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Recollection of A,.-algebras

Example of Kj.

String of
4 |etters

abcd

Polytope
(ab)(cd)
(ab)cd ab(cd)
((ab)c)d S ealblcd)
(abc)d a(bcd)

(albc))d” albc)d "a(lbc)d)
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Associahedra

Example: Ks

Example: Ky = o
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Why A, algebras?
Theorem (Kadeishvili)

Let A be a dg associative algebra over a field of characteristic zero. There
exists an Ao structure on H,(A) such that A ~ H,(A) as Ax.-algebras.
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Why A, algebras?
Theorem (Kadeishvili)

Let A be a dg associative algebra over a field of characteristic zero. There
exists an Ao structure on H,(A) such that A ~ H,(A) as Ax.-algebras.

For example let A= C*(X;Q) with the cup product. This is a finer
invariant than cohomology, H*(X; Q) until we add higher operations

pin: H*(A)®" — H*="2(A).

Remarks:
o This result is called the homotopy transfer theorem.

@ The homotopy transfer theorem is a corollary of the fact that the
associative operad is Koszul. Koszulity of this operad is essentially
the statement that associahedra are contractible.

o We will call these higher operations “Massey products”.
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Key feature of associahedra: they are contractible.
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Associativity revisited

Key feature of associahedra: they are contractible.

» | claim this feature is present in much greater generality.

o Revisit associativity:

a b c d
abcd = e—o — o @
allbe)d) = e——o———&———@ >

"bf Aacketsn

> brackets are either nested or disjoint

Lemma (W.) The space of bracketings of any graph is contractible,
in fact it is a polytope.

November 11, 2021 7/32



The space of bracketings of any graph is contractible

Graph

Polytope

Ben Ward

Massey Products for Graph Homology

November 11, 2021

8/32



The space of bracketings of any graph is contractible

Graph

Polytope

Ben Ward

Massey Products for Graph Homology

November 11, 2021

8/32



The space of bracketings of any graph is contractible

Graph

Polytope

Ben Ward Massey Products for Graph Homology

November 11, 2021

8/32



The space of bracketings of any graph is contractible

Graph

Polytope

Ben Ward Massey Products for Graph Homology

November 11, 2021

8/32



The space of bracketings of any graph is contractible

Graph

@ /

Polytope

Ben Ward Massey Products for Graph Homology

November 11, 2021

8/32



The space of bracketings of any graph is contractible

Graph

Polytope

Ben Ward

Massey Products for Graph Homology

November 11, 2021

8/32



The space of bracketings of any graph is contractible

Graph

& <

Polytope

Ben Ward Massey Products for Graph Homology

November 11, 2021

8/32



The space of bracketings of any graph is contractible

Graph

Polytope

& L

Ben Ward Massey Products for Graph Homology

November 11, 2021

8/32



The space of bracketings of any graph is contractible

Graph

Polytope

A

Ben Ward Massey Products for Graph Homology

November 11, 2021

8/32



The space of bracketings of any graph is contractible

Graph

Polytope

Ben Ward

Massey Products for Graph Homology

November 11, 2021

8/32



The space of bracketings of any graph is contractible

Polytope

Ben Ward Massey Products for Graph Homology November 11, 2021 8/32



The space of bracketings of any graph is contractible

Polytope

Ben Ward Massey Products for Graph Homology November 11, 2021 8/32



The space of bracketings of any graph is contractible

Polytope

Ben Ward Massey Products for Graph Homology November 11, 2021 8/32



The space of bracketings of any graph is contractible

Graph

Polytope

Ben Ward

Massey Products for Graph Homology

November 11, 2021

8/32



The space of bracketings of any graph is contractible

Graph

Polytope

A )

Ben Ward Massey Products for Graph Homology

November 11, 2021

8/32



The space of bracketings of any graph is contractible

Graph

Polytope

Ben Ward

Massey Products for Graph Homology




Bracketohedra???

Graph | Picture | Name

Ben Ward Massey Products for Graph Homology November 11, 2021 9/32



Bracketohedra???

