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@ Birkhoff proved the conjecture in 1917.

Origins of Min-Max Method = Morse, Lusternik-Schnirelmann

@ Generalization to all closed surfaces is easier.

Nontrivial 71(S) gives shortest geodesic in the homotopy class.

@ Natural generalization of the question to higher dimensions:

Does every closed 3-manifold contain a closed, embedded minimal
surface?
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G420

D is the least area disk among the disks with the same boundary
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Minimal Surfaces

@ Minimal Surfaces

Equivalent Definitions:

e The critical points of the area functional.
e The mean curvature H = 0 everywhere.

e Locally area minimizing!

@ Two basic ways to obtain Minimal Surfaces

e Min-Max

@ Area Minimization in a restricted class.
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Does every 3-manifold contain a closed, embedded minimal surface?

@ M is a closed 3-Manifold = [Almgren-Pitts 1980s] Min-Max Theory

Yau’s Conjecture [Neves-Marques-Song 2018]

Every closed 3-manifold contains infinitely many closed, embedded minimal
surfaces.

@ What if M is not closed? M is non-compact.
M has finite volume =- [Chambers-Liukomovich 2017] Min-Max
@ What if M has infinite volume?

Main Result:

Every infinite volume hyperbolic 3-manifold contains a closed, embedded
minimal surface except some special cases.
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@ 3-manifolds with a metric constant sectional curvature K = —1
@ Largest family in the class of 3-manifolds.

@ Closed Hyperbolic 3-Manifolds

Dehn Surgery in the complement of a hyperbolic link

@ Finite Volume Noncompact Hyperbolic 3-Manifolds

Manifolds with Cusps

@ Infinite Volume Hyperbolic 3-Manifolds

Compact Core and Ends
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Infinite Volume Hyperbolic 3-Manifolds

Cin S

Marden Conjecture

FIGURE 1. M 1s an infite volume hyperbolic 3-manifold with 3
ends. The shaded region 1s the compact core Cp;.
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M geometrically finite: Compact core can be chosen CONVEX

Ends are very simple.

Equidistant surfaces are convex

and foliates the ends.
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GEOMETRICALLY INFINITE HYPERBOLIC 3-MANIFOLDS

M is geometrically infinite if M has a geometrically infinite end E.

E is geometrically infinite end

if E contains a sequence of geodesics exiting the end

E has bounded geometry if injectivity radius is positive E> } 0{\\ 7/ j?p 7 @

E has unbounded geometry if injectivity radius =0
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Hyperbolic 3-Manifolds

[Hyperbolic 3-manifolds]

(Infinite Volume (Finite Volume )
{Closed Manifolds]
Geom. Infinite Geom. Finite
[ ) [ )
{Cusped Manifoldsj
—[Bounded Geom.]
{Unbounded Geom.]

6/10



Main Result

Main Result:

Every infinite volume hyperbolic 3-manifold M contains a closed,
embedded minimal surface except some special cases.

7/10



Main Result

Main Result:

Every infinite volume hyperbolic 3-manifold M contains a closed,
embedded minimal surface except some special cases.

@ Main Obstacles:

7/10



Main Result

Main Result:

Every infinite volume hyperbolic 3-manifold M contains a closed,
embedded minimal surface except some special cases.

@ Main Obstacles:

o Area Minimization does not work: Limit might escape to infinity.

7/10



o Area Minimization does not work: Limit might escape to infinity.

L Zi \\A N
5, o0

minimizing sequence escaping to infinity



Main Result

Main Result:

Every infinite volume hyperbolic 3-manifold M contains a closed,
embedded minimal surface except some special cases.

@ Main Obstacles:
o Area Minimization does not work: Limit might escape to infinity.

o Min-Max does not work: The maximum slice can be at infinity.

7/10



Main Result

Main Result:

Every infinite volume hyperbolic 3-manifold M contains a closed,
embedded minimal surface except some special cases.

@ Main Obstacles:
o Area Minimization does not work: Limit might escape to infinity.

o Min-Max does not work: The maximum slice can be at infinity.

@ Solution: Trap minimal surfaces in the compact part.

7/10



Main Result

Main Result:

Every infinite volume hyperbolic 3-manifold M contains a closed,
embedded minimal surface except some special cases.

@ Main Obstacles:
o Area Minimization does not work: Limit might escape to infinity.

o Min-Max does not work: The maximum slice can be at infinity.

@ Solution: Trap minimal surfaces in the compact part.

o Trap the surface between short geodesics

7/10



Main Result

Main Result:

Every infinite volume hyperbolic 3-manifold M contains a closed,
embedded minimal surface except some special cases.

