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Conjecture 1. (Original Seidel conjecture) Let △ be an ideal hy-

perbolic tetrahedron. Then the following statements are true:

(i) the volume Vol(△) can be expressed as a function of the determi-

nant and the permanent of its Gram matrix G;

(ii) the volume Vol(△) is increasing in the absolute value of the deter-

minant |detG| for any fixed value of the permanent perG;

(iii) the volume Vol(△) is decreasing in the permanent perG for any

fixed value of the determinant detG.
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Tetrahedron T(A, B, C, D, E, F)

Definition 1. The Gram matrix of a tetrahedron T(A, B, C, D, E, F) is

defined as

G =











1 − cosA − cosB − cosF
− cosA 1 − cosC − cosE
− cosB − cosC 1 − cosD
− cosF − cosE − cosD 1











.

2



Definition 2.The permanent of a matrix M = 〈mij〉i,j =1,...,n is defined

in the following way:

Take an arbitrary j ∈ {1, . . . , n}. Then














per {mij} = mij,

perM =
n

∑

i=1

mij perMij,

where Mij is the matrix obtained from M by omitting the i-th row and

the j-th column.

Definition 3. An ideal hyperbolic tetrahedron is a hyperbolic tetrahe-

dron with all vertices at infinity.
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Advances in volume calculation for Euclidean polyhedra:

Theorem 1. (Tartaglia, 1494) Let T be a Euclidean tetrahedron with

edge lengths dij, 1 6 i < j 6 4. Then V = Vol(T) is given by

288V 2 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 1 1 1 1

1 0 d2
12 d2

13 d2
14

1 d2
21 0 d2

23 d2
24

1 d2
31 d2

32 0 d2
34

1 d2
41 d2

42 d2
43 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Theorem 2. (I.Kh. Sabitov, 1997) Let P be a Euclidean polyhedron

with simplicial faces and edge lengths dij. Then V = Vol(P) is a root

of an even degree algebraic equation whose coefficients are polynomials

with integer coefficients in d2
ij that depends on combinatorial type of

P only.

4



Advances in volume calculation for Euclidean polyhedra:

1494 — Tartaglia

1997 — I.Kh. Sabitov

Advances in volume calculation for non-Euclidean polyhedra:

1836 — N.I. Lobachevsky

1858 — L. Schläfli

1935 — H.S.M. Coxeter

1989–2004 — R. Kellerhals, D.A. Derevnin, A.D. Mednykh, J. Parker,

A.Yu. Vesnin, G. Martin, E.B. Vinberg
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Advances in volume calculation for non-Euclidean tetrahedra:

A general algorithm for obtaining a general volume formula was out-

lined by Wu-Yi Hsiang (1988). Recently, a tetrahedron volume formula

was obtained by Yu. Cho and H. Kim (1999) and also by J. Murakami

and M. Yano (2001). An easy proof for this formula which also cov-

ers the case of the volume of a truncated tetrahedron was given by

A. Ushijima (2002).

All these results deal with analytical formulas which express the volume

in terms of 16 dilogarithms, i.e. Lobachevsky functions, of the dihedral

angles with an additional parameter which is a root of a complicated

quadratic equation with complex coefficients.
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Advances in volume calculation for non-Euclidean tetrahedra:

A geometric interpretation of the Murakami-Yano formula was pointed

out by Leibon (2002) from the point of view of Regge symmetry. An

excellent exposition of these ideas and a complete geometrical proof

of the the Murakami-Yano formula can be found in Yana Mohanty’s

Ph.D. thesis (2003).

It is worth mentioning that the ideas of Regge symmetry and scissors

congruence were partially used by Cho and Kim who obtained the very

first general formula for the volume of a hyperbolic tetrahedron.

Finally, an explicit integral formula for the volume of a hyperbolic

tetrahedron was obtained by Derevnin and Mednykh.
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Advances in volume calculation for non-Euclidean tetrahedra:

Theorem 3. (D.A. Derevnin, A.D. Mednykh, 2005) Let T be a

hyperbolic tetrahedron. Put Vi for the sum of the dihedral angles at

the edges incident to the vertex vi. Set H1, H2 and H3 to be the sums

of the dihedral angles along the three Hamiltonian cycles of T and

H4 = 0. Then

Vol(T) = −1

4

∫ z2

z1
log

4
∏

i=1

cos Vi+z
2

sin Hi+z
2

dz,

where z1 and z2 are roots of the integrand so that 0 < z2 − z1 < π.

