Nearly Tight Bounds for Wormhole Routing

Abhiram Ranade*

Saul Schleimerf

Daniel Shawcross Wilkerson?

University of California, Berkeley, California 94720

Abstract

We present nearly tight bounds for wormhole rout-
ing on Butterfly networks which indicate it is funda-
mentally different from store-and-forward packet rout-
ing. For instance, consider the problem of rout-
ing Nlog N (randomly generated) log N length mes-
sages from the inputs to the outputs of an N input
Butterfly. We show that with high probability that
this must take time at least Q(log® N/(loglog N)?).
The best lower bound known earlier was Q(log” N),
which is stmply the flit congestion in each link. Thus
our lower bound shows that wormhole routing (un-
like store-and-forward-routing) is very ineffective in
utilizing communication links. We also give a rout-
ing algorithm which nearly matches our lower bound.
That is, we show that with high probability the time
is O(logSNlog log N), which improves upon the pre-
vious best bound of O(log* N). Our method also ex-
tends to other networks such as the two-dimensional
mesh, where it is nearly optimal. Finally, we con-
sider the problem of offline wormhole routing, where
we give optimal algorithms for trees and multidimen-
stonal meshes.

Keywords: wormhole routing, packet routing, cut-
through, off-line routing, butterfly, multi-dimensional
mesh, trees.

1 Introduction

Wormhole routing is an extremely popular strategy
for data movement in parallel computers and 1s used in
a variety of machines such as Intel Delta, MIT J ma-
chine, MIT April and others. In wormhole routing, a
message is transmitted as a contiguous sequence of flits

*Division of Computer Science, ranade@cs.berkeley.edu

tsaulsch@oct .berkeley.edu

{Department of Mathematics, wilkerso@math.berkeley.edu
This research is partially supported by NSF-DARPA grant
CCR-9005448. Copyright ©1994 IEEE. This paper will be pub-
lished in the proceedings of FOCS 1994.

(flow control units) and the sequence moves along the
path from the source to the destination in a pipelined
manner, like a burrowing worm. There two are defin-
ing characteristics of wormhole routing: (i) message
contiguity Every edge along the path must transmit
all flits of the message in a contiguous manner, i.e. the
bits of two different messages cannot be interleaved.
(i1) minimal buffering Each intermediate node can
only buffer a few flits. (Thus, if the head of the mes-
sage cannot move forward because another message is
using the edge it wants, then it message must wait,
and as it waits it occupies a contiguous sequence of
edges along its path.) Both of these properties make
for simple hardware implementations. For example,
the bookkeeping at each node is simplified because
bits of the message cannot be interleaved, and since
the queues at each intermediate node are only required
to buffer few flits, they can be made simple, small, and
fast.

Most of the theoretical work in message routing is
based on the much simpler (store-and-forward) packet
routing model. Packet routing is effectively a special
case of wormhole routing in that each message is as-
sumed to consist of a single flit. Another model that is
fairly well understood is the cut-through model which
is identical to the wormhole routing model, except that
intermediate nodes in the network are assumed to have
enough storage to buffer several entire messages, not
just several flits.

It i1s natural to divide the problem of message
routing (in any of the three models) into two parts:
(i) Path selection, in which each message is assigned
a path along which it moves, and (ii) Scheduling the
movement of messages along the path assigned to it.
Path selection algorithms are typically designed to
minimize two parameters: (i) congestion c: the max-
imum number of flit paths traversing any single link
of the network, and (ii) dilation d: the length of the
longest path that any message must travel. Each of
these parameters is clearly a lower bound on the time
required to route the given set of messages. The goal
of the scheduling step is to compute a schedule for

moving messages and if possible match the inherent
lower bounds, i.e. finish routing in O(c + d) steps.
It is necessary, of course, that the path selection and
scheduling algorithms be distributed (i.e. run on the
network itself) and on-line (the time to compute the
paths and the movement schedule is also included in
the total routing time).