@ Main Obstacles:
o Area Minimization does not work: Limit might escape to infinity.

o Min-Max does not work: The maximum slice can be at infinity.

@ Solution: Trap minimal surfaces in the compact part.
o Trap the surface between short geodesics

¢ Trap the surface between cusps

7/10



Main Result

Main Result:

Every infinite volume hyperbolic 3-manifold M contains a closed,
embedded minimal surface except some special cases.

@ Main Obstacles:
o Area Minimization does not work: Limit might escape to infinity.

o Min-Max does not work: The maximum slice can be at infinity.

@ Solution: Trap minimal surfaces in the compact part.
o Trap the surface between short geodesics
¢ Trap the surface between cusps

o Shrinkwrapping: Defective Minimal Surfaces
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Cusp Lemma: [Collin-Hauswirth-Mazet-Rosenberg 2016]

A closed minimal surface cannot go very deep in a cusp.

8/10



Cusp Lemma: [Collin-Hauswirth-Mazet-Rosenberg 2016]
A closed minimal surface cannot go very deep in a cusp.

Short Geodesic Lemma: [Hass, Huang-Wang, C- 2016]

A closed minimal surface cannot come very close to a short geodesic.

8/10



Short Geodesic Lemma: [Hass, Huang-Wang, C- 2016]

A closed minimal surface cannot come very close to a short geodesic.

2D picture

3D: Margulis tube = Solid Torus Neighborhood of a short geodesic

X bx\oflf = N(W) W\\;g o {— 00



Cusp Lemma: [Collin-Hauswirth-Mazet-Rosenberg 2016]

A closed minimal surface cannot go very deep in a cusp.

Short Geodesic Lemma: [Hass, Huang-Wang, C- 2016]

A closed minimal surface cannot come very close to a short geodesic.

Bounded Diameter Lemma:

A closed minimal surface has bounded diameter depending on
Injectivity radius, and its genus (or homology class).

8/10



Cusp Lemma: [Collin-Hauswirth-Mazet-Rosenberg 2016]
A closed minimal surface cannot go very deep in a cusp.

Short Geodesic Lemma: [Hass, Huang-Wang, C- 2016]
A closed minimal surface cannot come very close to a short geodesic.

Bounded Diameter Lemma:

A closed minimal surface has bounded diameter depending on
Injectivity radius, and its genus (or homology class).

Min-Max for Noncompact Manifolds: [Montezuma, Song 2018]

Let M be a complete, noncompact 3-manifold.If M contains a
bounded open set 2 such that Q has stricly mean concave boundary,
then there exists a closed, embedded minimal surface in M.
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@ Case 1: M is geometrically finite.

Compact Convex Core: Area Minimizer in the Compact Part.
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o Case 2a: M has an end with unbounded geometry.

Trapping between short geodesics.
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X={Space of surfaces separatinga{ and of}

? — area minimizerin X
—

Z is away from o(— anid o[-'-

by short geodesics lemma

+ Bounded Diameter Lemma

|:> ? is a smooth minimal surface
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o Case 2b: M has bounded geometry

Shrinkwrapping. Defective Minimal Surfaces In the Ends
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o Case 2b: M has bounded geometry

Shrinkwrapping: Defective Minimal Surfaces In the Ends

FIGURE 5. In the figure above, &1 has a convex shrinkwrapping
surface X1, and &3 has a concave shrinkwrapping surface X3. &
1s geometrically finite, and Y5 = Ss.



o Case 2b: M has bounded geometry

Case A: If one end has CONVEX shrinkwrapping surface

|:> Area minimizing representative cannot escape to infinity.



o Case 2b: M has bounded geometry

Case A: If one end has CONVEX shrinkwrapping surface

|:> Area minimizing representative cannot escape to infinity.

Case B: If all ends have CONCAVE shrinkwrapping surface

|:> There exists a minmax minimal surface in M.
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Exceptional Cases and Final Remarks

@ Exceptional Case I: M = S x R and bounded geometry.
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@ Exceptional Case IlI: M has one end, and Hx(M) = {0}.

@ Nonexistence examples for Case 2:

H3, and Fuchsian Schottky Manifolds.

No closed minimal surface S
because of the maximum principle
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Exceptional Cases and Final Remarks

@ Exceptional Case I: M = S x R and bounded geometry.
@ Exceptional Case ll: M has one end, and H>(M) = {0}.

@ Nonexistence examples for Case 2:

H3, and Fuchsian Schottky Manifolds.

Conjectures:

o There exists closed, embedded minimal surface in Case I.

o There is no closed, embedded minimal surface in Case Il.
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