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Square-tiled surfaces

Definition
• Square-tiled surface: gluing of N square tiles on their parrallel sides  closed orientable

connected surface

• Quadratic: adjacencies = {NS,EW, NN, SS, EE, WW}
• Abelian: only {NS,EW}
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Quadratic encoding

Encoding
Triplet of involutions without fix-point ρ, σ, τ ∈ S2n that
generate a transitive subgroup of S2n
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Abelien encoding
Triplet of permutations ρ, σ, τ ∈ Sn that generate a transitive
subgroup of Sn
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Stratum

∼

|

∼ 1

≈ 2
||

3 ≈

|||

4

|

u 5
||

6
|||

u7

[24, 61] so g = 2

Euler’s formula
• µi : # vertices of degree iπ

• ∑
i (i − 2)µi = 4g − 4

• Stratum: [1µ1 , 2µ2 , . . . ]

Clément Legrand Introduction to square tiled surfaces 4 / 21



Stratum

∼

|

∼ 1

≈ 2
||

3 ≈

|||

4

|

u 5
||

6
|||

u7

[24, 61] so g = 2

Euler’s formula
• µi : # vertices of degree iπ

• ∑
i (i − 2)µi = 4g − 4

• Stratum: [1µ1 , 2µ2 , . . . ]

Clément Legrand Introduction to square tiled surfaces 4 / 21



Stratum

∼

|

∼ 1

≈ 2
||

3 ≈

|||

4

|

u 5
||

6
|||

u7

[24, 61] so g = 2

Euler’s formula
• µi : # vertices of degree iπ

• ∑
i (i − 2)µi = 4g − 4

• Stratum: [1µ1 , 2µ2 , . . . ]

Clément Legrand Introduction to square tiled surfaces 4 / 21



Monte Carlo methods to sample efficiently

Reconfiguration
• Configuration space Ω

• Elementay operation ↔
• Equivalent configurations: ∃ a sequence of operations leading from one to the other
• Reconfiguration graph: Vertices = configurations, edges = elementary operation

Usual questions
• Are any configurations equivalent ?
• How many reconfiguration steps separate any two configurations ?
• Application to sampling: Does the corresponding Markov chain mix well ?
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Markov chains and mixing time

Random Walk P on the reconfiguration graph
• Irreducible: reconfiguration graph connected
• Aperiodic + Irreducible  ∃! stationary distribution π
• + Symmetric  π uniform

Mixing time

tmix(ε) = inf{t : max
x∈Ω
‖Pt(x , ·)− π‖TV ≤ ε}

where ‖α− β‖TV = supX⊂Ω |α(X )− β(X )|
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Flips on triangulations

Elementary flip ↔

Disarlo, Parlier 2014
Reconfiguration diameter of n-triangulations of genus g :
• Labeled vertices: Θ(g log(g + 1) + n log(n))

• Unlabeled vertices: Θ(g log(g + 1) + log(n))

Budzinski 2018
• For g = 0, tmix = Ω(n5/4)

• tmix polynomial in n ?

Not on quadrangulations !
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Flips on quadrangulation

Elementary flip

↔

↔ ↔

Caraceni, Stauffer 20
• For g = 0, tmix = Ω(n5/4)

• tmix = O(n13/2)

Preserves genus but not square-tiled surfaces !
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Rotation

Elementary rotation

Preserves genus and square tiled-surface, but not Abelian/quadratic !
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Playing Rubik’s cube on a surface

Shearing move
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Playing Rubik’s cube on a surface

Shearing move

∼

|

∼ 1

≈ 2
||

3 ≈

|||

4

|

u 5
||

6
|||

u7

∼

|

∼ 1
|||

≈ 2 3 ≈

||

4

|

u 5
||

6
|||

u7

∼

|

∼ 1
|||

≈ 2 3 ≈

||

4

|

u 5
||

6
|||

u7

Shearing moves preserve the angle around the vertices !
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Shearing moves preserve the angle around the vertices !

Two settings
• Slow shears: One shear at a time
• Fast shears: Any number of shears on the same cylinder count as one
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Hyperelliptic case

Hyperelliptic
• µ = [2mu2 , 4g − 2] or [2µ2 , (2g)2]  always abelian
• Quadrangulation fixed under rotation of angle π
• Quotient gives a sphere
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Strata of tricolored planar graphs
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([11, 31], 4)

Stratum
• µi : number of faces of degree 3i
• k : number of triangles
• Euler’s formula : (

∑
i (i − 2)µi )− k = 4g − 4 = −4

• Hyperelliptic strata: ([1µ1 , 2µ2 , d1], d + 2− µ1)
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Shearing moves in tricolored planar graphs
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Shearing move
• swap colors + treadmill • RG and GB in O(1), RB in O(n)
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Contribution

Delecroix, L. 2023+
Reconfiguration diameter of unlabeled tricolored graphs:
• hyperelliptic strata: O(kn) slow shears, Θ(k) fast shears
• g = 0 and µ1 = 0: O(kn) slow shears, Θ(k) fast shears
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Reach a “canonical” configuration

([22, 31, 51], 8)
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Sketch of proof

1. Get to a path-like configuration: One RG cylinder finishing with halfedges
2. Reconfiguration within path-likes
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Get to path-like configuration

1. Take a RG path
2. The RB path at the end of it is a fusion-path
3. Collapse the cylinders with a GB shear.

Clément Legrand No triangles 17 / 21



Blue dual tree

Proposition
All path-like configurations corresponding to a blue dual tree are equivalent via O(n) RG shears
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Reconfiguration of blue dual trees

new Glue-cut operation preserving path-likes
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Using the Glue-cut operation to reconfigure

1. Blue dual tree → Blue dual path
2. Sort the vertices on the path
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Future work

Rapid mixing in hyperelleptic case ?
• Among path-like configurations with the glue-cut operation ?
• In general

Connectivity in the general case
• Non planar ⇒ no dual tricolored planar graph
• Hyperelleptic case negligible, not in all strata

Thanks !
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