This paper 1s concerned with the question of
scheduling message movement in the wormhole rout-
ing model. The input to our problem is the com-
munication network and a set of messages along with
their paths. The specification of the paths determines
the parameters ¢ and d as defined above, and the
goal is to schedule message movement so that rout-
ing finishes in time O(c + d), if possible. In previous
work, Felperin, Upfal and Raghavan showed that this
bound can be matched on two dimensional meshes|[2],
and gave suboptimal upper bounds for the butterfly.
Their results were extended by Greenberg and Oh[3]
to levelled directed networks and fat-trees. Except for
two-dimensional meshes, all these results were sub-
stantially worse than the lower bound of Q(c + d).

The situation is considerably different in packet
routing. In this case, Leighton, Maggs and Rao[6]
show that schedules achieving time O(c + d) exist.
Leighton, Maggs, Ranade and Rao [5] give distributed,
on-line algorithms to finish the routing in time O(c+d)
for worst-case as well as average case routing problems
on most known networks.

1.1 Main results and Overview

In this paper we improve the upper bounds as well
as the lower bound for the time to route messages on
the Butterfly network, for the case in which the mes-
sages are reasonably long (log N flits or more). Our
lower bounds show that for many natural Butterfly
routing problems the routing time must be w(e + d).
This implies that wormhole routing is fundamentally
different from packet routing.

In Section 2 we present a generic algorithm for
wormhole routing on levelled directed networks. For
reasonably long messages, our algorithm considerably
improves upon the one presented by Greenberg and
Oh[3].

Our Butterfly algorithm presented in Section 2.4
is an instance of our generic algorithm. We consider
two problems on the N-input butterfly: in the Lightly
loaded problem each input sends 1 message to a ran-
domly destined output, and in the Heavily loaded prob-
lem each input sends log N randomly destined mes-
sages. In each case L > log N denotes the number
of flits in each message. For the lightly loaded prob-

lem our algorithm takes time O(L log N loglog N). In
comparison, the algorithm of Felperin et al[2] takes
time O(L log N min(L,log N)). For L = log N, our
time bound is O(log® Nloglog N), as opposed to
O(log® N) for Felperin et al.

The heavily loaded problem is the most interest-
ing of the lower bounds presented (Section 3). For
the heavily loaded problem, with L = logN, we
show that routing requires time Q(log® N/ log” log N),
even 1f offline computation is allowed for computing
schedules. Notice that the congestion+dilation lower
bound for this problem is only Q(log* N). Our al-
gorithm from Section 2.4 completes routing in time
O(log® N loglog N), nearly matching the improved
lower bound. Note that the previous upper bound
for this problem, implied in [2] is O(log* N).

Our generic algorithm for levelled directed networks
can also be used to construct an on-line routing al-
gorithm for routing “one-bend paths” on two dimen-
sional meshes. This algorithm (Section 2.4) matches
the performance of the algorithm of Felperin et al[2]
for large enough messages.

In Section 4 we present offline algorithms to con-
struct schedules for constant dimensional meshes and
trees. We present algorithms that route in the opti-
mal time O(c + d) on these networks. Our results on
trees improve upon the ones by Bhatt et al [1], and ex-
tend the algorithm of [1] for two dimensional meshes
to higher dimensions.

In Section 5 we present a wormhole routing problem
for which the routing time is Q(cd). Any wormhole
routing problem can be solved in O(ed) time using
offline computation, and our example shows that this
bound is existentially tight.

We begin by clarifying our model of wormhole rout-
ing.

1.2 Model

Our model is similar to that of Felperin et al[2].
A routing network 1s a directed graph, where proces-
sors and switches are nodes and channels are directed
edges. We only consider networks with bounded de-
gree. A flit (flow control unit) is the atomic unit of
information that may move through the network. It
takes unit time to cross any edge and no two flits may
traverse the same edge at the same time. Each node
has a single buffer capable of holding one flit for each
incoming link.

A message consists of a sequence of flits. In this pa-
per we consider fixed length messages, each having L
flits. Once the head (first flit) of a message is transmit-
ted over any link, all other flits must be transmitted

over it before the flits belonging to any other message
can be transmitted. In each time step the head flit
may advance along its path if that link is free, and the
buffer unoccupied; else it remains in its current buffer.
Following Felperin et al[2] and Greenberg and Oh[3]
we assume that when the head of a message moves
forward, all its flits also move forward.