Graph | Picture Name

—eo—o oo @ Associahedron

Ben Ward Massey Products for Graph Homology November 11, 2021 9/32



Bracketohedra???

Graph | Picture Name
LN
— oo oo Associahedron

W\
gl! Cyclohedron

Ben Ward Massey Products for Graph Homology November 11, 2021 9/32



Bracketohedra???

Graph | Picture Name

——o o oo Associahedron

Cyclohedron

" (thanks wikipedia) | Permutohedron

November 11,2021 9/32



Bracketohedra???

Graph Picture Name
— o o oo Associahedron

@ Cyclohedron

+ [ /\..5
\\// (thanks wikipedia) | Permutohedron
[ & i; 7777hedron

November 11,2021 9/32



Bracketohedra???
Graph | Picture Name

Associahedron

3
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DElen [
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Bracketohedra???
Graph

Name

*—1—o0—o—o

Picture

Associahedron

Cyclohedron

I (thanks wikipedia) | Permutohedron
[ 7777hedron
E 7777hedron

These are the only 3d Bracketohedra.
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then

Algebraic structure

Associativity

Combinatorics
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via Aso-algebras

use to study

Topological spaces
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An analogy

How do we use this generalization?

then

now

Algebraic structure

Associativity

Modular Operad

Combinatorics

Multiply along a line

Multiply along a graph

Polytopes

Associahedra

Bracketohedra

Homotopy Transfer

via Aso-algebras

use to study

Topological spaces
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Modular operads.

Informal Definition: A modular operad is a sequence of objects
(M2a M37 M4a s )
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[

external vertex internal vertex

November 11,2021 13/32



Modular operads.

Informal Definition: A modular operad is a sequence of objects
(Ma, M3, My, ...) and an algebraic operation for every graph:

November 11,2021 13/32



Modular operads.

Informal Definition: A modular operad is a sequence of objects
(Ma, M3, My, ...) and an algebraic operation for every graph:

November 11,2021 13/32



Modular operads.

Informal Definition: A modular operad is a sequence of objects
(Ma, M3, My, ...) and an algebraic operation for every graph:

November 11,2021 13/32



Modular operads.

Informal Definition: A modular operad is a sequence of objects
(Ma, M3, My, ...) and an algebraic operation for every graph:

November 11,2021 13/32



Modular operads.

Informal Definition: A modular operad is a sequence of objects
(Ma, M3, My, ...) and an algebraic operation for every graph:

M, X M, X M, M
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Examples of modular operads

Let A be an associative algebra and define (M, M3, My, ...) = (A,0,0,...)
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Examples of modular operads

Let A be an associative algebra and define (Ma, M3, M4, ...) = (A,0,0,...)

Mg X M; X M, M
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Examples of modular operads

Let A be an associative algebra and define (Ma, M3, M4, ...) = (A,0,0,...)

noo.
s 9‘?\2 cove \0

ay° \e
?c\h‘\i exa™?

Ox0xO0 0
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Examples of modular operads

Let A be an associative algebra and define (M,, M3, My, ...) = (A,0,0,...)

o The operations are trivial unless all internal vertices have valence 2.
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Examples of modular operads

Let A be an associative algebra and define (M,, M3, My, ...) = (A,0,0,...)

o The operations are trivial unless all internal vertices have valence 2.

O}
®

° @ @ @
2 2 2

alwe  AxAxAXA

need \S
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Examples of modular operads

Let A be an associative algebra and define (M,, M3, My, ...) = (A,0,0,...)

o The operations are trivial unless all internal vertices have valence 2.
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Examples of modular operads

Let A be an associative algebra and define (M,, M3, My, ...) = (A,0,0,...)

@ The operations are trivial unless all internal vertices have valence 2.

. ° ° ° O—
2 2 2
AXAXAXA A
a, b, c, abcd

o Modular operads generalize associativity.
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Examples of modular operads

Let V be a vector space and V ® V <_—’_>> Q an inner product.
Define (Mo, M3, My, ...) = (V®2, V&3 v®4 ).
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(

=3 Q an inner product.

eed
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V®7
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Examples of modular operads

Surfaces: Let M, be the set of compact, orientable surfaces with n
boundary components.
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Examples of modular operads

Surfaces: Let M, be the set of compact, orientable surfaces with n
boundary components.