The formula involves some parameters depending only on the dihedral

angles and is helpful in evaluating the volume numerically.
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Advances in volume calculation for non-Euclidean tetrahedra:

The following Murakami-Yano result can be obtained as an easy con-

sequence of the formula above.

Theorem 4. (J. Murakami, M. Yano, 2001) Let T be a hyperbolic

tetrahedron. Then

Vol(T) =
1

2
(U(T, z1) − U(T, z2)),

where

U(T, z) =
4

∑

j=1

(

Λ

(

Vi + z

2

)

− Λ

(

π + Hi + z

2

))

,

Λ(x) = −
x

∫

0

log |2 sin t|dt is the Lobachevsky function and Vi, Hi, z1, z2

are as in Theorem 3.
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Advances in volume calculation for non-Euclidean tetrahedra:

Theorem 5. (J. Milnor, 1982) Let T(A, B, C) be an ideal hyperbolic

tetrahedron (which is automatically symmetric). Then

VolT(A, B, C) = Λ(A) + Λ(B) + Λ(C),

where Λ(A) = −
∫ x

0
log |2 sin t|dt is the Lobachevsky function.

Theorem 6. (D.A. Derevnin, A.D. Mednykh, M.G. Pashkevich,

2004) Let T(A, B, C) be a symmetric hyperbolic tetrahedron. Then

VolT(A, B, C) =

1
2

∫ π
2

θ

sin−1(cosA cos t)+sin−1(cosB cos t)+sin−1(cosC cos t)−sin−1(cos t)
sin 2t dt, where

θ ∈ (0, π/2) satisfies tan θ = 1−a2−b2−c2−2abc√
(1−a+b+c)(1+a−b+c)(1+a+b−c)(−1+a+b+c)

with a = cosA, b = cosB and c = cosC.
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Advances in volume calculation for non-Euclidean tetrahedra:

1906 — Gaetano Sforza

1988 — Wu–Yi Hsiang

1999 — Yu. Cho, H. Kim

2001 — J. Murakami, M. Yano

2002 — A. Ushijima

2002 — G. Leibon

2003 — Y. Mohanty

2005 — D. A. Derevnin, A. D. Mednykh
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Advances in volume calculation for non-Euclidean tetrahedra:

Theorem 7. (Gaetano Sforza, 1906) Let T be a hyperbolic tetra-

hedron with Gram matrix G. Then

Vol(T) = −1

4

∫ A

A0

log
c34 +

√
−detG sinA

c34 −
√
−detG sinA

dA,

where A0 is a root of the equation detG = 0 in the variable A and c34

is the corresponding minor of G.
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Igor Rivin and Feng Luo asked the following question:

Stronger Seidel problem: Is it true that the volume of a tetrahe-

dron (hyperbolic or spherical) can be expressed as a function of the

determinant of its Gram matrix?
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Spherical case:

Theorem 8. (A., A.D. Mednykh, 2006) There exists a 2-parameter

family of spherical tetrahedra whose Gram matrix has constant deter-

minant and which have varying volume.

In other words, the volume of a spherical tetrahedron cannot be ex-

pressed as a function of the determinant of its Gram matrix.

Hyperbolic case:

Theorem 9. (A., A.D. Mednykh, 2006) There exists a 2-parameter

family of hyperbolic tetrahedra whose Gram matrix has constant de-

terminant and which have varying volume.

In other words, the volume of a hyperbolic tetrahedron cannot be

expressed as a function of the determinant of its Gram matrix.
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Conjecture 1. (Original Seidel conjecture) Let △ be an ideal hy-

perbolic tetrahedron. Then

(i) the volume Vol(△) can be expressed as a function of the determi-

nant and the permanent of its Gram matrix G;

(ii) the volume Vol(△) is increasing in absolute value of the determi-

nant |detG| for any fixed value of the permanent perG;

(iii) the volume Vol(△) is decreasing in the permanent perG for any

fixed value of the determinant detG.

