Dehn filling and knot complements that don't irregularly cover

Joint w/ Chesebro, Deblois, Hoffman, Millichap, Mondal

Setting: cusped hyperbolic 3-manifolds

(orientable, connected, finite volume)

torus cusps

Q: What hyperbolic 3-mflds can cover / be covered by a knot complement?

for example...

Q': Can a hyperbolic knot complement cover another knot complement?

Yes! Berge knots

[Culler-Gordon-Luecke-Shalen '87]

- \rightarrow · Cyclic Surgery Thm \Longrightarrow at most 2 such covers
 - · [Gonzalez-Acuña—Whitten]+[Berge conjecture]
 ⇒ Berge knots are only examples

Q": Can a hyperbolic knot complement be commensurable with another knot complement?

Yes! (see previous Q)

How many?

Conj. 1 [Reid—Walsh '08]: There are at most 3 knot complements in a hyperbolic commens. class.

 M_1 and M_2 are commensurable if there is a mfld N that is a finite cover of both:

- · This bound is realized [Fintushel—Stern '80, Hoffman '10]
- · [Boileau—Boyer—Cebanu—Walsh '12]: Conjecture 1 holds for knots that don't admit hidden symmetries

<u>Def-n</u>: M has a hidden symmetry if there is a symmetry of a finite index cover of $M \iff$ that is not a lift of a symmetry of M.

M irregularly covers a hyperbolic orbifold Hidden symmetries appear to be rare among knots:

Conj. 2 [Neumann—Reid '92]: With the exception of the figure-8 knot and the two dodecahedral knots of Aitchison—Rubinstein, no hyperbolic knot complement has hidden symmetries.

· Since Conj 1 is known to hold for the figure-8 knot and the two dodecahedral knots:

Conj. 2 + [Boileau-Boyer-Cebanu-Walsh] ⇒ Conj. 1

: try to prove Conj. 2

Neumann-Reid give an important criterion for knots:

A knot complement $M = S^3 \setminus K$ has hidden symmetries

 \iff M (irregularly) covers a rigid cusped orbifold.

orbifold with a cusp (cross-section) homeomorphic to one of these:

→ Goal:

try to find obstructions to knot complements covering rigid cusped orbifolds

Knots via Dehn filling:

Let L be the link complement shown:

(Borromean rings)

(covers a rigid -cusped orbifold)

(1,1)-Dehn filling along the blue circles gives the figure-8 knot complement:

More generally...

$$(1,n)$$
-Dehn filling gives $S^3 \setminus K_n =$

2n crossings each

• Thurston: as $n \to \infty$, $S^3 \setminus K_n$ converges geometrically to $S^3 \setminus L$

Knots via Dehn filling:

Definition: Choose $\varepsilon > 0$ to be smaller than the shortest geodesic in N. Let M be a Dehn filling of some subset of the cusps of N. Then M is an (ε, d_N) -twisted filling of N if:

- 1. every core curve γ_i in M has length $< \varepsilon_{/d_N}$
- 2. every other geodesic in M has length $> \varepsilon$

 (ε,d_N) -twisted filling \implies this cover exists

over exists
$$\bigvee N \longleftrightarrow M$$

$$\bigvee Q \setminus \{ \cup p(\gamma_i) \} = Q_0 \longleftrightarrow Q$$

$$\bigcup \begin{matrix} \cup \\ rigid \\ cusp \end{matrix} \longleftrightarrow \begin{matrix} \cup \\ rigid \\ cusp \end{matrix} \longleftrightarrow \begin{matrix} \cup \\ cusp \end{matrix}$$

<u>Theorem 1</u> (Hoffman—Millichap—W): If $M = S^3 \setminus K$ is a hyperbolic knot complement that is an (ε, d_N) -twisted filling of a fully augmented link, then M has no hidden symmetries.

What's a fully augmented link (FAL)?

(1,n)-Dehn filling along red circles

1) start with any knot:

2) partition crossings into twist regions

4) reduce crossings by Rolfsen twists

 \cong

3) augment each twist region with unknot

Covering Lemma ⇒

<u>Theorem 2</u> (CDHMMW): Let $\{S^3 \setminus K_i\}$ be a sequence of knot complements converging (geometrically) to $S^3 \setminus L$. If each knot $S^3 \setminus K_i$ covers a rigid cusped orbifold, then $S^3 \setminus L$ has hidden symmetries.

Covering Lemma + [Millichap-W '16] =>

<u>Theorem 3</u> (CDHMMW): If $N = S^3 \setminus L$ is a hyperbolic 2-bridge link, then at most finitely many orbifolds resulting from filling N are covered by knot complements with hidden symmetries.

<u>Theorem 4</u> (CDHMMW): The figure-8 knot complement is the only knot complement with hidden symmetries that covers a manifold with volume less than $6v_0$.

 $ightarrow v_0$ = volume of regular ideal tetrahedron pprox 1

Thank you!