M, X M, x M, M

@ Surfaces form a modular operad by gluing.
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Other examples of modular operads:
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Other examples of modular operads:

@ Moduli spaces of surfaces with boundary.
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Other examples of modular operads:

@ Moduli spaces of surfaces with boundary.
o Deligne-Mumford compactifications of surfaces with punctures.

o Graph homology (discussed below).

It's preferable to separate out the genus: M = { M, ,}.
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Back to the analogy

then

now

Algebraic structure

Associativity

Modular Operad

Combinatorics

Multiply along a line

Multiply along a graph

Polytopes

Associahedra

Bracketohedra

Homotopy Transfer

via Ayo-algebras

use to study

Topological spaces

Present Goal: Fill in this table.

November 11, 2021
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Back to the analogy

then now
Algebraic structure || Associativity Modular Operad
Combinatorics || Multiply along a line | Multiply along a graph
Polytopes || Associahedra Bracketohedra
Homotopy Transfer || via Ay-algebras theorem
use to study || Topological spaces

Present Goal: Fill in this table.
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Homotopy Transfer Theorem for Modular Operads.

Generalizing the classical Ay, story we have:
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Theorem (W.)

Every dg modular operad is quasi-isomorphic to a “As.-modular operad”
structure on its homology.
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Homotopy Transfer Theorem for Modular Operads.
Generalizing the classical Ay, story we have:
Theorem (W.)

Every dg modular operad is quasi-isomorphic to a “As.-modular operad”
structure on its homology.

Proof.

© Encode modular operads as algebras over a quadratic operad.

v
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Homotopy Transfer Theorem for Modular Operads.

Generalizing the classical Ay, story we have:

Theorem (W.)

Every dg modular operad is quasi-isomorphic to a “As.-modular operad”
structure on its homology.

Proof.

@ Encode modular operads as algebras over a quadratic operad. This
requires using colored operads whose colors form not just a set but a
groupoid.

O Prove that the operad encoding modular operads is Koszul. This is
where we use contractibility of bracketohedra.

O Generalize classical Koszul duality theory from operads to groupoid
colored operads.

L]
v
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Remarks about A..-modular operads.
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Remarks about A..-modular operads.

@ A modular operad has an operation corresponding to every graph but
these operations are generated by one edge compositions. An A,
modular operad has a generating operation corresponding to every

graph.

Q In an A, modular operad, the degree of a generating operation is
|Edges| — 1.

@ Crucially, we don't resolve the S, actions and the homotopy transfer
holds S, equivariantly.
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Back to the analogy... one last time.

How do we use this generalization?

then

now

Algebraic structure

Associativity

Modular Operad

Combinatorics

Multiply along a line

Multiply along a graph

Polytopes

Associahedra

Bracketohedra

Homotopy Transfer

via Aso-algebras

via Aso- modular operads

use to study

Topological spaces
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Back to the analogy... one last time.

How do we use this generalization?

then now
Algebraic structure || Associativity Modular Operad
Combinatorics || Multiply along a line | Multiply along a graph
Polytopes || Associahedra Bracketohedra
Homotopy Transfer || via A..-algebras via Aso- modular operads
use to study || Topological spaces graph homology
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Commutative and Lie structures
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Commutative and Lie structures

Define Lie(n) = span of Lie words on n letters.

Ben Ward Massey Products for Graph Homology November 11, 2021 23/32



Commutative and Lie structures

Define Lie(n) = span of Lie words on n letters.

» Lie(2) is dimension 1,

Ben Ward Massey Products for Graph Homology November 11, 2021 23/32



Commutative and Lie structures

Define Lie(n) = span of Lie words on n letters.
» Lie(2) is dimension 1,  basis [a, b].

» Lie(3) is dimension 2,

Ben Ward Massey Products for Graph Homology November 11, 2021 23/32



Commutative and Lie structures

Define Lie(n) = span of Lie words on n letters.
» Lie(2) is dimension 1,  basis [a, b].

