Quasi-isometric rigidity of graphs of free groups with cyclic edge groups

Daniel J. Woodhouse (joint with Sam Shepherd)

Oxford

June 1, 2020

Def:

A (Q,A)-quasi-isometry is a function $f:(X,d_X) o (Y,d_Y)$ such that

$$\frac{1}{Q}d_X(x_1,x_2)-A\leq d_Y(f(x_1),f(x_2))\leq Qd_X(x_1,x_2)+A,$$

and for all $y \in Y$ there exists $x \in X$ such that $d_Y(y, f(x)) \le A$.

Groups as metric objects:

Given a finitely generated group we can canonically associate it to the quasi-isometry class of its Cayley graph.

Question:

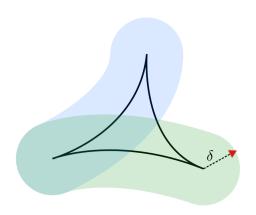
Can we classify groups and their properties up to quasi-isometry?

Rigidity:

A group G is *quasi-isometrically rigid* if $G \sim_{QI} G'$, then there are finite index subgroups $H \leqslant G$ and $H' \leqslant G'$ such that $H \cong H'$. (Or more generally *virtually isomorphic*).

Gromov hyperbolic groups

A group G is hyperbolic if all geodesic triangles in its Cayley graph are δ -slim.



Known Positive Results

The following hyperbolic groups are known to be quasi-isometrically rigid:

- Finite groups
- 2 Two ended groups
- 3 Free groups [Stallings, 1968, Dunwoody, 1985, Karrass et al., 1973],
- 4 Cocompact Fuchsian groups [Tukia, 1988, Gabai, 1992, Casson and Jungreis, 1994],
- Uniform Lattices in thick, right-angled Fuchsian (Bourdon)-buildings
 [Bourdon and Pajot, 2000, Haglund, 2006, Agol, 2013],
- 6 Certain graphs of groups with vertex groups that are cocompact Fuchsian, and infinite cyclic edge groups. – more later... [Taam and Touikan, 2019]

Guiding principal/conjecture:

When QI rigidity fails, it fails for a reason:

- 1 The group is quasi-isometric to a rank-1 symmetric space that has lots of incommensurable lattices,
- 2 The group splits as free product of one-ended groups [Whyte, 1999, Papasoglu and Whyte, 2002],
- 3 The group has *quadratically hanging* vertex groups in its JSJ decomposition [Malone, 2010, Stark, 2017, Dani et al., 2018].

Quasi-isometric Rigidity I

Theorem (Shepherd-W.)

Let G be a cyclic amalgamations of finite rank free groups of the following form:

$$\mathbb{F}_n *_{\mathbb{Z}} \mathbb{F}_m = \langle \mathbb{F}_n, \mathbb{F}_m \mid w_1 = w_2 \rangle$$

where $n, m \geq 2$ and $w_1 \in \mathbb{F}_n$ and $w_2 \in \mathbb{F}_m$ are suitably random/generic elements. Then G is quasi-isometrically rigid.

Quasi-isometric Rigidity II

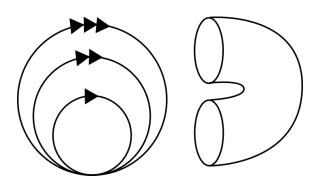
Theorem (Shepherd-W.)

Let G be a cyclic HNN extensions of the following form:

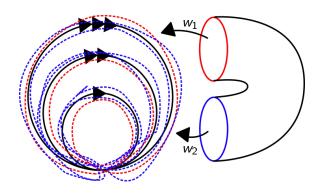
$$\mathbb{F}_n *_{\mathbb{Z}} = \langle \mathbb{F}_n \mid tw_1 t^{-1} = w_2 \rangle$$

where $n \ge 2$ and $w_1, w_2 in \mathbb{F}_n$ are suitably random/generic elements. (We permit $w_1 = w_2$). Then G is quasi-isometrically rigid.

