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Recollection of A∞-algebras

Definition: The associahedron Kn is a polytope of dimension n − 2 such
that:

vertices = ways to parenthesize a string of n letters,

edges = strings of n letters missing one pair of parentheses,

faces = strings of n letters missing two pair of parentheses and so on,

adjacency is determined by adding parentheses.

Case n = 3:

Ben Ward Massey Products for Graph Homology November 11, 2021 2 / 32



Recollection of A∞-algebras

Definition: The associahedron Kn is a polytope of dimension n − 2 such
that:

vertices = ways to parenthesize a string of n letters,

edges = strings of n letters missing one pair of parentheses,

faces = strings of n letters missing two pair of parentheses and so on,

adjacency is determined by adding parentheses.

Case n = 3:

Ben Ward Massey Products for Graph Homology November 11, 2021 2 / 32



Recollection of A∞-algebras

Definition: The associahedron Kn is a polytope of dimension n − 2 such
that:

vertices = ways to parenthesize a string of n letters,

edges = strings of n letters missing one pair of parentheses,

faces = strings of n letters missing two pair of parentheses

and so on,

adjacency is determined by adding parentheses.

Case n = 3:

Ben Ward Massey Products for Graph Homology November 11, 2021 2 / 32



Recollection of A∞-algebras

Definition: The associahedron Kn is a polytope of dimension n − 2 such
that:

vertices = ways to parenthesize a string of n letters,

edges = strings of n letters missing one pair of parentheses,

faces = strings of n letters missing two pair of parentheses

and so on,

adjacency is determined by adding parentheses.

Case n = 3:

Ben Ward Massey Products for Graph Homology November 11, 2021 2 / 32



Recollection of A∞-algebras

Definition: The associahedron Kn is a polytope of dimension n − 2 such
that:

vertices = ways to parenthesize a string of n letters,

edges = strings of n letters missing one pair of parentheses,

faces = strings of n letters missing two pair of parentheses and so on,

adjacency is determined by adding parentheses.

Case n = 3:

Ben Ward Massey Products for Graph Homology November 11, 2021 2 / 32



Recollection of A∞-algebras

Definition: The associahedron Kn is a polytope of dimension n − 2 such
that:

vertices = ways to parenthesize a string of n letters,

edges = strings of n letters missing one pair of parentheses,

faces = strings of n letters missing two pair of parentheses and so on,

adjacency is determined by adding parentheses.

Case n = 3:

(ab)c a(bc)

Ben Ward Massey Products for Graph Homology November 11, 2021 2 / 32



Recollection of A∞-algebras

Definition: The associahedron Kn is a polytope of dimension n − 2 such
that:

vertices = ways to parenthesize a string of n letters,

edges = strings of n letters missing one pair of parentheses,

faces = strings of n letters missing two pair of parentheses and so on,

adjacency is determined by adding parentheses.

Case n = 3:

(ab)c a(bc)

abc

Ben Ward Massey Products for Graph Homology November 11, 2021 2 / 32



Recollection of A∞-algebras

Example of K4.

String of 
4 letters

PolytopePolytope

abcd
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Recollection of A∞-algebras

Example of K4.
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Recollection of A∞-algebras

Example of K4.
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Recollection of A∞-algebras

Example of K4.

a(bcd)

String of 
4 letters

PolytopePolytope

a(bcd)
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Recollection of A∞-algebras

Example of K4.
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Recollection of A∞-algebras
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(ab)(cd)

a(b(cd))

a((bc)d)(a(bc))d

((ab)c)d

(ab)cd ab(cd)

a(bcd)

a(bc)d

(abc)d

String of 
4 letters

PolytopePolytope

abcd

Ben Ward Massey Products for Graph Homology November 11, 2021 3 / 32



Associahedra

Example: K5

Example: K2 = •
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Associahedra encode A∞-algebras

Informal Definition:

An A∞ algebra is a chain complex A with a
compatible linear map A⊗n → A for every cell in Kn (for each n).

What is needed to specify an A∞-algebra?

K2

ab
need : A⊗2 → A of degree 0

K3 need : A⊗3 → A of degree 1

K4 need µ4 : A
⊗4 → A of degree 2
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Why A∞ algebras?

Theorem (Kadeishvili)

Let A be a dg associative algebra over a field of characteristic zero. There
exists an A∞ structure on H∗(A) such that A ∼ H∗(A) as A∞-algebras.

For example let A = C ∗(X ;Q) with the cup product. This is a finer
invariant than cohomology, H∗(X ;Q) until we add higher operations

µn : H
∗(A)⊗n → H∗−n+2(A).

Remarks:

This result is called the homotopy transfer theorem.

The homotopy transfer theorem is a corollary of the fact that the
associative operad is Koszul. Koszulity of this operad is essentially
the statement that associahedra are contractible.

We will call these higher operations “Massey products”.
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Associativity revisited

Key feature of associahedra: they are contractible.

▶ I claim this feature is present in much greater generality.

