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Three reasons to decompose a surface

1. Practical matters: surface parameterization.

In order to compute a parameterization (i.e., homeomorphism)
between two surfaces of non-zero genus, the first step is generally to
cut them open into a disk.

One way to do that is to cut along a fixed system of loops.
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Three reasons to decompose a surface

2. Visualization: How to represent an embedded graph?

The complete graph on 7 vertices can be drawn without crossings on
a torus.

Really? Show it to me.
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Three reasons to decompose a surface

3. Combinatorial group theory: How to change bases?

Given an orientable surface S , and a family of simple curves inducing
a presentation of the fundamental group:

π1(S) =< a, b, c , d | abcdabcd = 1 >

How do I go from this presentation to my “favorite” presentation?

π1(S) =< a1, a2, b1, b2 | a1b1a1b1a2b2a2b2 = 1 >

Here, one can take a1 = dca, b1 = bcd , a2 = c and b2 = d . In
general, how to bound the length of these words?
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Joint crossings

In all three questions we aim to control the complexity of some
decomposition.
A graph G embedded on a surface S is an injective map G → S .
An embedding is cellular if the faces are topological disks.

Cutting one graph along another
Let G1 and G2 be two graphs cellularly embedded on a surface S of genus
g . Is there a homeomorphism h : S → S such that h(G1) and G2 cross
transversely and not too much?

For the examples above, pick for G2 my favorite embedded graph, the
orientable canonical system of loops:

a1 b1

ā1

b̄1
a2

b2

ā2

b̄2
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Graph duality

To any cellularly embedded graph one can associate a dual graph where
vertices and faces are inverted.

Following an edge in the primal graph is the same as crossing the dual
edge.
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ā

b̄

c̄

d̄

Following an edge in the primal graph is the same as crossing the dual
edge.

16 / 37



Graph duality

To any cellularly embedded graph one can associate a dual graph where
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Canonical decomposition of orientable surfaces

Theorem (Lazarus, Pocchiola, Vegter, Verroust ’01)
Let G be a graph embedded on an orientable surface S of genus g . Then
there exists a canonical system of loops, so that each loop crosses each
edge of the graph at most 4 times. Dually, there exists a canonical system
of loops so that each loop uses each edge of the graph at most 4 times.

In terms of length, the canonical system of loops has length O(gn), this is
tight.
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Other cutting shapes?

What if my favorite embedded graph is not the canonical system of
loops? Perhaps a polygonal scheme of the form a1 . . . a2ga1 . . . a2g?

This is an open problem.

Negami’s conjecture
Let G1 and G2 be two graphs cellularly embedded on a surface S of genus
g . Is there a homeomorphism h : S → S such that each edge of h(G1)
crosses each edge of G2 at most a constant number of times?

Best known bound:

Theorem (Negami ’01)
Let G1 and G2 be two graphs cellularly embedded on a surface S of genus
g . There exists a homeomorphism h : S → S such that each edge of h(G1)
crosses each edge of G2 at most O(g) times.
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Canonical decompositions of non-orientable surfaces

What about non-orientable surfaces? Can I at least cut along my
favorite system of loops a1a1 . . . agag?

Our main result is a positive answer:

Theorem (Fuladi,Hubard, dM ’21+)
Let G be a graph embedded on a non-orientable surface S of genus g .
Then there exists a canonical system of loops, so that each loop crosses
each edge of the graph at most 30 times. Dually, there exists a canonical
system of loops so that each loop uses each edge of the graph at most 30
times.
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Reduction to the one-vertex case

In both graphs one can contract a spanning tree, solve the problem
on one-vertex graphs and uncontract the spanning tree locally.

Such a one-vertex graph is entirely described by a rotation system:
the cyclic ordering of the edges around the vertex, and, in the
non-orientable case, the sidedness of the curves.
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The orientable case: back to the classification of surfaces

Let’s go back to our third problem.
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f = bcd , g = dca and we are done.
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Remarks about this approach

There are O(g) cut-and-pasting steps.
One must be very careful about not reusing edges, otherwise the size
of the solutions blows up.
→ This is why this proof only works for the canonical system of loops.
Any graph can be reduced to a one-vertex graph, but if there are
more edges in the graph, it gets trickier.

In the non-orientable case, there are additional cut-and-pasting steps
causing an O(g)-overhead.
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A different approach

Theorem (Schaefer-Štefankovič ’15)
Any graph embeddable on a non-orientable surface can be embedded in a
way that each edge crosses each cross-cap at most twice.

Here we are talking about embeddings where cross-caps are localized .

It is a conjecture of Mohar (’2009) that the theorem holds with twice
replaced by once (when allowing to change the homeomorphism class of
the embedding).
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From cross-cap drawings to canonical systems of loops

If one can control the (dual) diameter of the resulting drawing, one
can control the length of the resulting system of loops.
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Sketch of proof for the cross-cap drawings

1 Induct on each loop depending on its topological type. Use the Euler
characteristic as an accounting device to know that the correct
number of crosscaps is used.

2 The hardest curves to deal with are the separating curves.
3 Our main contribution: Fine control on the complexity of the

resulting drawing to be able to connect the crosscaps. 30 / 37



The case of separating curves

Adding a separating curve between two non-orientable drawings is
easy.

But a graph of orientable genus g may require 2g + 1 crosscaps to be
drawn
→ one needs to save a crosscap when one of the sides is orientable.
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A completely different problem

The signed reversal distance between two signed words is the
minimum number of reversals to go from one to the other one.
Very important in computational biology , computable in polynomial
time [Hannenhalli-Pevzner ’99].
Strong similarities with crosscap drawings, which we leverage in our
proof.
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Another conjecture to finish

Negami’s conjecture
Let G1 and G2 be two graphs with at most n edges embedded on a surface
S of genus g . is there a homeomorphism h : S → S such that each edge of
h(G1) crosses each edge of G2 at most a constant number of times?

If G1 and G2 are simple graphs (no loops and multiple edges), it is
even open if one can achieve a single crossing.
Two shortest paths cross at most once, hence:

Universal shortest path metric
Given a surface S of negative Euler characteristic, is there a [hyperbolic]
metric on S so that any simple graph embeddable on S can be embedded
so that edges are realized as shortest paths?

In the plane this is Fàry’s theorem.
We [HKdMT ’15] studied this problem in the orientable case and
showed that most hyperbolic metrics do not work as g → ∞.
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And many open questions

1 What is the computational complexity of computing the shortest
canonical system of loops? The shortest pants decomposition?

Not know to be polynomial-time nor NP-hard.
2 Canonical systems of loops allow cutting a graph with length O(gn)

and this is tight. Is there a better canonical cutting shape?
Known lower bound: Ω(n7/6) [Colin de Verdière Hubard dM’14].

3 Any system of loops can be turned into a canonical one which has
total word length O(g2). Is it tight? (asked by [Lazarus ’16]).

Thank you! Questions?
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One more move.

Concatenation move:
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