Faces of the Thurston norm ball up to isotopy

GaTO 7/21/2020

Michael Landry
Washington University in St. Louis
mlandry@wustl.edu

Advertisements

- [Lan20] Veering triangulations and the Thurston norm: homology to isotopy.
 - arxiv:2006.16328 or math.wustl.edu/~landry
- [LMT20] *A polynomial invariant for veering triangulations* (joint w/ Yair Minsky and Samuel Taylor).

 Available soon.

M is a: connected, oriented, closed, irreducible, atoroidal 3-manifold

Some motivating questions (background to come)

- 1. Can we organize all essential surfaces in M?
- 2. What does a face of the Thurston norm ball mean?
 - 2a. Given an object associated to fibered faces (flow, veering triangulation, Teichmüller polynomial...), is there a generalization for non-fibered faces?
- 3. Given a face F of the Thurston norm ball, can we organize all the essential surfaces in M whose homology classes lie over F?

First goal today: explain statement of, and give context for, the main result from [Lan20].

Main Theorem. Let τ be a veering triangulation of a compact 3-manifold \mathring{M} . If M is obtained by Dehn filling each component of $\partial \mathring{M}$ along slopes with ≥ 3 prongs then M is irreducible and atoroidal. Let σ_{τ} be the face of the Thurston norm ball $B_x(M)$ determined by the Euler class e_{τ} . Then the following hold:

- (i) $\operatorname{cone}(\sigma_{\tau}) = \boxed{\mathcal{C}_{\tau}^{\vee}}$, and the codimension of σ_{τ} in $\partial B_x(M)$ is equal to the dimension of the largest linear subspace contained in \mathcal{C}_{τ} .
- (ii) If $S \subset M$ is a surface, then S is taut and $[S] \in \text{cone}(\sigma_{\tau})$ if and only if S is carried by $\tau^{(2)}$ up to isotopy.

Second goal: tell you some of what is in [LMT20]

Thurston norm on $H_2(M; \mathbb{R})$

• Let $\alpha \in H_2(M; \mathbb{R})$ be a \mathbb{Z} -lattice point

• define $x(\alpha) = \min\{-\chi(S) \mid S \hookrightarrow M \text{ sphereless, } [S] = \alpha\}$

• Thurston: x extends to a norm on H_2

• unit ball B_x is a finite sided polyhedron w/ rational vertices

[William Thurston, A norm for the homology of 3-manifolds, Memoirs AMS, 1986]

Thurston norm ctd.

- If M fibers over the circle with fiber S, then $[S] \in \operatorname{int}(\operatorname{cone}(F))$ for a top dimensional face F of B_x
 - further, any lattice point in $\operatorname{int}(\operatorname{cone}(F))$ is represented by a fiber of some fibration $M \to S^1$
- such an F is called a **fibered face** of B_x

<u>Fried</u>: Let F be a fibered face. There is a pseudo-Anosov flow φ on M such that every lattice point in int(cone(F)) is represented by a cross section to φ . (*cross section*: transverse, intersects every orbit)

The flow φ can be constructed as the suspension flow of any of the fibers corresponding to F. Unique up to isotopy, reparametrization.

Let $e_{\varphi} \in H^2(M)$ be the Euler class of φ . Then $x = -e_{\varphi}$ on cone(F).

[David Fried, "Fibrations over S^1 with pseudo-Anosov monodromy," Thurston's work on Surfaces (FLP) Ch. 14]

Fried's picture:

- let \mathscr{C}_{φ} = cone in $H_1(M)$ generated by periodic orbits of φ
- let $\mathscr{C}_{\varphi}^{\vee} \subset H_2(M)$ be classes pairing nonnegatively with \mathscr{C}_{φ}
- then $\mathscr{C}_{\varphi}^{\vee} = \operatorname{cone}(F)$.

Another perspective (McMullen):

- any point $\alpha \in \text{int}(\text{cone}(F))$ assigns a positive "length" to each periodic orbit.
- set $h(\alpha)$ =exponential growth rate of periodic orbits w.r.t this length. Then h is an analytic function on int(cone(F)), tends to infinity at boundary of cone.
- Set $G = H_1(M; \mathbb{Z})$ /torsion. There exists an element $\Theta_F \in \mathbb{Z}[G]$ called the **Teichmüller polynomial** that packages all these growth rates.