2 A routing algorithm on levelled di-
rected networks

A d-levelled directed network G is a network in
which each vertex is assigned a level in the range 0
through d and such that each edge starts at a vertex
in level i and ends at some vertex in level i + 1 (for
some 7). A routing problem on the network is a (multi)
set P of paths that we want the messages to traverse.
Paths must start on level 0 and terminate on level d.
M denotes the number of such paths, and L the length
of each message. We assume that L > d.

A useful tool for analyzing a routing problem in-
stance 1s the path graph.

Definition 1 Consider a set of paths P in G. Define
the path graph of P to be the graph P = (P, E) where
for any two paths p and q in G (p,q) € E iff p and q
share an edge in the network.

We will use A to denote the degree of the path
graph.

2.1 The greedy algorithm

We first describe the natural greedy algorithm and
analyze it. The greedy algorithm is useful as a sub-
routine in our algorithm. As the name suggests, the
algorithm is to move each message forward whenever
possible. If two messages need to be transmitted along
the same edge then one of them is chosen arbitrarily
and the other waits until the edge is available. We
present a simple estimate of the time required by the
greedy algorithm. Our proof is similar to the idea in
Lemma 1.8 of Leighton[4].

Lemma 1 Consider a set of paths on a d-levelled di-
rected network and let C' be a connected component of
the associated path graph. Using the greedy algorithm
all the messages in C are delivered in time d + |C|L,
where |C| denotes the number of messages in C.

Proof: We first show the following: if some level
¢ contains a flit from C' at time ¢, then every level
i,i+1,...,min(d,t) contains a flit from C at time ¢.

Let tg be the smallest ¢ for which the above assertion
1s false. Then at time ¢y there exists 7 such that level
i+ 1 < min(d,t) does not contain a flit from C' but
level ¢ does. But this flit must have been in levels 1 — 1
or 7 at time step t; — 1. But since the assertion is true
for step tg — 1, we know that levels 4, ..., min(d,tp—1)
were occupied!. Thus some flit f; in level ¢ did not
move into level 7 + 1 at step ¢y. But this can only be
due to the corresponding buffer being occupied by a
flit f5 that moved in at step tg, or was already there
and did not move during step g — 1. In either case,
we have shown that at time ¢g level 7+ 1 must contain
a flit from C.

Thus at least one flit from C' gets delivered to level

d at each timestep on or after step d. Then the lemma
follows by noting that C' contains only |C|L flits. I

2.2 Our algorithm

Our algorithm builds upon the “delayed greedy”
idea of Felperin et al[2], and has two phases:

phase one FEach message picks a color at random
from {1...aA}, where a is constant which we
will fix later.

We then run aA sub-phases, such that in the *?
sub-phase only the worms of color i participate.
In sub-phase ¢ we run the greedy algorithm for
Llog A 4 d routing steps on messages of color z.
The messages that are not completely delivered
by that time are removed from the network.

phase two We now disregard the previously as-
signed colors, and run the greedy algorithm on all
messages that were undelivered in phase 1, until
all of them are delivered.

Phase 2 requires each level 0 node to know which of
its messages were delivered in phase 1 (and which need
to be transmitted in phase 2). For L > d this is easily
done as follows. A message will be delivered during
phase 1 if at step Llog A its tail is already injected
into the network. This is because L > d guarantees
that it will then have already occupied all the links it
needs, and thus can proceed unhindered to be com-
pletely delivered by step Llog A + d.

INote that all flits are on level 0 when routing begins and a
flit is considered delivered when it has reached level d.

2.3 Time analysis

Let Py be the path graph of the entire routing prob-
lem, and let P; be the path graph of those messages
that remain to be delivered at the end of phase one.

Theorem 1 The algorithm delivers all messages in
time O(L(Alog A 4+ log M N) + dA) with high proba-
bulity.

Proof: Phase one takes time aA(LlogA + d), by
construction.

Lemmas 2 and 3 below will show that P; has no
connected components of size log M N with high prob-
ability. Thus by lemma 1 the time for phase 2 is at
most Llog MN +d.

Lemma 2 If there is a component C' in Py of size at
least u then there is a connected subgraph C' in Py of
size at least u that consists of the union of monochro-
matic components each of size at least log A.

Proof: C is simply the union of the collection
of those monochromatic connected components of Py
that contain at least one of the messages in C’. Clearly
C' is connected in Py, and the number u of messages
in C' is at least u.

