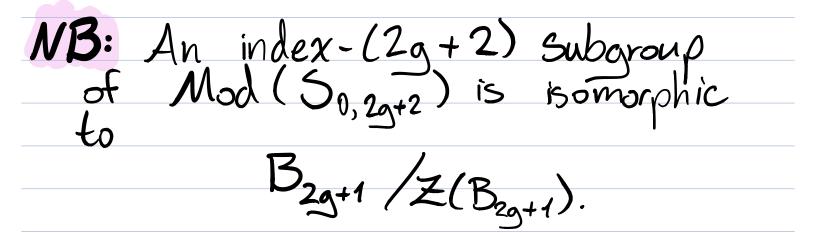
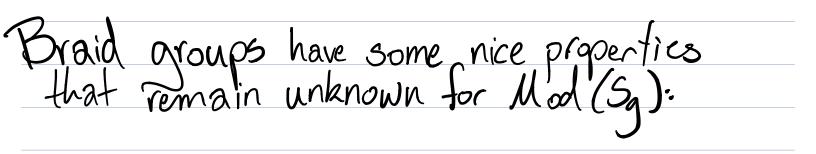
Outer Automorphisms of Free Coxeter Groups Rylee Lyman Rutgers University - Newark (in the fall!) June 3, 2020

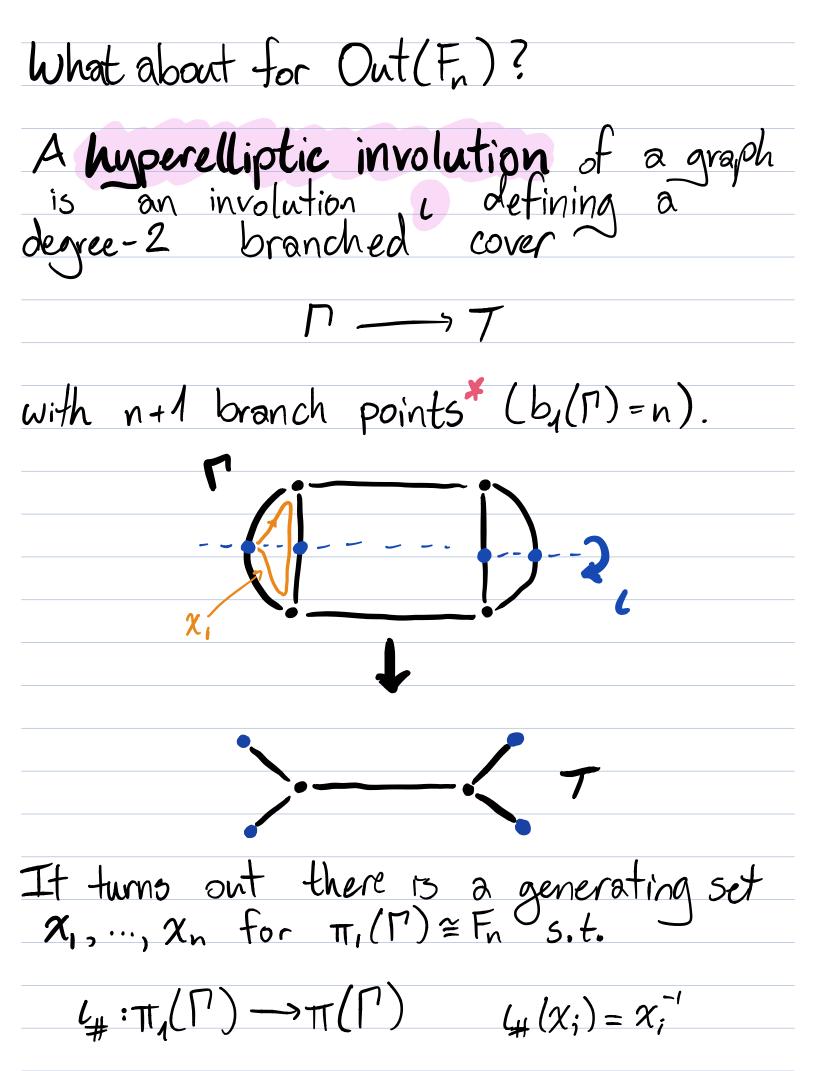
A hyperelliptic involution of a surface of genus g is an involution c defining a degree - 2 branched cover $\mathcal{J}_{q} \longrightarrow \mathcal{G}^{2}$ with 2g+2 branch points. It turns out 4: H₁(Sg;Z)-> is -1 (finger proof!) $S_{q};\mathbb{Z})$

A famous theorem of Birman-Hilden implies the existence of a short exact sequence



NB: HMod(S₂) = Mod(S₂), so this prevention of first finite presentation of Mod(S₂).