Revisit associativity:

a
abcd

b c d
=

"brackets"

a((bc)d) =

▶ brackets are either nested or disjoint

Lemma (W.) The space of bracketings of any graph is contractible,
in fact it is a polytope.
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The space of bracketings of any graph is contractible

Graph
Polytope

Graph
Polytope
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Bracketohedra???

Graph Picture Name

Associahedron

Cyclohedron

(thanks wikipedia) Permutohedron

????hedron

????hedron

These are the only 3d Bracketohedra.
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An analogy

How do we use this generalization?

then

Algebraic structure Associativity

Combinatorics Multiply along a line

Polytopes Associahedra

Homotopy Transfer via A∞-algebras

use to study Topological spaces
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Modular operads.

Informal Definition: A modular operad is a sequence of objects
(M2,M3,M4, . . . )

and an algebraic operation for every graph:
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Modular operads.

Informal Definition: A modular operad is a sequence of objects
(M2,M3,M4, . . . ) and an algebraic operation for every graph:
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Examples of modular operads

Let A be an associative algebra and define (M2,M3,M4, ...) = (A, 0, 0, ...)

The operations are trivial unless all internal vertices have valence 2.

Ben Ward Massey Products for Graph Homology November 11, 2021 14 / 32



Examples of modular operads

Let A be an associative algebra and define (M2,M3,M4, ...) = (A, 0, 0, ...)

The operations are trivial unless all internal vertices have valence 2.

Ben Ward Massey Products for Graph Homology November 11, 2021 14 / 32



Examples of modular operads

Let A be an associative algebra and define (M2,M3,M4, ...) = (A, 0, 0, ...)

The operations are trivial unless all internal vertices have valence 2.

M6
x M3 M4

x M7

Ben Ward Massey Products for Graph Homology November 11, 2021 14 / 32



Examples of modular operads

Let A be an associative algebra and define (M2,M3,M4, ...) = (A, 0, 0, ...)

The operations are trivial unless all internal vertices have valence 2.

0 x 0 x 0 0

Ben Ward Massey Products for Graph Homology November 11, 2021 14 / 32



Examples of modular operads

Let A be an associative algebra and define (M2,M3,M4, ...) = (A, 0, 0, ...)

The operations are trivial unless all internal vertices have valence 2.

0 x 0 x 0 0

this graph

plays no role in

this example

Ben Ward Massey Products for Graph Homology November 11, 2021 14 / 32



Examples of modular operads

Let A be an associative algebra and define (M2,M3,M4, ...) = (A, 0, 0, ...)

The operations are trivial unless all internal vertices have valence 2.

Ben Ward Massey Products for Graph Homology November 11, 2021 14 / 32



Examples of modular operads

Let A be an associative algebra and define (M2,M3,M4, ...) = (A, 0, 0, ...)

The operations are trivial unless all internal vertices have valence 2.

M2
x M2 M2

x M2M2
x

2 2 2 2

Ben Ward Massey Products for Graph Homology November 11, 2021 14 / 32



Examples of modular operads

Let A be an associative algebra and define (M2,M3,M4, ...) = (A, 0, 0, ...)

The operations are trivial unless all internal vertices have valence 2.

A

2 2 2 2

A x A x A x Aall we

need is

Ben Ward Massey Products for Graph Homology November 11, 2021 14 / 32



Examples of modular operads

Let A be an associative algebra and define (M2,M3,M4, ...) = (A, 0, 0, ...)

The operations are trivial unless all internal vertices have valence 2.

A

2 2 2 2

A x A x A x A

a , b , c , d abcd

Ben Ward Massey Products for Graph Homology November 11, 2021 14 / 32



Examples of modular operads

Let A be an associative algebra and define (M2,M3,M4, ...) = (A, 0, 0, ...)

The operations are trivial unless all internal vertices have valence 2.

A

2 2 2 2

A x A x A x A

a , b , c , d abcd

Modular operads generalize associativity.

Ben Ward Massey Products for Graph Homology November 11, 2021 15 / 32



Examples of modular operads

Let V be a vector space and V ⊗ V
⟨−,−⟩−→ Q an inner product.

Define (M2,M3,M4, ...) = (V⊗2,V⊗3,V⊗4, ...).
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Examples of modular operads

Surfaces: Let Mn be the set of compact, orientable surfaces with n
boundary components.

Surfaces form a modular operad by gluing.
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Other examples of modular operads:

Moduli spaces of surfaces with boundary.

Deligne-Mumford compactifications of surfaces with punctures.

Graph homology (discussed below).

It’s preferable to separate out the genus: M = {Mg ,n}.
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Back to the analogy

then now

Algebraic structure Associativity Modular Operad

Combinatorics Multiply along a line Multiply along a graph

Polytopes Associahedra Bracketohedra

Homotopy Transfer via A∞-algebras

use to study Topological spaces

Present Goal: Fill in this table.
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Homotopy Transfer Theorem for Modular Operads.

Generalizing the classical A∞ story we have:

Theorem (W.)

Every dg modular operad is quasi-isomorphic to a “A∞-modular operad”
structure on its homology.