By construction, we know that each monochromatic
component of C' is not completely delivered during
phase one. Thus by lemma 1, each of these compo-
nents must have size at least log A. Il

Lemma 3 Let C' denote the largest connected sub-
graph of Pq that is a union of monochromatic com-
ponents, each of size at least log A. With high proba-
bility, C has O(log M N) vertices.

Proof: Let u denote the number of vertices in C|
and let e¢1,¢9, ..., ck denote the monochromatic com-
ponents constituting C. By lemma 2 we know that
k < u/log A. Each ¢; has a monochromatic spanning
tree. These trees may be joined to form a colored
spanning tree of C' with k& contiguous monochromatic
subtrees. We will upperbound the probability of the
existence of such a colored tree.

We first count the number of possible spanning
trees of the form mentioned above.

1. There are at most M ways to fix u.

2. There are u4* ways to pick a rooted unlabeled
tree on u nodes.

3. There are at most 2% ways to mark k edges of
this tree as chromatic boundaries. Incidentally,
this marking fixes the value of k.

4. The edges selected above split the tree into sub-
trees, and we must choose a color for each subtree.
This can be done in («A)* ways. This is at most
(aA)e/1088 < (2, /a)¥ ways.

5. We embed this tree into the path graph. There
are M ways to embed the root. Each node is then
embedded to a neighbor of its parent. There are
A*~1 ways to do this, for a total of at most M A
ways.

For this tree to actually arise, the colors of all of
the nodes in the tree must agree with the colors picked
in item 3 above. For any particular colored tree the
probability that it actually occurs is < (aA)~*. Thus,
the probability that there exists a tree of size u in Py
is at most:

Mud®2%(2\/a)* M A® 3. 92log M/u) *
(ad)" T
We will ensure that u > 2log M, and choose a =
(128)%. This will make the quantity inside parenthesis
be at most 1/2. Thus, choosing u = 2log M + S log N,

we can force the probability to be smaller than N7,
for any 2. Il

We have not attempted to minimize a, but clearly,
a much smaller value should also suffice.

2.4 Applications

We instantiate the generic algorithm described in
the previous section for N-input Butterflies and N
node square meshes. For butterflies, d = log N and
L > log N. For meshes, we use d = 2v/N — 2 and
L>2VN -2

Lightly loaded butterfly FEach input has one
randomly destined message. Using Chernoff bounds,
it is easy to show that with high probability there are
O(log N) messages touching the path of any message,
giving the degree A of the path graph to be O(log N).

Applying our upperbound, the routing time is
bounded above by

O(Llog N loglog N).

We note that this is nearly optimal. This follows
just by considering the (flit) congestion, which gives a
high probability lower bound of

Q Llog N
loglog N

Heavily loaded butterfly 1In this, each input
has log N messages, so that M = NlogN. Using
Chernoff bounds it is possible to show that O(log V)
messages pass through any link with high probability.
Since each message traverses log N links, we have the
path graph degree A = O(log” N). The routing time
is then bounded above by

O(Llog® N loglog N).

This time is nearly optimal, since using Theorem 2
for L > log N, this problem has a lower bound of

Q (L120g2 N)

log” log N
The mesh We consider the problem in which
each node in the mesh sends out a single message to a
randomly chosen node. We only consider how to route
messages going “in the north-east” direction, other di-
rections can be handled by making four copies of the
mesh[5]. We see the mesh as a (2V/N — 2)-levelled
directed network where the north-west to south-east
diagonals form the levels. The mesh and the paths
on it are then extended in the natural way so that all
paths start and end on the same level. Using Chernoff
bounds it is easily seen that O(\/ﬁ) messages share
edges with any message, giving A = v/N for this prob-

lem. This gives a time bound of

(0] (L\/ﬁlogN) .

The time for higher loading increases proportionally.
The best lower bound for this problem is based on
flit congestion, and is only Q(L\/ﬁ) Felperin et al
give an algorithm that uses time O(Lv/N), but they
require more complicated paths. For one bend paths
their algorithm and analysis (specialized for the mesh)
gives the same time as ours, though their algorithm
works well with slightly shorter messages.