A hyperelliptic involution of a oraph may have n+1 components of fixed points: Lemma: having fixed components that are not a single point happens <=> [has separating edges.

Work of Kristić implies a group-theoretic Birman-Hilden result:

Here $W_n = C_2 * \cdots * C_2$ is the n copies

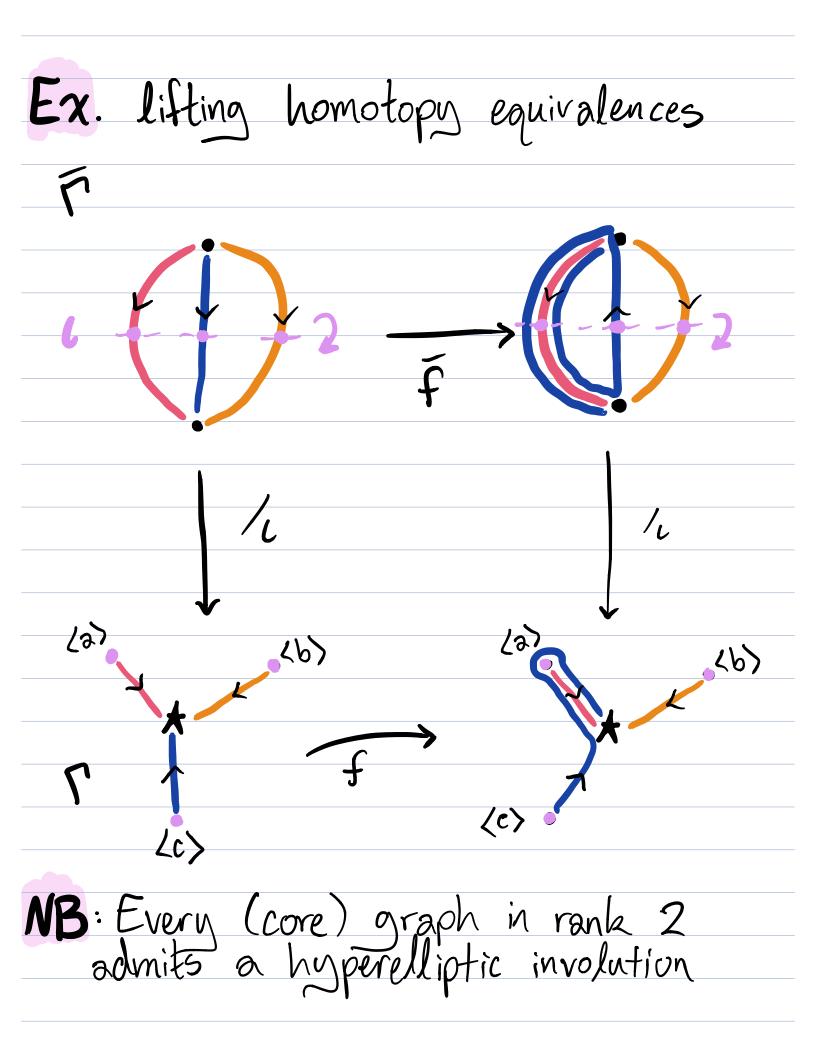
free (universal) Coxeter group of rank n.

NB: $HOut(F_2) = Out(F_2) \cong GL_2(\mathbb{Z}),$ so $Out(W_3) \cong PGL_2(\mathbb{Z}).$

NB: $Aut(F_2) \cong Aut(W_3) \cong Aut(B_4)$

In the analogy between $Out(F_{z_0})$ and $Mod(S_0)$, $Out(W_{20+1})$ plays a similar role to $Mod(S_{0,2g+2})$ or $B_{2g+1}/2(B_{2g+1})$

Just as every $\mathcal{V} \in Out(F_n)$ can be represented as a homotopy equivalence of a graph, so too can every $\Sigma \in Out(W_n)$ be represented by a homotopy equivalence of a graph of groups as below: $\omega_{3} = \langle a, b, c : a^{2} = b^{2} = c^{2} = 1 \rangle = \pi(\Gamma, \star)$ EX. $f_{\#}: \pi_{(\Gamma, \star)} \longrightarrow \pi_{(\Gamma, \star)}$ $f_{\rm m} = \Phi$ *or an equivariant map of Bass-Surre trees

