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 is a: 
 connected, oriented, closed, irreducible, atoroidal 3-manifold
M



Some motivating questions (background to come)

1. Can we organize all essential surfaces in M?  

2. What does a face of the Thurston norm ball mean? 

2a. Given an object associated to fibered faces (flow, veering 
triangulation, Teichmüller polynomial…), is there a 
generalization for non-fibered faces? 

3. Given a face F of the Thurston norm ball, can we organize all the 
essential surfaces in M whose homology classes lie over F?



First goal today: explain statement of, and give context for, the main 
result from [Lan20].

Second goal: tell you some of what is in [LMT20]



Thurston norm on H2(M; ℝ)

• Let  be a -lattice point 

• define   

• Thurston:  extends to a norm on  

• unit ball  is a finite sided polyhedron w/ rational vertices

α ∈ H2(M; ℝ) ℤ

x(α) = min{ − χ(S) ∣ S ↪ M sphereless, [S] = α}

x H2

Bx

[William Thurston, A norm for the homology of 3-manifolds, Memoirs AMS, 1986]



• If  fibers over the circle with fiber , then  for a 

top dimensional face  of  

• further, any lattice point in  is represented by a fiber of 

some fibration  

• such an  is called a fibered face of 

M S [S] ∈ int(cone(F))
F Bx

int(cone(F))
M → S1

F Bx

Thurston norm ctd.

[William Thurston, A norm for the homology of 3-manifolds, Memoirs AMS, 1986]



Fried: Let  be a fibered face. There is a pseudo-Anosov flow  on  such 
that every lattice point in int(cone(F)) is represented by a cross section to 

. (cross section: transverse, intersects every orbit)  

The flow  can be constructed as the suspension flow of any of the fibers 
corresponding to F. Unique up to isotopy, reparametrization. 

Let  be the Euler class of . Then  on cone(F).

F φ M

φ

φ

eφ ∈ H2(M) φ x = − eφ

[David Fried, "Fibrations over  with pseudo-Anosov monodromy," Thurston's work on Surfaces (FLP) Ch. 14]S1



Fried's picture:  

• let = cone in  generated by periodic orbits of    

• let  be classes pairing nonnegatively with  

• then .

𝒞φ H1(M) φ

𝒞∨
φ ⊂ H2(M) 𝒞φ

𝒞∨
φ = cone(F)

[David Fried, "Fibrations over  with pseudo-Anosov monodromy," Thurston's work on Surfaces (FLP) Ch. 14]S1



Another perspective (McMullen):  

• any point int(cone(F)) assigns a positive "length" to each periodic 
orbit.  

• set =exponential growth rate of periodic orbits w.r.t this length. 
Then  is an analytic function on int(cone(F)), tends to infinity at 
boundary of cone. 

• Set . There exists an element  called 
the Teichmüller polynomial that packages all these growth rates.

α ∈

h(α)
h

G = H1(M; ℤ)/torsion ΘF ∈ ℤ[G]

[Curtis McMullen, Polynomial invariants for fibered 3-manifolds and Teichmüller geodesics for foliations, 
Ann. Sci. E.N.S. 1999]



Q: what about classes in ? 

• each one pairs trivially with some closed orbit of   

• Mosher: any lattice point  is represented by a surface 

which is almost transverse to .  

(almost transverse: there is a "dynamic blowup" of  to which the surface 

is transverse)

∂cone(F)
φ

α ∈ ∂cone(F)
φ

φ

[Lee Mosher, Surfaces and branched surfaces transverse to pseudo-Anosov flows on 3-manifolds, 
J. Diff. Geom.1991]



Definition: an oriented surface  is taut if: 
• no components are nulhomologous, and 
•   

Example 1: fiber of a fibration  

Example 2: more generally, compact leaf of a taut 
foliation (Thurston) 

S ↪ M

x([S]) = − χ(S)

M → S1

Example 3: surface almost transverse to a pseudo-Anosov flow (Mosher) 

Fact: If  is a fiber, then  is the unique taut representative of its 
homology class up to isotopy (Thurston). 

However: taut surfaces are not necessarily unique up to isotopy in their 
homology classes.

S ↪ M S



Combining Fried, Mosher, Thurston: 

Given a fibered face  of , the flow  sees every isotopy class of taut 
surface lying over , and sees one taut representative of every 
class lying over . 

Questions 

• What about the missing isotopy classes of taut surfaces over ? 

• What about other faces? (non-fibered and/or lower dimensional) 

F Bx φ
int(F)

∂F

∂F



[Lee Mosher, Dynamical systems and the homology norm of a 3-manifold II, Invent. Math. 1992]

Theorem (Mosher). Let  be a pseudo-Anosov flow on  with no 
dynamically parallel closed orbits. Then  dynamically represents a 
face  of , and every integral class in  is represented by a 
surface almost transverse to . 

we will gloss over "no dynamically parallel closed orbits" 

"dynamically represents" means  is equal to both: 
1. set on which  
2. set of all classes pairing nonnegatively with closed orbits of 

φ M
φ

F Bx cone(F)
φ

cone(F)
x = − eφ

φ



back to our main theorem: 

We will elide the  prongs condition (it's a mild restriction) and 
briefly explain the other terms. 