3 Butterfly lowerbound

Consider routing problems on an N-input Butter-
fly in which each input has log N messages destined
to uniformly randomly and independently chosen out-
puts. Let M = Nlog N denote the total number of
messages, and L denote the length of each message.
We will prove lower bounds on the time to route such
problems.

Using Chernoff bounds (e.g. see Leighton[4]) it is
possible to show that the congestion in every link will
be Llog N with high probability.

Nevertheless it turns out that with high prob-
ability when M = NlogN the problem requires

Q (#gfig—lv) time, where [= min{L,log N}. In par-

ticular it is interesting to remark that our result is
stronger than the congestion bound as long as L >
8log?log N.

We begin the proof by reducing the problem to an-
other that is simpler to analyze.

Definition 2 The N-input truncated butterfly s the
network consisting of only the first | levels of the N-
input butterfly.

Clearly, any routing problem on the butterfly re-
stricts naturally to a routing problem on the trun-
cated butterfly, and any butterfly routing algorithm
can be used in the obvious way to route a given prob-
lem on the truncated butterfly in the same or better
time as on the butterfly. We prove a lowerbound on
truncated-butterfly routing times, and thus butterfly
routing times.

Lemma 4 Without loss of generality we may assume
that message movement on the truncated butterfly oc-
curs in phases of length L. That is, if the routing be-
gins at time 0, all message heads arrive at titme | + 1L
for some non-negative integer i.

Proof: Suppose not. Consider the first message m;
whose arrival time is not in phase. Without loss of gen-
erality, it was blocked at some point by another mes-
sage. (Otherwise we could have released m; earlier).
Let ma be the last message that blocked it. When the
tail of my passes the head of m;, m; moves forward,
always remaining on the level immediately behind that
of the tail of ms, arriving at the end of the network
L steps after the head of ms. This contradicts the as-
sumption that m; was the first message whose arrival
time was out of phase. Il

Theorem 2 With high probability a randomly cho-
sen problem requires time Q (#{g?ﬁg—lv), for M =
NlogN.

Proof: Notice that messages in the same phase can-
not conflict. That is, the phases of the routing parti-
tion the M vertices of the path graph (of the truncated
paths) P into independent sets. If the routing takes
time 7', then the number of parts is T'/L and by an
averaging argument one partition is of size at least
ML/T. Lemma 5 below will show that any fixed sub-

. . 2
set of the vertices of P of size B = % = w

—iB?

has probability at most exp (W) of being in-

dependent.

Since there are (Jg) possible such subsets, by the
union bound, the probability that one of them is in-
dependent is at most

—1B? M
exp | —————
P\aNloglog N / \ B
B
M
< exp(—2Bloglog N) <?€)

_< Me)B
~ \Blog? N

B
le
<log N log logN)
— Ny-w()

Lemma 5 If a multi-set of B > 2N/log N paths are
chosen uniformly and independently at random wn the
truncated N-input butterfly then the probability that
they are independent s at most

—1B?

P <4N loglog N) '
Proof: Let n = log N. We first consider the prob-
ability that the B messages conflict at level logn of
the truncated butterfly. Consider the subgraph of the
truncated butterfly consisting only of the first logn
levels. Tt is easily seen that this consists of N/n small
butterflies, each having n inputs. Assume that the
source processors for the B messages are chosen, and
that this results in B; messages being placed in the
ith small butterfly, i = 1,..., N/n. We estimate the
probability that there are no collisions in any of the
small butterflies at the logn'”? level.

Consider the paths of the B; messages inside the 7"
small butterfly. There are n®¢ total ways in which the
right endpoints of the paths can be chosen, of which
only n(n—1)...(n— B;+1) ways do not collide at the
last level. Thus the probability of not having collisions
at the log nt® level is

H(-5) (1-2) - (-2
e (- (24240 221)

-y (TP,

2n

The probability that this happens in every small
butterfly is

N/n

Tf s (Z222=1)

i=1

using B > 2N/n. Notice that to obtain this we used
no information regarding the start positions of the
paths at level 0. Thus the argument can be repeated to
obtain an upperbound on the probability that there is
no collision on level 2logn, and indeed jlogn for any
j=1,... @. In other words, given that there has
not been any collision at level logn, the probability
that there is no collision at level 2logn is also given
by the above expression. Again since no information
was used regarding the initial positions of the paths
in the small butterflies, we may multiply these prob-
abilities to obtain an upperbound on the probability
that there are no collisions on any level of the form
Jlogn (Which of course is also an upperbound on the
probability that there are any collisions at all). This

gives
—RB2 Togn _IB2
<eXp (AN)) P <4N 1oglogN)'