A graph of spaces

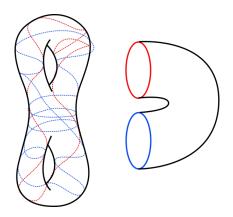


A graph of spaces



Results of Taam and Touikan

Taam and Touikan proved the corresponding result for a closed hyperbolic surface instead of a graph.



Quasi-isometric Rigidity

What kind of group is *G*?

- **1** *G* will be one-ended,
- ② G will be hyperbolic,
- **3** *G* will be virtually special.

In short, quite a lot is already known about G.

The general setting

The class of groups:

The $\mathcal C$ be the class of groups that split as finite graphs of groups with vertex groups isomorphic to $\mathbb F_n$ and edge groups isomorphic to $\mathbb Z$.

This is a wide class of groups:

The class $\mathcal C$ contains infinitely ended groups, Baumslag-Solitar groups, fundamental groups of surface amalgams – many groups we know are *not* quasi-isometrically rigid.

The full theorem

Theorem (Shepherd-W.)

Let G be a one-ended group, with JSJ decomposition over two-ended subgroups containing only virtually free rigid vertex groups and no quadratically hanging vertex groups. If G is hyperbolic (relative to virtually abelian subgroups) then G is quasi-isometrically rigid.

Note:

A virtually free vertex group could be two-ended.

NOTE:

There exist counterexamples if you allow hyperbolic relative to $\mathbb{F}_n \times \mathbb{Z}$ peripheral subgroups.

Prepared ingredients

- JSJ theory for finitely presented groups[Guirardel and Levitt, 2017].
- 2 QI-invariance of the JSJ decomposition[Papasoglu, 2005].
- 3 Theory of rigid lines patterns in free groups [Cashen and Macura, 2011, Cashen, 2016].
- 4 QI-invariance of stretch ratio [Cashen and Martin, 2017].
- $footnote{5}$ Previous work studying when groups in $\cal C$ are separable and cubulated [Wise, 2000, Hsu and Wise, 2010].
- 6 Theory of cocompactly cubulated hyperbolic groups (Malnormal Special Quotient Theorem, cocompactly cubulated and hyperbolic ⇒ virtually special). [Wise, 2009, Agol, 2013]

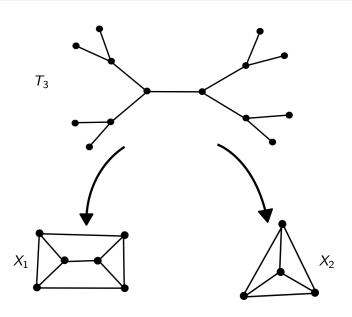
New ingredient

Our proof depends on a new proof and generalization the following theorem:

Theorem (Leighton)

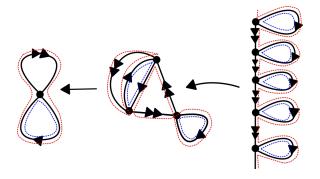
Let X_1 and X_2 be finite graphs with isomorphic universal covers. Then X_1 and X_2 have isomorphic finite covers (or a common finite cover).

Classical problem

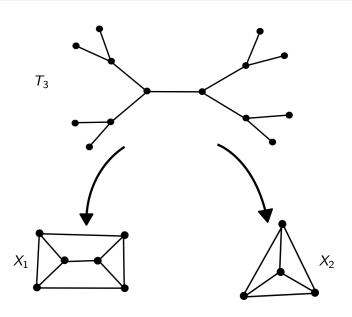


Graphs with fins

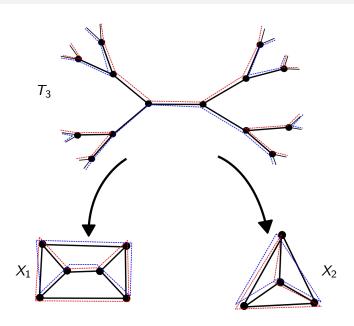
A graph with fins is a graph X with a (finite) collection of geodesic, combinatorial loops X.



