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I. Heegaard splittings and group actions
Ingredients
1. Reducible 3-manifold
2. Heegaard splitting
3. Finite group of  diffeomorphisms
4. Equivariant spheres and 
equivariant Heegaard surfaces

(*) Henceforth, only consider cpct. orientable  
3-mflds where every sphere separates. Mostly 
closed, but if  not no S2 boundary components.
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I. Heegaard splittings and group actions
Ingredients

3. Finite group of  diffeomorphisms

4. Equivariant spheres and 
equivariant Heegaard surfaces



I. Heegaard splittings and group actions

Definition: The equivariant Heegaard genus g(W;G) 
is the minimal genus of  an equivariant Heegaard surface 
for W.
Question:  Is g(W; G) = g(W|S; G)?



I. Heegaard splittings and group actions

Theorem [T.]:  There are examples s.t. 

• g(W; G) < g(W|S; G) 
• g(W; G) = g(W|S; G) 
• g(W; G) > g(W|S; G)



I. Heegaard splittings and group actions

Theorem [T.]: If  S is an equivariant system of  reducing 
spheres for W splitting W into n irreducible 3-mflds, then 
 g(W;G) ≤ g(W|S;G) + (c(|G|+1) - 2)(n - 1) 
(c = 1,2)



Theorem [T.]: If  S is an equivariant system of  reducing 
spheres for W such that W|S has n orbits of  components that 
are irreducible 3-mflds other than S3 or lens spaces, then 
 g(W;G) ≥ 1+ n|G|/12. 

I. Heegaard splittings and group actions

Theorem [T.]: If  S is an equivariant system of  reducing 
spheres for W such that each component of  W|S  is 
equivariantly comparatively small, then 
 g(W;G) ≥ g(W|S;G)



II. Orbifolds

Def: A 3-orbifold “is” a  
(3-mfld, weighted trivalent spatial graph) pair.



Def: Orbifold sums

II. Orbifolds



Def  [Zimmermann]: Orbifold Heegaard splittings

II. Orbifolds

orbifold compressionbody



Def  [Zimmermann]: Orbifold Heegaard splittings

II. Orbifolds

Def: Given a surface S ⊂ (M,T) its 
orbifold characteristic is:

orbifold Heegaard surface



II. Orbifolds

multiple orbifold Heegaard surface/ 
multiple vp-bridge surface



Thm [T - Tomova]: Every multiple vp-bridge surface H can 
be thinned to a “locally thin” multiple vp-bridge surface.

II. Orbifolds

thins to



II. Orbifold thin position and net orbifold characteristic

Thm [T - Tomova]: If H is locally thin, then the thin surfaces 
contain an efficient set of  decomposing spheres.



II. Orbifold thin position and net orbifold characteristic

Def: Given a multiple vp-bridge surface H ⊂ (M,T) its 
net Heegaard characteristic is:

netx(H) = x(H+)� x(H�)



II. Orbifolds

Def:

Thm [T.]: net Heegaard characteristic is non-increasing 
under thinning.

thins to

netx(H) = x(H+)� x(H�)



II. Orbifolds

Def: net x(M,T) = min net x(H)

Thm [T.]: net x(M,T) = net x((M,T)|S) - x(S)

surger



Thm [T]: There exists an equivariant system of  spheres S for 
W such that net x(W;G) = net x(W|S;G) - 2|S| 
and W|S is irreducible.

III. (Non)additivity