4 Optimal offline algorithms for multi-
dimensional meshes and trees

We show how to compute offline routing schedules
for sets of paths with flit congestion ¢ and dilation d
on trees and constant dimensional meshes. The sched-
ules have length O(c 4+ d) and thus match the conges-
tion+dilation lower bound. We require on k£ dimen-
sional meshes that the paths consist of at most one
straight segment in each dimension. Our tree results
improve the ones in [1], while our k£ dimensional mesh
results generalize the case k = 2 presented there.

The schedules we compute actually satisfy a
stronger model, the bufferless routing model[1]. In this
model we have the additional restriction that once any
message starts moving it does not stop along the way.
Clearly, every bufferless schedule is a wormhole sched-
ule, but not vice versa.

We will first derive bufferless schedules for problems
where the message length L = 1. We will then show
(Section 4.5) how to generalize the method to give
optimal schedules for general L. Let ¢z, denote the flit
congestion for length-I messages. Clearly ¢ = Ley.
In particular, we will show that if T'(L) denotes the
time for scheduling length-L paths, then we will have

T(1)=0(e1 +d) = T(L) = O(cr + d)
for all of the problems we consider.

4.1 Problem statement

A routing problem consists of a graph G = (V| E)
and a set P of paths on G. ¢ denotes the maximum
number of paths passing through any edge and d the
length of the longest path.

Define a coloring of the paths P to be a map C' :
P — N. Let p,q be paths which share some edge e.
Let dp(e) denote the distance along p from the initial
point of p to the initial point of e. We say that paths
p and q conflict at e if

dp(€) + C(p) = dyg(e) + C(g).

We say a coloring is good if no two paths conflict.

Clearly coloring one path p can make some colors
unavailable for another path ¢q. (That is, the use of
those colors for ¢ would produce a conflict with p.)
We say that a routing problem is simple if coloring p
can make at most one color unavailable for each other
path ¢q. The mesh and tree problems we address here
are clearly simple.

Notice that if we interpret the color of a path as a
starting time for a message travelling that path in a
routing schedule, then the good colorings are exactly
the legal bufferless routing solutions. Thus our goal is
to find a coloring that does not have any conflicts and
that uses colors in the smallest range possible.

4.2 Algorithm

Our coloring algorithm uses a generic greedy strat-
egy as follows:

1. Choose a total order <* on the paths, P. (The way
that this is done distinguishes different versions of

the algorithm for different types of networks, such
and trees and k-dimensional meshes.) Initialize
all paths to have no color.

2. Consider the paths in increasing order by <* and
assign each path the smallest possible color such
that there are no conflicts with paths that have
already been colored.

The key question is how to find a total order <*
that minimizes the maximum color required.

Definition 3 A total order <* on paths is k-entrant
if it 1s possible to associate with each path p a
set entrance(p) of edges lying on p such that (i)
entrance(p) contains at most k edges and (i1} if p <* q
and p and q intersect, then some edge in entrance(q)
lies on p.

Lemma 6 If P is a simple routing problem and there
ezxists a k-entrant total order <* on P then there is a
good coloring of P using colors only up to k(c—1)+1.
(Where ¢ is the message congestion as well as the flit
congestion of P, since [= 1.)

Proof: ~ Use the greedy algorithm above. Consider
what happens when we color a path q. Every path that
(i) has already been assigned a color and (ii) intersects
q passes through some edge in entrance(q).

There can be at most k(c— 1) such messages, since
the congestion of each edge is at most ¢ and since there
are at most k vertices in entrance(q). Thus when we
color ¢, there are at most k(¢ — 1) colors unavailable
for use. Thus we may choose a color that is at most

k(e—1)+1. 1

We will find 2-entrant total orders for trees and k-
entrant total orders for k-dimensional meshes. Since
k is a constant, the largest color used will be O(c) and
thus every message will be delivered in time O(c+ d).