[Curtis McMullen, Polynomial invariants for fibered 3-manifolds and Teichmüller geodesics for foliations, Ann. Sci. E.N.S. 1999]

Q: what about classes in ∂ cone(F)?

- each one pairs trivially with some closed orbit of φ
- Mosher: any lattice point $\alpha \in \partial \text{cone}(F)$ is represented by a surface which is almost transverse to φ .

(almost transverse: there is a "dynamic blowup" of φ to which the surface is transverse)

[Lee Mosher, Surfaces and branched surfaces transverse to pseudo-Anosov flows on 3-manifolds, J. Diff. Geom.1991]

<u>Definition</u>: an oriented surface $S \hookrightarrow M$ is **taut** if:

- no components are nulhomologous, and
- $\bullet \ x([S]) = -\chi(S)$

Example 1: fiber of a fibration $M \to S^1$

Example 2: more generally, compact leaf of a taut foliation (Thurston)

Example 3: surface almost transverse to a pseudo-Anosov flow (Mosher)

<u>Fact</u>: If $S \hookrightarrow M$ is a fiber, then S is the unique taut representative of its homology class up to isotopy (Thurston).

<u>However</u>: taut surfaces are not necessarily unique up to isotopy in their homology classes.

Combining Fried, Mosher, Thurston:

Given a fibered face F of B_x , the flow φ sees **every** isotopy class of taut surface lying over int(F), and sees **one** taut representative of every class lying over ∂F .

Questions

- What about the missing isotopy classes of taut surfaces over ∂F ?
- What about other faces? (non-fibered and/or lower dimensional)

Theorem (Mosher). Let φ be a pseudo-Anosov flow on M with no dynamically parallel closed orbits. Then φ dynamically represents a face F of B_x , and every integral class in cone(F) is represented by a surface almost transverse to φ .

we will gloss over "no dynamically parallel closed orbits"

"dynamically represents" means cone(F) is equal to both:

- 1. set on which $x = -e_{\varphi}$
- 2. set of all classes pairing nonnegatively with closed orbits of φ

back to our main theorem:

Main Theorem. Let τ be a veering triangulation of a compact 3-manifold \mathring{M} . If M is obtained by Dehn filling each component of $\partial \mathring{M}$ along slopes with ≥ 3 prongs then M is irreducible and atoroidal. Let σ_{τ} be the face of the Thurston norm ball $B_x(M)$ determined by the Euler class e_{τ} . Then the following hold:

- (i) $\operatorname{cone}(\sigma_{\tau}) = \boxed{\mathcal{C}_{\tau}^{\vee}}$, and the codimension of σ_{τ} in $\partial B_x(M)$ is equal to the dimension of the largest linear subspace contained in \mathcal{C}_{τ} .
- (ii) If $S \subset M$ is a surface, then S is taut and $[S] \in \text{cone}(\sigma_{\tau})$ if and only if S is carried by $\tau^{(2)}$ up to isotopy.

We will elide the ≥ 3 prongs condition (it's a mild restriction) and briefly explain the other terms.

A **veering triangulation** τ is a cellular decomposition of a torally bounded compact 3-manifold M which satisfies a combinatorial condition called **veering**. (Defined by Agol).

The 2-skeleton $au^{(2)}$ is a cooriented branched surface. Its branch locus

looks like this:

Let M be a closed Dehn filling of M. Then $\tau^{(2)}$ is not quite a branched surface in M (it stops at ∂M).

There is an **Euler class**

$$e_{\tau} \in H_1(M)$$

naturally associated to τ .

- e_{τ} is a weighted sum of the cores of the filling tori
- the weights depend on the filling slopes.

Let $W \subset H_2(M)$ be the set on which $x = \langle -e_{\tau}, \cdot \rangle$. If this is nonempty then it equals cone(F_{τ}) for some face F_{τ} of B_x .

Let $\mathscr{C}_{\tau} \subset H_1(M)$ be the cone generated by closed positive transversals to $\tau^{(2)}$.