Classical problem



Neoclassical problem



New ingredient

Theorem (W.)

Let X_1 and X_2 be finite graphs with fins that have isomorphic universal covers. Then there exists a graph with fins \widehat{X} that covers X_1 and X_2 .

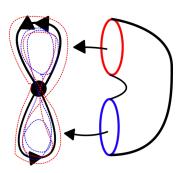
Further generalizations

We actually show that \widehat{X} also has some very nice symmetry properties that we use in the proof.

A more general statement has been proven [Gardam-W., Shepherd], which I am calling *Symmetry Restricted Leighton's Theorem*, but that is another story.

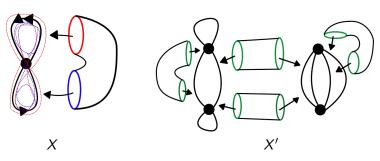
Proof sketch:

Suppose that we have our graph of spaces X such that $G = \pi_1 X$ (constructed in some canonical way):



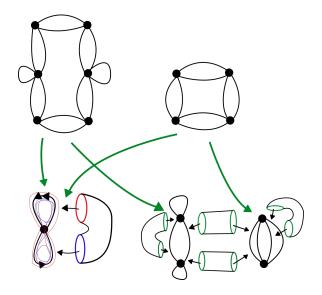
Proof sketch

Then the group G' also has a decomposition as a graph of groups X' in a similarly canonical way:

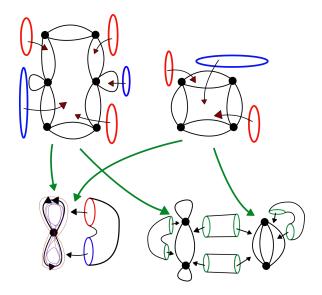


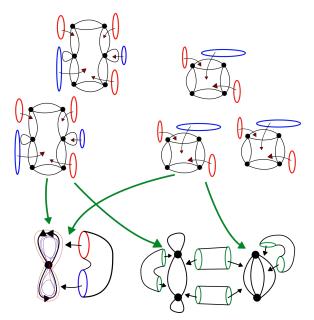
Proof sketch

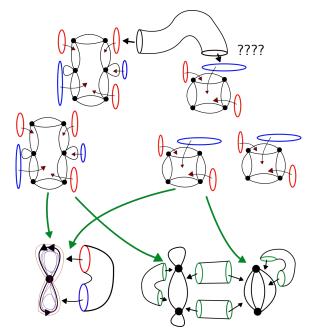
Take common covers of the vertex spaces:

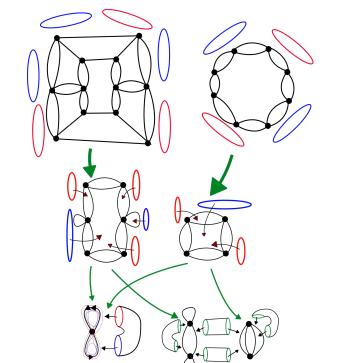


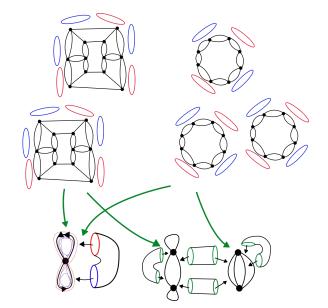
Common covers as graphs with fins:

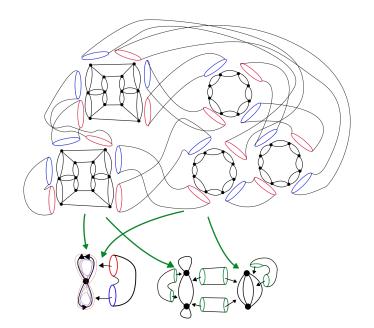












Bigger Questions

Conjecture (Haglund)

Let X_1 and X_2 be compact special cube complexes with isomorphic universal covers. Then X_1 and X_2 have isomorphic finite covers (or a common finite cover).