4.3 The tree

Suppose G is a (bi-directed) tree. We can see that
any set of paths is 2-entrant as follows. Pick some
node to be the root and for any path p let its highest
point be the vertex on p closest to the root. Again for
any p let entrance(p) be the two edges in p adjacent to
the highest point of p. Say p <* ¢ iff the highest point
of p is higher than that of ¢, breaking ties arbitrarily.

4.4 k-dimensional meshes

We only allow paths in which there are & segments
and no two traverse the same dimension. Partition
the paths into 2%k! parts, one part for each possible
permutation and orientation of the dimensions. We
assign a path p to the part corresponding to the direc-
tion and orientation in which 1t traverses the dimen-
sions. Each of these parts can be scheduled separately
and then combined into one routing. (Since k is a con-
stant, this does not change the order of the solution
time.) From now on we restrict our attention to those
paths that traverse the dimensions in increasing order
and in the positive direction.

For any path p let entrance(p) consist of the very
first edge of p and each edge following a corner vertex
of p. (If a dimension is not traversed, then we include
no edge for it.) There are at most & such edges. De-
fine <* to be the reverse-lexicographic ordering on the
coordinate vector of the initial points of the paths.

Lemma 7 <* as defined above is k-entrant.

Proof: Suppose paths p and ¢ intersect along an
edge. Follow both paths backward from that edge
until the paths separate. Let e be their first com-
mon edge, and suppose that it traversed dimension
j. For the paths to separate, one of them must have
just reached a corner point or its initial point. As-
sume without loss of generality that it was ¢. Thus
e € entrance(g) and we have an edge from entrance(q)
lying on p.

Now consider the initial points (g1,...,qx) and
(p1, ..., pr) of g and p respectively. Since p and ¢ inter-
sect at a point before both of them have traversed any
dimensions higher than j, for all i > j, ¢; = p;. Recall
that as we walked backwards on ¢ and p together, ¢
turned off of dimension j first. Thus p; < ¢;. From
this we see that p <* ¢.

Thus the total number of colors necessary to color

all of the paths is at most 2%k!(k(c — 1) + 1) = O(c).
4.5 Multiflit messages

Notice that we could deal with messages that are
L flits long by replacing each path with L paths (all
with the same source and destination) and using the
previous algorithm. The schedule thus obtained will
use O(cy,) colors, where ¢y, is the flit congestion of any
edge — however the flits belonging to each message
might not be scheduled in a contiguous manner.

We modify the greedy algorithm to ensure that all
flits are scheduled in a contiguous manner. This means
that in step 2 of the algorithm of section 4.2, we must
find a contiguous sequence of L available colors to as-
sign to the flits constituting the message (we color
them all at once). Note however that since the flits
of previous messages have also been colored contigu-
ously, the unavailable colors occur in contiguous blocks
of length L.

Notice then that any placement of k(c—1) blocks of
L unavailable colors must leave a block of L available
colors somewhere in the range 1...(2L—1)k(e—1)+L.
Thus the maximum color that will be used is (2L —
1)k(c—1)4+ L = O(cr). Thus the maximum delivery
time will be O(er, + d).

5 A Problem requiring Q(cd) steps

If d 1s the maximum path length, then clearly any
order is d-entrant, for any routing problem. Thus in
general, any routing problem can be offline scheduled
to finish in O(cd) time. Here we show a routing prob-
lem for which (ed) is necessary, even with off-line
scheduling.

Let p be a prime number. Let our levelled directed
network consist of 2p + 1 levels (numbered 0 to 2p)
with p vertices each. Vertices in odd levels connect to
the corresponding vertices in the next level by a single
edge. Vertices in even levels connect to the next level
by a copy of K, ;.

We use p? messages of length L > 2p 4+ 1. Denote
them wyq ... wp>_1. Note that the path for each mes-
sage w; can be represented as a vector v; € {0...p —
1}7, where v; j; is the position of w; on levels 2k and
2k + 1. Notice also that for any w; and wj, if there is
a k such that w;; = w;; then the paths for w; and
w; collide along the edge from level 2k to level 2k 4 1.

For any integer 7, let i, = “—)J and 7, = ¢ mod p.
We now define the paths of the worms. Let worm w;
travel the path given by the following vector.