» Lie(3) is dimension 2,

Ben Ward Massey Products for Graph Homology November 11, 2021 23/32



Commutative and Lie structures

Define Lie(n) = span of Lie words on n letters.
» Lie(2) is dimension 1,  basis [a, b].

» Lie(3) is dimension 2,  basis [[a, b], c], [[c, &], b].

November 11,2021 23/32



Commutative and Lie structures

Define Lie(n) = span of Lie words on n letters.
» Lie(2) is dimension 1,  basis [a, b].
» Lie(3) is dimension 2,  basis [[a, b], c], [[c, &], b].

» Lie(n) is dimension (n — 1)!.

November 11,2021 23/32



Commutative and Lie structures

Define Lie(n) = span of Lie words on n letters.
» Lie(2) is dimension 1,  basis [a, b].
» Lie(3) is dimension 2,  basis [[a, b], c], [[c, &], b].

» Lie(n) is dimension (n — 1)!.

Define Com(n) = span of commutative and associative words on n
letters.

November 11, 2021 23/32



Commutative and Lie structures

Define Lie(n) = span of Lie words on n letters.
» Lie(2) is dimension 1,  basis [a, b].
» Lie(3) is dimension 2,  basis [[a, b], c], [[c, &], b].

» Lie(n) is dimension (n — 1)!.

Define Com(n) = span of commutative and associative words on n
letters.

» Com(2) is dimension 1,

November 11, 2021 23/32



Commutative and Lie structures

Define Lie(n) = span of Lie words on n letters.
» Lie(2) is dimension 1,  basis [a, b].
» Lie(3) is dimension 2,  basis [[a, b], c], [[c, &], b].

» Lie(n) is dimension (n — 1)!.

Define Com(n) = span of commutative and associative words on n
letters.

» Com(2) is dimension 1, basis ab.

November 11, 2021 23/32



Commutative and Lie structures

Define Lie(n) = span of Lie words on n letters.
» Lie(2) is dimension 1,  basis [a, b].
» Lie(3) is dimension 2,  basis [[a, b], c], [[c, &], b].

» Lie(n) is dimension (n — 1)!.

Define Com(n) = span of commutative and associative words on n
letters.

» Com(2) is dimension 1, basis ab.

» Com(n) is dimension 1.

November 11,2021 23/32



Lie vs Commutative words

Both Com and Lie are operads.
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For any operad O we can consider the power series
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n!
n=1

In particular

flie =log(l—x) and feom=€"—1

are formal inverses of each other (up to sign).
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Lie vs Commutative words
Both Com and Lie are operads.

For any operad O we can consider the power series
o0 d.
fO(X) — Z Im(O(n))Xn

n!
n=1

In particular
flie =log(l—x) and feom=€"—1

are formal inverses of each other (up to sign).

This is a manifestation of Koszul duality. If | didn't know the dimension of
Lie(n) | could compute it from the dimension of Com.
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Modular operads associated to Com and Lie

Here are two ways to associate a modular operad to an operad like Com
and Lie.
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ft(O). It comes with a differential induced by the operadic structure
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A few remarks:

Q I'm omitting many important technical details.
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Modular operads associated to Com and Lie

Here are two ways to associate a modular operad to an operad like Com
and Lie.

o Declare higher genus graphs to act by 0.

@ Form the space of all O-labeled graphs, called the Feynman transform
ft(O). It comes with a differential induced by the operadic structure
maps.

A few remarks:
Q I'm omitting many important technical details.
Q (Getzler-Kapranov) ft preserves quasi-isomorphisms and ft? ~ id.
O ft can be generalized to A,,-modular operads.

November 11, 2021 25/32



A Picture of the Feynman transform

Input is an operad (or modular operad) O.
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A Picture of the Feynman transform

Input is an operad (or modular operad) O.

in ft(0)(3,5)
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Ben Ward Massey Products for Graph Homology November 11, 2021 26/32



A Picture of the Feynman transform

Input is an operad (or modular operad) O.

a term in the differential
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Why graph homology?

