Equivariant Heegaard genus of reducible 3-manifolds

Scott Taylor, Colby College

based on joint work with Maggy Tomova

- 1. Reducible 3-manifold
- 2. Heegaard splitting
- 3. Finite group of diffeomorphisms
- 4. Equivariant spheres and equivariant Heegaard surfaces

(*) Henceforth, only consider cpct. orientable 3-mflds where every sphere separates. Mostly closed, but if not no S^2 boundary components.

1. Reducible 3-manifold

2. Heegaard splitting

- 3. Finite group of diffeomorphisms
- 4. Equivariant spheres and equivariant Heegaard surfaces

Definition: The equivariant Heegaard genus $\mathbf{g}(W;G)$ is the minimal genus of an equivariant Heegaard surface for W.

Question: Is $g(W; G) = g(W|_S; G)$?

Theorem [T.]: There are examples s.t.

• $\mathbf{g}(W; \mathbf{G}) < \mathbf{g}(W|_{S}; \mathbf{G})$ • $\mathbf{g}(W; \mathbf{G}) = \mathbf{g}(W|_{S}; \mathbf{G})$ • $\mathbf{g}(W; \mathbf{G}) > \mathbf{g}(W|_{S}; \mathbf{G})$

Theorem [T.]: If *S* is an equivariant system of reducing spheres for *W* splitting *W* into *n* irreducible 3-mflds, then $\mathbf{g}(W;G) \leq \mathbf{g}(W|_S;G) + (c(|G|+1) - 2)(n - 1)$ (c = 1,2)

Theorem [T.]: If *S* is an equivariant system of reducing spheres for *W* such that $W|_S$ has *n* orbits of components that are irreducible 3-mflds other than S^3 or lens spaces, then $\mathbf{g}(W;G) \ge 1 + n |G| / 12$.

Theorem [T.]: If *S* is an equivariant system of reducing spheres for *W* such that each component of *W*|*s* is equivariantly comparatively small, then $\mathbf{g}(W;G) \ge \mathbf{g}(W|s;G)$

Def: A 3-orbifold "is" a (3-mfld, weighted trivalent spatial graph) pair.

Def: Orbifold sums

Def [Zimmermann]: Orbifold Heegaard splittings

Def [Zimmermann]: Orbifold Heegaard splittings

orbifold Heegaard surface

Def: Given a surface $S \subset (M,T)$ its orbifold characteristic is:

multiple orbifold Heegaard surface/ multiple vp-bridge surface

Thm [T - Tomova]: Every multiple vp-bridge surface *H* can be thinned to a "locally thin" multiple vp-bridge surface.

II. Orbifold thin position and net orbifold characteristic

Thm [T - Tomova]: If *H* is locally thin, then the thin surfaces contain an efficient set of decomposing spheres.

II. Orbifold thin position and net orbifold characteristic

Def: Given a multiple vp-bridge surface $H \subset (M,T)$ its <u>net Heegaard characteristic</u> is:

$$\operatorname{net} x(\mathcal{H}) = x(\mathcal{H}^+) - x(\mathcal{H}^-)$$

Thm [T.]: net Heegaard characteristic is non-increasing under thinning.

III. (Non)additivity

Thm [T]: There exists an equivariant system of spheres *S* for *W* such that net $x(W;G) = \text{net } x(W|_S;G) - 2|S|$ and *W*|*s* is irreducible.