Let $\mathscr{C}_{\tau}^{\vee} \subset H_2(M)$ be the cone of classes intersecting everything in \mathscr{C}_{τ} nonnegatively.

Let $\mathscr{C}_{\tau} \subset H_1(M)$ be the cone generated by closed positive transversals to $\tau^{(2)}$.

Let $\mathscr{C}_{\tau}^{\vee} \subset H_2(M)$ be the cone of classes intersecting everything in \mathscr{C}_{τ} nonnegatively.

Theorem (L): $\mathscr{C}_{\tau}^{\vee} = \operatorname{cone}(F_{\tau})$

<u>in words</u>: the veering triangulation linear-algebraically determines the cone over a face of the norm ball, and computes *x* over that face.

Recall $\tau^{(2)}$ is not quite a branched surface in M. say $S \hookrightarrow M$ is **carried** by $\tau^{(2)}$ if

- $S \cap M$ is carried by $\tau^{(2)}$ in the normal sense
- each component of S-M is π_1 -injective annulus or meridional disk in a filling torus

Theorem (L): Let S be an embedded surface in M. Then: S is carried by $\tau^{(2)}$ up to isotopy **iff** S is taut and $[S] \in \text{cone}(F_{\tau})$.

i.e. $\tau^{(2)}$ sees cone (F_{τ}) at the level of isotopy, not just homology.

technical point: F_{τ} could be "the empty face." This happens when $\tau^{(2)}$ doesn't carry anything. Equivalently: $\mathscr{C}_{\tau} = H_1(M)$.

For which *M* are hypotheses of the theorem satisfied?

- when *M* fibers with pseudo-Anosov monodromy (Agol)
- when *M* admits a pseudo-Anosov flow with no perfect fits (Agol-Guéritaud)
- when M admits a taut \mathbb{R} -covered foliation, or more generally a taut foliation with one-sided branching (Calegari, Fenley)

Unresolved: given a taut surface in M, is it carried by the 2-skeleton of a veering triangulation?

Another perspective: given τ , suppose you are interested in M (the unfilled manifold). In this case there is again a natural Euler class $e_{\tau} \in H_1(M)$, giving a face F_{τ} of $B_x(M)$.

Might want to know: is τ layered? non-measured? dimension of F_{τ} ? is F_{τ} fibered face?

Theorem (LMT): Let τ be a veering triangulation of M. Then:

- $\mathscr{C}_{\tau}^{\vee} = \operatorname{cone}(F_{\tau}).$
- The codimension of cone(F_{τ}) is the dimension of the largest linear subspace contained in \mathscr{C}_{τ} .
- Moreover, the following are equivalent:
 - 1. the union of all closed transversals to $\tau^{(2)}$ lies in an open half-space in $H_1(M)$
 - 2. τ is layered
 - 3. F_{τ} is fibered

Veering polynomial

Let $G = H_1(M; \mathbb{Z})/\text{torsion}$

Theorem (LMT). Given τ , there is an element $V_{\tau} \in \mathbb{Z}[G]$ called the *veering polynomial* that recovers the Teichmüller polynomial $\Theta_{F_{\tau}}$ when τ is layered.

More explicitly, V_{τ} factors as

$$V_{\tau} = V^{AB} \cdot \Theta_{\tau},$$

where Θ_{τ} equals the Teichmüller polynomial up to a unit and V^{AB} has a simple formula.

Remark 1. The veering polynomial behaves well under Dehn filling and recovers the Teichmüller polynomial in general. Combined with the earlier results about filled manifolds, it is a generalization of the Teichmüller polynomial to "veering faces" of the Thurston norm ball.

Remark 2. It can be constructed 2 ways:

- A. as the determinant of a presentation matrix for a $\mathbb{Z}[G]$ -module, or
- B. as the Perron polynomial of a directed graph.

Remark 3. Anna Parlak wrote a computer program that computes these things and is writing a couple of papers about it.

[Anna Parlak, Computation of the taut, the veering and the Teichmüller polynomials, in preparation] [Anna Parlak, The taut polynomial and the Alexander polynomial]

Thank you