Large scale geometry of big
mapping class groups

Kathryn Mann
joint work with Kasra Rafi



(ultra brief) History

Geometry and the imagination '/

. 2009 Calegari: MCG(S? — C) has bounded commutator length
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. asks: same for MCG(R? — C) ?
Big mapping class groups and dynamics ¢ 201 6 Bavard: nO, IVI(:(S(I]%2 - C) aCtS On hyperbOIiC graph. .
...can build nontrivial quasi-morphism

fields of geometry. If 5 is an oriented surface (i.e. a 2-manifold), the group
y! ion-preserving self-homeomorphisms of s is a topological aroup w

 Since then: Many attempts to answer
» Which MCG’s act on hyperbolic spaces?
» Which admit unbounded length functions?
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Unifying question

Which MCG’s have some intrinsic, nontrivial geometry?



Unifying question

Which MCG’s have some intrinsic, nontrivial geometry?

Theorem [M— Rafi]: an answer to this question

Challenges: @ hard to <y o\vxyﬂ”\m'mgL ewbout Al surfaces
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@ Describing all surfaces [z richards]
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@ Describing all surfaces [z ridhards]
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@ Intrinsic geometry: boundedness
( easier o Sov) what “Hvial %wmd'nﬁ»" ic than what 'tcyabmdwb,“ }g.>

Def: G is coarsely bounded if every continuous length function on G is bounded

-tho\{' 0'~Q (equivalently, every continuous action on a metric space has bounded orbits)
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Theorem: If X2 is self-similar, or telescoping, then MCG(2) is coarsely bounded
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Theorem: For surfaces whose end space Is tame, this is an iff
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Intrinsic geometry: non-boundedness

Def: A subsurface § C X is displaceable if f(S) NS = @& for some f

Theorem: If 2 has a non-displaceable finite-type subsurface, then

MCG(2) is not coarsely bounded
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Intrinsic geometry: general framework

Geometric group theory works for locally compact, compactly generated groups

Rosendal showed this can be extended to topological groups that are

locally coarsely bounded and generated by a coarsely bounded set
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(the word metric for such a generating set gives a well-defined coarse geometric structure)
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C.B. neighborhood of identity
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Complexity of an end
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Classification theorem
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