Proof.
1 Encode modular operads as algebras over a quadratic operad. This

requires using colored operads whose colors form not just a set but a
groupoid.

2 Prove that the operad encoding modular operads is Koszul. This is
where we use contractibility of bracketohedra.

3 Generalize classical Koszul duality theory from operads to groupoid
colored operads.
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Remarks about A∞-modular operads.

1 A modular operad has an operation corresponding to every graph but
these operations are generated by one edge compositions. An A∞
modular operad has a generating operation corresponding to every
graph.

2 In an A∞ modular operad, the degree of a generating operation is
|Edges| − 1.

3 Crucially, we don’t resolve the Sn actions and the homotopy transfer
holds Sn equivariantly.
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Back to the analogy... one last time.

How do we use this generalization?

then now

Algebraic structure Associativity Modular Operad

Combinatorics Multiply along a line Multiply along a graph

Polytopes Associahedra Bracketohedra

Homotopy Transfer via A∞-algebras via A∞- modular operads

use to study Topological spaces

graph homology
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Commutative and Lie structures

Define Lie(n) = span of Lie words on n letters.

▶ Lie(2) is dimension 1, basis [a, b].

▶ Lie(3) is dimension 2, basis [[a, b], c], [[c , a], b].

▶ Lie(n) is dimension (n − 1)!.

Define Com(n) = span of commutative and associative words on n
letters.

▶ Com(2) is dimension 1, basis ab.

▶ Com(n) is dimension 1.
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Lie vs Commutative words

Both Com and Lie are operads.

For any operad O we can consider the power series

fO(x) =
∞∑
n=1

dim(O(n))

n!
xn

In particular

fLie = log(1− x) and fCom = ex − 1

are formal inverses of each other (up to sign).

This is a manifestation of Koszul duality. If I didn’t know the dimension of
Lie(n) I could compute it from the dimension of Com.
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Modular operads associated to Com and Lie

Here are two ways to associate a modular operad to an operad like Com
and Lie.

Declare higher genus graphs to act by 0.

Form the space of all O-labeled graphs, called the Feynman transform
ft(O). It comes with a differential induced by the operadic structure
maps.

A few remarks:

1 I’m omitting many important technical details.

2 (Getzler-Kapranov) ft preserves quasi-isomorphisms and ft2 ∼ id .

3 ft can be generalized to A∞-modular operads.
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A Picture of the Feynman transform

Input is an operad (or modular operad) O.
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A Picture of the Feynman transform
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O(4)

O(4)
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in ft(O)(3,5)
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A Picture of the Feynman transform

Input is an operad (or modular operad) O.

O(4)

O(5)

O(6)

a term in the differential
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Why graph homology?

Define “graph homology”:

HCom := H∗(ft(Com))

HLie := H∗(ft(Lie))

Theorem (Willwacher)

⊕gHCom(g , 0)2g ∼= grt1 (modulo technical details)

Theorem (Kontsevich; Conant-Kassabov-Vogtmann)

HLie(g , 0) ∼= H∗(Out(Fg ))

Question: Can we use Koszul duality between Com and Lie to relate these
calculations?
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Now add Massey products

Question: Can we use Koszul duality between Com and Lie to relate these
calculations?

Theorem (W.)

For each g > 0 the complex ft(HLie)(g , n)

is acyclic, and

contains ft(Com)(g , n) as a subcomplex.

Thus every cycle in ft(Com)(g , n) is a boundary in ft(HLie)(g , n), i.e.
every commutative graph homology class is represented, via Massey
products, by a graph labeled by Lie graph homology classes.
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An example

Every commutative graph homology class is represented, via Massey
products, by a graph labeled by Lie graph homology classes.

Willwacher used the correspondence with grt1 to construct a family of
commutative graph homology classes σ2j+1 with (g , n) = (2j + 1, 0).

Conant-Hatcher-Kassabov-Vogtmann used a group theoretic
interpretation of Lie graph homology to construct a sequence of
classes α2j+1 with (1, 2j + 1).
To relate these two, I need to know what the genus 1 Massey
products are.
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Theorem (W.)

Massey products for Lie graph homology are given by contracting odd
polygons with commutative labels to hit α2j+1.

Define θ2j+1 ∈ ft(HLie) to be:

Theorem (W.)

In the derived Feynman transform ft(HLie), d(θ2j+1) = σ2j+1. In particular
σ2j+1 is a cycle in ft(Com).
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Lie graph homology model for grt1?

Question: Can we describe the filtered Lie algebra grt1 via Lie graph
homology?

Theorem (W. – in progress)

ft(HLie)(2, n)⊗Sn Λn ∼ F2(grt1)/F3(grt1)

“To understand filtration degree 2 requires understanding Lie graph
homology upto genus 2”.

This isomorphism sees the fact that HLie(2, n)⊗Sn Λn coincides with the
space of relations among the {σ2i+1, σ2n−2i+1} ∈ F2(grt1)/F3(grt1).
Both spaces, after work of Conant-Kassabov-Hatcher-Vogtmann on the
one hand and Schneps on the other, have dimension = space of cusp
forms of weight n+2.
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