- Agol, I. (2013).
 - The virtual Haken conjecture.
 - Doc. Math., 18:1045–1087.
 - With an appendix by Agol, Daniel Groves, and Jason Manning.
- Bourdon, M. and Pajot, H. (2000).
 Rigidity of quasi-isometries for some hyperbolic buildings.

 Comment. Math. Helv., 75(4):701–736.
- Cashen, C. H. (2016).
 Splitting line patterns in free groups.
 - Algebr. Geom. Topol., 16(2):621–673.

 Cashen, C. H. and Macura, N. (2011).
- Line patterns in free groups.

 Geom. Topol., 15(3):1419–1475.
- Cashen, C. H. and Martin, A. (2017).

 Quasi-isometries between groups with two-ended splittings.

 Math. Proc. Cambridge Philos. Soc., 162(2):249–291.
- Casson, A. and Jungreis, D. (1994).

Convergence groups and Seifert fibered 3-manifolds. *Invent. Math.*, 118(3):441–456.

Dani, P., Stark, E., and Thomas, A. (2018).
Commensurability for certain right-angled Coxeter groups and geometric amalgams of free groups.

Groups Geom. Dyn., 12(4):1273–1341.

Dunwoody, M. J. (1985).

The accessibility of finitely presented groups. *Invent. Math.*, 81(3):449–457.

Gabai, D. (1992). Convergence groups are Fuchsian groups.

Ann. of Math. (2), 136(3):447–510.

Guirardel, V. and Levitt, G. (2017). JSJ decompositions of groups. Astérisque, (395):vii+165.

Haglund, F. (2006).
Commensurability and separability of quasiconvex subgroups.

- Algebr. Geom. Topol., 6:949-1024.
- Hsu, T. and Wise, D. T. (2010).
 Cubulating graphs of free groups with cyclic edge groups.
 - Amer. J. Math., 132(5):1153-1188.
- Karrass, A., Pietrowski, A., and Solitar, D. (1973). Finite and infinite cyclic extensions of free groups.
 - J. Austral. Math. Soc., 16:458–466.
 - Collection of articles dedicated to the memory of Hanna Neumann, IV.
- Malone, W. (2010).

 Topics in geometric group theory.
 - ProQuest LLC, Ann Arbor, MI.
 - Thesis (Ph.D.)–The University of Utah.
- Papasoglu, P. (2005).
 - Quasi-isometry invariance of group splittings. *Ann. of Math.* (2), 161(2):759–830.
- Papasoglu, P. and Whyte, K. (2002).

Quasi-isometries between groups with infinitely many ends. *Comment. Math. Helv.*, 77(1):133–144.

Stallings, J. R. (1968).

On torsion-free groups with infinitely many ends.

Ann. of Math. (2), 88:312-334.

Stark, E. (2017).

Abstract commensurability and quasi-isometry classification of hyperbolic surface group amalgams.

Geom. Dedicata, 186:39-74.

Taam, A. and Touikan, N. W. (2019).
On the quasi-isometric rigidity of graphs of surface groups.

arXiv:1904.10482.

Tukia, P. (1988).

Homeomorphic conjugates of Fuchsian groups.

J. Reine Angew. Math., 391:1-54.

Whyte, K. (1999).

Amenability, bi-Lipschitz equivalence, and the von Neumann conjecture.

Duke Math. J., 99(1):93-112.

Wise, D. T. (2000).

Subgroup separability of graphs of free groups with cyclic edge groups.

Q. J. Math., 51(1):107–129.

Wise, D. T. (2009).

Research announcement: the structure of groups with a quasiconvex hierarchy.

Electron. Res. Announc. Math. Sci., 16:44–55.