s head. As H is light,

∂−V ′ cannot be homeomorphic to H and there must be a compressing disk for H contained

in V ′. As in Theorem 7.1.7, let s′ be the skeletal face in V in which the compression occurs

and let K ′ be the carrier of s′.

We will now analyze how K ′ and X intersect. Note that K ′ is not contained inside

of X, as K ′ carries an essential disk. Fix an identification of X with D × S1 where ∂D is

decomposed into two connected arcs α and β. Arrange matters so that α × S1 = A and so

that K ′ ∩ A is a disjoint union of copies of the fibre, A = {α × ci | ci ∈ I}.
Note that the product structure on A respects the structure imposed by the tri-

angulation. That is, A ∩ T 2 appear as levels of the product structure. However, the disks

D × {pt} do not respect the triangulation of either interior(X) or of H.

Cut K ′ along A and discard the components which now lie inside of X. We glue

a copy of D × ci to all of the remaining components of K ′ A. Call this new branched

surface K ′′. Note that K ′′ is not a subcomplex of the two-skeleton as it contains many

copies of the disk D.

K ′′ is still decomposed by its branch locus into a collection of disks. Furthermore,

from the proof of Lemma 7.1.6, observe that K ′′ only carries disks. These disks may be

obtained from the disk carried by K ′ via a (large) number of boundary compressions. It

follows that K ′′ carries at least one essential disk, DV .

We may now argue as in Theorem 7.1.7: Let τ be one of the boundary components

of the tunnel A. Note that

dH(∂DV , τ) ≤ d3 · |T |

as above. Because dH(∂DW , τ) ≤ 2 we have dH(∂DV , ∂DW ) ≤ (d3 + 2) · |T | and are done

with the octagon case.
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For the second case suppose that H is normal. As in Remark 4.3.2, perform an

irregular exchange along A, obtaining a surface H ′ isotopic to H and a torus bounding the

solid torus X. Let τ ′ be the seam on H ′ which records where the cut and paste operation

took place.

We tighten H ′ to obtain a canonical compression body, V ′. Again, as H was light,

∂−V ′ cannot be homeomorphic to H ′. Thus the two-skeleton of V ′ must contain a face s

such that the carrier of s, K ′, carries an essential disk, DV . Note that, as in Theorem 7.1.7,

dH′(∂DV , τ ′) ≤ a · |T |. Since H ′ is isotopic to H via an isotopy which places τ ′ on top of τ ,

we are done as in the octagon case.

7.2.2 Ordering the annuli

Suppose that M is a bounded irreducible three-manifold. Let A be a collection of pairwise

disjoint compressible annuli, all properly embedded in M . There is a natural relation on

A, namely A relates to B if A compresses in the complement of B.

There is a subrelation of the inverse relation which is a partial order:

Definition. Suppose that A compresses in the complement of B. The annulus B contains

A (written B > A) if interior(D) intersects A nontrivially for any compressing disk D of B.

Lemma 7.2.4. If M is a three-manifold and A is a collection of compressible, properly

embedded annuli inside of M then (A, >) is a partially ordered set.

Proof. Clearly we cannot have A > A. Suppose that C > B > A. Pick any compression

disk, D, for the annulus C. After making D transverse to B and A we have the collection

of simple closed curves, D ∩ B. Let γ be an innermost such bounding the disk D′ ⊂ D. If

γ is not isotopic (in B) to the core curve of B then γ bounds a disk E ⊂ B. As E ∪D′ = S

is a two-sphere in M we deduce that S bounds a ball. This ball defines an ambient isotopy

of B which leaves D fixed. This allows us to reduce |B ∩D| by at least one. This operation

may also decrease the quantity |A ∩ D| but certainly does not increase it.

After a finite number of these ambient isotopies we must arrive at a curve, again

called γ, which is innermost in D and is isotopic (in B) to the core curve of B. In this case

the disk D′ ⊂ D is a compressing disk for B. As such D′ ∩ A must be nonempty, by our

original assumption. We deduce that, before any of our isotopies took place, D ∩ A was

nonempty and we have C > A.



CHAPTER 7. EFFECTIVE BOUNDS ON DISTANCE 71

We now give each of the annuli in A a transverse orientation which points away

from that annulus’ compressing disk. We will call the connected components of ∂M A
regions.

Lemma 7.2.5. Suppose that A ⊂ V is a collection of compressible annuli inside of a

handlebody, V . If A ∈ A is maximal with respect to > then the boundary components of

A are adjacent to a common region R and the induced transverse orientation on ∂A points

into R.

Proof. Suppose that A is maximal with respect to >. Let R be the region pointed to by

the transverse orientation of ∂+A ⊂ ∂V . Let γ by an arc, properly embedded in A, with

|γ ∩ ∂+A| = |γ ∩ ∂−A| = 1.

For each boundary component, βi, of R choose a compressing disk Di for the

annulus, Bi ⊃ βi. We choose these disks so that A ∩ interior(Di) = ∅. After compressing

the Bi along these disks we obtain a family of compressing disks for V . After cutting V

along this family we discard all connected components except for the one which contains

R. Call this handlebody VR.

Since the boundary of VR = R together with a collection of disks, and since

γ ⊂ VR we deduce that ∂−A was also a boundary component of R. Finally, the transverse

orientation on ∂−A must point towards R, again, because γ ⊂ VR.

We end this section with the trivial:

Lemma 7.2.6. Suppose that α and β are disjoint essential simple closed curves on a con-

nected surface S and τ is a simple arc with either one end point in α and the other end

point in β or both end points on α. Suppose further that γ is a simple closed curve disjoint

from α ∪ β which meets τ an odd number of times. Then γ is essential.