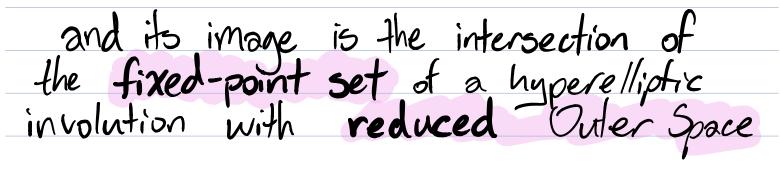


A few similarities between $B_n/Z(B_n)$ and $Out(W_n)$: write $POut(W_n) = ker(Out(W_n) \rightarrow S_n)$ Thm (essentially Varghese 19)]"forgetful map" $POut(W_n) \longrightarrow POut(W_{n-1}).$ \Rightarrow POut(W_n) does not have property FA \Rightarrow Out(W_n) does not have property (T) Ex. "forget a cone point" (a) 20> forget (b) · () (a) () (c)

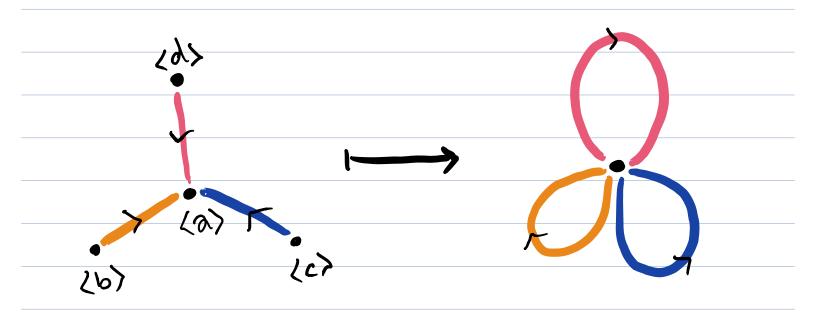
The first two statements are true of B./Z(B.) Thm (Guerch 20) $Out(Out(W_n)) = 1$ $Out(Out(W_4)) \cong C_2$ nz5 n = 4 Thm (Krstić-Vootmann '93, McCullough-Miller '96) $vcd(Out(W_n)) = n-2$ The Birman-Hilden '73) if $W_n = \langle a_1, ..., a_n \rangle$, the subgroup of Out/W_n preserving the conjugacy class $[a_1a_2\cdots a_n]$ is isomorphic to $B_n/Z(B_n)$ NB: This subgroup has infinite index when n>4.

Thm (L'20) There is a natural map from Guirardel-Levilt's Outer Space for Wn to Culler-Vogtmann's Outer Space for Fn-1.

The map is an isometric embedding in the (asymmetric) Lipschitz metric



The map sends a marked, metric Wn graph of groups to its characteristic double cover.



Culler-Vootmann's Outer Space (Vn plays the role of Teichmüller space for Out (Fn). Points of (Vn are equiv. classes of pairs (P, Z) - [is a metric graph w/ vertices of valence 23 ("core" graph) - z: Rn ---> ris a homotopy rose w/ equivalence n petals "marking" $-(\Gamma, z) \sim (\Gamma', z')$ when there exists h a homothety s.t. the diagram commutes up to homotopy $R_n \xrightarrow{r} h$ 2. 11. Guirardel-Leviff's Outer Space for a free product is the same idea.

Reduced Outer Space only includes graphs without separating edges The lemma \implies the double cover of a pt in Guirardel-Levitt Outer Space Lives in Reduced Outer Space. (a) 4c> (0) markings!

The Lipschitz distance between graphs (Λ, σ) , (Γ, z) in Outer Space is makes the quantity $d(\Lambda, \Gamma) = \log \inf \{ \{ L : \frac{val(\Lambda)}{val(\Gamma)} \} \}$ where there exists an L-Lipschitz homotopy equivalence $f: \Lambda \longrightarrow \Gamma$ s.t. $f\sigma \simeq c : R_n \longrightarrow \Gamma$ **NB**: Typically $d(\Lambda, \Gamma) \neq d(\Gamma, \Lambda)$!