Define “graph homology”:
® Hcom = Hsi(ft(Com))
0 Hije := H*(ft(Lie))
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calculations?

Theorem (W.)

For each g > 0 the complex ft(Hie)(g, n)
@ is acyclic, and

o contains ft(Com)(g, n) as a subcomplex.

Thus every cycle in ft(Com)(g, n) is a boundary in ft(H.)(g, n),
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Now add Massey products

Question: Can we use Koszul duality between Com and Lie to relate these
calculations?

Theorem (W.)
For each g > 0 the complex ft(Hie)(g, n)
@ is acyclic, and

o contains ft(Com)(g, n) as a subcomplex.

Thus every cycle in ft(Com)(g, n) is a boundary in ft(H.i)(g, n), i.e.
every commutative graph homology class is represented, via Massey
products, by a graph labeled by Lie graph homology classes.
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An example

Every commutative graph homology class is represented, via Massey
products, by a graph labeled by Lie graph homology classes.
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An example

Every commutative graph homology class is represented, via Massey
products, by a graph labeled by Lie graph homology classes.

o Willwacher used the correspondence with grt; to construct a family of
commutative graph homology classes o5;;1 with (g, n) = (2j + 1,0).
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products, by a graph labeled by Lie graph homology classes.

o Willwacher used the correspondence with gtt; to construct a family of
commutative graph homology classes o5;;1 with (g, n) = (2j + 1,0).

o Conant-Hatcher-Kassabov-Vogtmann used a group theoretic
interpretation of Lie graph homology to construct a sequence of
classes apjy1 with (1,2j 4+ 1).
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An example

Every commutative graph homology class is represented, via Massey
products, by a graph labeled by Lie graph homology classes.

o Willwacher used the correspondence with gtt; to construct a family of
commutative graph homology classes o5;;1 with (g, n) = (2j + 1,0).

o Conant-Hatcher-Kassabov-Vogtmann used a group theoretic
interpretation of Lie graph homology to construct a sequence of
classes apjy1 with (1,2j 4+ 1).

To relate these two, | need to know what the genus 1 Massey
products are.
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Theorem (W.)

Massey products for Lie graph homology are given by contracting odd
polygons with commutative labels to hit cj 1.
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Theorem (W.)

Massey products for Lie graph homology are given by contracting odd
polygons with commutative labels to hit cj 1.

Define 641 € ft(Hyie) to be:

Theorem (W.)

In the derived Feynman transform ft(Hi), d(62j+1) = o2j41. In particular
02j+1 is a cycle in ft(Com).
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Lie graph homology model for grt;?

Question: Can we describe the filtered Lie algebra grt; via Lie graph
homology?
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Lie graph homology model for grt;?

Question: Can we describe the filtered Lie algebra grt; via Lie graph
homology?

Theorem (W. — in progress)
ft(Hiie)(2, n) ©s, An ~ Fa(grty)/F3(gety) J

“To understand filtration degree 2 requires understanding Lie graph
homology upto genus 2".
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Question: Can we describe the filtered Lie algebra grt; via Lie graph
homology?

Theorem (W. — in progress)
ft(Hiie) (2, n) ®s, An ~ Fo(grty)/Fa(arty) J

“To understand filtration degree 2 requires understanding Lie graph
homology upto genus 2".

This isomorphism sees the fact that H (2, n) ®s, A, coincides with the
space of relations among the {02j11,02,—2i4+1} € Fa(grty)/Fz(grt;).
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Lie graph homology model for grt;?

Question: Can we describe the filtered Lie algebra grt; via Lie graph
homology?

Theorem (W. — in progress)
ft(H1ie)(2, n) ®s, An ~ Fa(grty)/ Fs(grty) }

“To understand filtration degree 2 requires understanding Lie graph
homology upto genus 2".

This isomorphism sees the fact that H (2, n) ®s, A, coincides with the
space of relations among the {02j11,02,—2i4+1} € Fa(grty)/Fz(grt;).
Both spaces, after work of Conant-Kassabov-Hatcher-Vogtmann on the
one hand and Schneps on the other, have dimension = space of cusp
forms of weight n+2.
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