Proof. This follows directly from the Jordan Curve Theorem.

7.3 A final bound

We conclude this chapter with the following theorem:

Theorem 7.3.1. Take d4 as defined in Theorem 7.2.3. Suppose that:

1. (M, T ) is a closed, orientable, irreducible, triangulated three-manifold and
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2. H is a genus two, light, normal or almost normal Heegaard splitting admitting a non-

trivial exchange band A ⊂ W and

3. A is either a Mobius strip or an annulus with both boundary components essential in

H.

Then the distance of H is less than or equal to d4 · |T |.

Proof. Let H be the given Heegaard splitting. Note that if H contains an almost normal

annulus then the conclusion follows by Theorem 7.1.7.

Begin with the boundary compressible case: that is, suppose that H is given a

Haken decomposition such that W contains a non-trivial boundary compressible band A

with ∂A essential in H. Let D be a boundary compressing disk for A and set τ = D ∩ H.

Now by Remark 2.6.10 there must be a seam, β, of H which comes from a exchange band

B ⊂ V , is disjoint from ∂A, and meets τ an odd number of times.

By Lemma 7.2.6 it follows that β is an essential curve and hence that B is either

a nontrivial band or is a tunnel. In the former situation, we are done by Lemma 7.2.1 and

in the latter situation we are done by Theorem 7.2.3. (Note that this deals with Mobius

strips, if they appear.)

Suppose now that there is a tunnel, C, in W . If there is an non-trivial band in

V , then we would again be done by applying Theorem 7.2.3. If there is no such band as in

Lemma 5.1.8 there is a tunnel in V whose boundary components alternate with those of C.

We conclude that H was not light, a contradiction.

We find ourselves in the compressible case: all exchange bands in W are com-

pressible annuli. Let A be the set of all of these annuli. As above, give this set the partial

order >. Let B be a maximal element with respect to > such that B > A. Note that both

β′ = ∂+B and β′′ = ∂−B are essential. If this were not the case then one of them would

bound a disk, D ⊂ H, which does not contain the other. D, or rather a parallel copy of D

is a compressing disk for B. As such D ∩ A 6= ∅ because B > A. But this implies that one

of A’s boundary components is trivial, a contradiction.

Finally, Lemma 7.2.5 implies that there is an arc τ ⊂ H connecting β′ to β′′ such

that τ meets no other annulus in A. By Lemma 7.2.6 there is an exchange band in V with

nontrivial boundary. As above, we may now obtain the desired bound.

Remark 7.3.2. We end by outlining the remaining case, which has thus far resisted all
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of our efforts: Suppose H is a light normal or almost normal Heegaard splitting of genus

greater than 1, which is not fundamental, of a closed, orientable, irreducible, efficiently

triangulated three-manifold. We may further assume that the genus of H is not too large

(by Theorem 3.0.1) and that the weight of H is not too small (by Theorem 7.1.1.)

Lemma 5.1.8 implies that, for every Haken decomposition of H, one of the two

handlebodies, say W , must contain a nontrivial exchange band. Theorem 7.3.1 implies that

if one of these nontrivial bands is either a Mobius strip or an annulus with both boundaries

essential then we achieve the desired bound.

We are left with the specter that in every Haken decomposition of H all of the

exchange bands have at least one boundary component trivial. I do not know how to deal

with this remaining case.
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acylindrical, 51

adjacent, 65

almost normal

annulus, 19

octagon, 19

surface, 19

annulus

disk-like, 51

essential, 50

trivial, 42

bent arc, 30

block, 22

core, 22

exceptional, 24

many-sided, 24

product, 22

blocked, 24

boundary

horizontal, 25

superficial, 25

vertical, 25

branch direction, 66

branch locus, 65

bridge position, 11

carrier, 66

causes, 65

compatible, 14

compression body, 4

contains, 70

coordinate vector, 14

core, 10

corners, 25

critical points, 11

curve complex, 7

dicing, 56

disk

essential, 5

exceptional, 31

lower, 11

normal, 13

strict, 11

surgery, 31

tightening, 30

trivial, 5

upper, 11

distance, 7

downset, 66

efficient, 18

exchange band, 17

frontier, 3

fundamental, 14
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genus, 10

good collection, 60

handlebody, 4

heads, 4

irregular exchange, 16

length, 13

light, 64

manifold

Haken, 5

reducible, 5

Seifert fibred, 7

toroidal, 5

mapping class group, 9

mapping torus, 9

Mobius strip

disk-like, 51

essential, 51

trivial, 44

monodromy, 10

multiplicity, 67

neat intersection, 15

normal
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disks, 13
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surface, 13

triangle, 13

normal curve, 12

length of, 13

short, 13

normal isotopy, 12
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product structure, 10

level of, 10

transverse to, 10

regions, 71

regular
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exchanges, 15

seams, 18

shrunken, 24

simple curve, 30
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terminal, 33

termporary, 33
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rectangle, 22

tip, 22

source sector, 66

splitting

disjoint curve property, 6

distance of, 8

filling, 6

Heegaard, 4

irreducible, 5
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stabilized, 6
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strongly irreducible, 6

weakly reducible, 6

strongly irreducible homeomorphism, 9

superficial faces, 24

surface bundle structure, 9

surger, 31

tail, 4

tent, 42

thick region, 10

thin position, 11

thin region, 11

tightening

disk, 30

isotopy, 30

map, 31

sequence, 31

translation distance, 9

tube, 42

tunnel, 42

vertex links, 18

vertex surface, 14

vertical surface, 25
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