{ia ifk=0

Vig =3 . . .
! iy + k-1, otherwise

Note that the maximum number of messages through
any edge is p, so the flit congestion ¢ = pL. The length
of each path is 2p, i.e. d = 2p.

We will show that every pair of paths collide in
some edge. Consider w; and w;. If ¢, = j,, then they
collide on the edge from level 0 to level 1. Otherwise,

iv +k-ig=jo+k-jo (modp)

has the solution

ko = ﬂ (mod p)
ta — Ja
since Z, is a field. Thus paths w; and w; collide on
the edge from level 2kg to 2kg + 1.

Notice that by a proof similar to that of lemma 4 in
the butterfly lowerbound section we may assume that
the messages will be routed in phases, where all worms
in a phase arrive at the same time and arrivals are
separated by L timesteps. But since all paths intersect
and the length of each message is at least the length
of the network, no two messages can be delivered at
the same time! Therefore the total time is at least

p?L = Q(cd).

6 Open questions

6.1 Toward a possible extension of the
butterfly upperbound for L < d.

The biggest unresolved question relates to short
messages. Can we adapt the algorithm presented in
Section 2 to messages with L < d7 The main obstacle
is how to inform level 0 nodes which of their messages
got delivered in phase 1. The mechanism presented
in Section 2 crucially exploits the assumption L > d.
If we are allowed to run the network in reverse (pos-
sible if each node keeps a transcript of how it moved
messages going forward) we can simply return each un-
delivered message back to its sender. By using minor
additional features, we can even pipeline sub-phases of
phase 1, so that the time for routing on levelled net-
works would become O(L(AlogA + log N) + d), and
the routing times mentioned in Section 2.4 will be cor-
rect for any length messages. These times compare fa-
vorably with the previous work[2, 3] for L > loglog N.
But getting these timings requires extending the basic
wormhole model as suggested above, and this seems
to us to violate the basic motivation of the wormhole
model: simplicity.

6.2 Other problems

The work presented here raises several questions.

A related open problem is to unify the algorithms
known for wormhole routing and packet routing and
produce a single algorithm and a single analysis for
both. Packet routing, after all, is wormhole routing
with L = 1. This we feel is a harder problem, since we
do not know how to solve the heavily loaded packet

routing problem without invoking random priorities
as in [5]? One approach to achieve this goal may be
to strengthen Lemma 1. This lemma gives a really
outrageous bound on the performance of the greedy
algorithm, while extensive experiments suggest that
the greedy algorithm performs very well.

There are open problems for long messages as well.
It would be useful to tighten the gap between the
Butterfly upper bound and the lower bound: for
L =log N, we conjecture the complexity of the lightly
loaded problem is f(log* N), and #(log® N) for the
heavily loaded problem. It would also be desirable
to improve the analysis of the algorithm for the two
dimensional mesh using one bend paths; or get better
lower bounds.

References

[1] S. Bhatt, G. Bilardi, G. Pucci, A. Ranade,
A. Rosenberg, and E. Schwabe. On Bufferless
Routing of Variable Length Messages in Leveled
Networks. In First European Symposium on Algo-
rithms, pages 300-343, September 1992.

[2] S. Felperin, P. Raghavan, and E. Upfal. A theory
of wormhole routing in parallel computers. In Pro-
ceedings of the IEEE Annual Symposium on The
Foundations of Computer Science, pages 563-572,
1992.

[3] R. Greenberg and H.-C. Oh. Universal Wormhole
Routing. In IEEE Symposium on Parallel and Dis-
tributed Processing, 1993.

[4] F. T. Leighton. Introduction to parallel algorithms
and architectures. Morgan-Kaufman, 1991.

[5] Tom Leighton, Bruce Maggs, Abhiram Ranade,
and Satish Rao. Routing and Sorting on Fixed-
Connection Networks. Journal of Algorithms,

16(4), July 1994.

[6] Tom Leighton, Bruce Maggs, and Satish Rao. Uni-
versal Packet Routing Algorithms. In Proceedings
of the IEEE Annual Symposium on The Founda-
tions of Computer Science, 1988.

?Maggs and Sitaraman have recently solved the light loading
case.