≥ 3



A veering triangulation  is a cellular decomposition of a torally 
bounded compact 3-manifold  which satisfies a combinatorial 
condition called veering. (Defined by Agol). 

The 2-skeleton  is a cooriented branched surface. Its branch locus 
looks like this:

τ
∘

M

τ(2)

Let  be a closed Dehn filling of . Then 
 is not quite a branched surface in  (it 

stops at ).

M
∘

M
τ(2) M

∂
∘

M

[Ian Agol, Ideal triangulations of pseudo-Anosov mapping tori, Top. and Geom. in Dim. 3, 2011]



There is an Euler class  
  

naturally associated to .  
•  is a weighted sum of the cores of the filling tori 
• the weights depend on the filling slopes. 

Let  be the set on which . If this is nonempty 
then it equals  for some face  of .

eτ ∈ H1(M)
τ

eτ

W ⊂ H2(M) x = ⟨−eτ, ⋅ ⟩
cone(Fτ) Fτ Bx

Let  be the cone generated by closed positive transversals to 
.  

Let   be the cone of classes intersecting everything in  
nonnegatively.

𝒞τ ⊂ H1(M)
τ(2)

𝒞∨
τ ⊂ H2(M) 𝒞τ



Let  be the cone generated by closed positive transversals to 
.  

Let   be the cone of classes intersecting everything in  
nonnegatively.

𝒞τ ⊂ H1(M)
τ(2)

𝒞∨
τ ⊂ H2(M) 𝒞τ

in words: the veering triangulation linear-algebraically determines the 
cone over a face of the norm ball, and computes  over that face.x

Theorem (L): 𝒞∨
τ = cone(Fτ)



Recall  is not quite a branched surface in . 

say  is carried by  if  

•  is carried by  in the normal sense 

• each component of  is -injective annulus or meridional disk in 

a filling torus

τ(2) M

S ↪ M τ(2)

S ∩
∘

M τ(2)

S −
∘

M π1



Theorem (L): Let  be an embedded surface in . Then: 
 is carried by  up to isotopy iff   is taut and . 

i.e.  sees  at the level of isotopy, not just homology. 

S M
S τ(2) S [S] ∈ cone(Fτ)

τ(2) cone(Fτ)

technical point:  could be "the empty face." This happens when  
doesn't carry anything. Equivalently: .

Fτ τ(2)

𝒞τ = H1(M)



For which  are hypotheses of the theorem satisfied? 
• when  fibers with pseudo-Anosov monodromy (Agol) 
• when  admits a pseudo-Anosov flow with no perfect fits (Agol-

Guéritaud) 
• when  admits a taut -covered foliation, or more generally a 

taut foliation with one-sided branching (Calegari, Fenley) 

Unresolved: given a taut surface in , is it carried by the 2-skeleton 
of a veering triangulation?

M
M
M

M ℝ

M



Another perspective: given , suppose you are interested in  (the 
unfilled manifold). In this case there is again a natural Euler class 

, giving a face  of .  

Might want to know: is  layered? non-measured? dimension of ? is 
 fibered face? 

Theorem (LMT): Let  be a veering triangulation of . Then:  
• . 
• The codimension of  is the dimension of the largest linear 

subspace contained in . 
• Moreover, the following are equivalent: 

1. the union of all closed transversals to  lies in an open half-
space in  

2.  is layered 
3.  is fibered

τ
∘

M

eτ ∈ H1(
∘

M) Fτ Bx(
∘

M)

τ Fτ
Fτ

τ
∘

M
𝒞∨

τ = cone(Fτ)
cone(Fτ)

𝒞τ

τ(2)

H1(
∘

M)
τ
Fτ



Veering polynomial 

Let  

Theorem (LMT). Given , there is an element  called the 
veering polynomial that recovers the Teichmüller polynomial  
when  is layered. 
More explicitly,  factors as 

, 
where  equals the Teichmüller polynomial up to a unit and  has 
a simple formula. 

G = H1(
∘

M; ℤ)/torsion

τ Vτ ∈ ℤ[G]
ΘFτ

τ
Vτ

Vτ = VAB ⋅ Θτ
Θτ VAB



Remark 1. The veering polynomial behaves well under Dehn filling and 
recovers the Teichmüller polynomial in general. Combined with the 
earlier results about filled manifolds, it is a generalization of the 
Teichmüller polynomial to "veering faces" of the Thurston norm ball. 

[Anna Parlak, Computation of the taut, the veering and the Teichmüller polynomials, in preparation]

[Anna Parlak, The taut polynomial and the Alexander polynomial]

Remark 3. Anna Parlak wrote a computer program that computes these 
things and is writing a couple of papers about it. 

Remark 2. It can be constructed 2 ways: 
A. as the determinant of a presentation 

matrix for a -module, or 
B. as the Perron polynomial of a directed 

graph. 

ℤ[G]



Thanks!

Thank you