(iii∗) if the sum of two non-opposite dihedral angles exceeds π/2, then

the volume Vol(△) is decreasing in the permanent perG for any

fixed value of the determinant detG, otherwise the volume is in-

creasing.

Theorem 10. (A., A.D. Mednykh, 2006) Statements (i), (ii) and

(iii∗) are true.
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p

p

p

0

Constant-sign areas of the function
∂V

∂ perG

16



Question: Is it possible to express the volume of a symmetric (spher-

ical or hyperbolic) tetrahedron as a function of the determinant and

the permanent of its Gram matrix?

The following statement gives an answer to this question:

Theorem 11. (A., A.D. Mednykh, 2006) There exists a family of

symmetric spherical tetrahedra whose Gram matrix has constant de-

terminant and constant permanent and which have varying volume.

In other words, the volume of a symmetric spherical tetrahedron cannot

be expressed as a function of the determinant and the permanent of

its Gram matrix.
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The family of tetrahedra satisfying Theorem 11
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Computational examples:

Dihedral angles det per Vol

π/2 π/3 π/4 −7/16 49/16 0.222229

1.47063 1.27233 0.569501 −7/16 49/16 0.322981

1.36944 1.39004 0.526664 −7/16 49/16 0.35945

1.2661 1.47495 0.574059 −7/16 49/16 0.319517
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Some of the milestones in our proofs:

• the differential Schläfli formula;

• the formula for the edge lengths in terms of dihedral angles;

• existence theorems for hyperbolic and spherical tetrahedra in terms

of the signature of the Gram matrix.
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Some of the milestones in our proofs:

Theorem 12. (Schläfli formula, 1860) Let X be a three-dimensional

space of constant curvature K. Consider a family of tetrahedra △ ⊂ X

which depends on one or more parameters in a differentiable manner.

Then the volume differential dV (△) satisfies the condition

2K dV (△) =
∑

F

ℓF dαF ,

where the sum is taken over all edges F of △, ℓF is the length of the

edge F , and αF is the dihedral angle along F .

This formula was proved in the classical paper of Schläfli, but in the

spherical case only. For the hyperbolic case it was proved by H. Kneser

in 1936.
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Some of the milestones in our proofs:

Theorem 13. (Cosine Rule [Mednykh, Pashkevich, 2005]) Let σn

be an n–dimensional hyperbolic simplex with finite vertices vi and edge

lengths lij, where i, j = 1,2, ..., n + 1. Then

cosh lij =
cij

√
ciicjj

,

where cij are corresponding minors of the Gram matrix of σn.
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Some of the milestones in our proofs:

Theorem 14. (F. Luo, 1997) Given a set of numbers

0 < A, B, C, D, E, F < π, the following statements are equivalent:

(i) There exists a spherical tetrahedron with dihedral angles

A, B, C, D, E, F .

(ii) The matrix G defined as the Gram matrix of a tetrahedron

T(A, B, C, D, E, F) satisfies the following conditions:

(a) detG is positive;

(b) all principal minors of G are positive;

(c) the condition
sin θij

sin ℓij
=

√
ckk cll√
detG

holds for any set of pairwise

distinct indices i, j, k, l ∈ {1,2,3,4}, where cij is the ij-th minor

of G.
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Some of the milestones in our proofs:

Theorem 15. (A. Ushijima, 2003) Given a set of numbers

0 < A, B, C, D, E, F < π, the following two statements are equivalent:

(i) There exists a hyperbolic tetrahedron with dihedral angles

A, B, C, D, E, F .

(ii) The matrix G defined as the Gram matrix of a tetrahedron

T(A, B, C, D, E, F) satisfies the following conditions:

(a) G has one negative and three positive eigenvalues;

(b) all non-principal minors of G are positive.
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Results: we have

• refined and proved the original Seidel conjecture;

• gave a counterexamples to the stronger Seidel problem (put forward

by Igor Rivin and Feng Luo);

• considered the possibility of extending the original Seidel conjecture

to a more general class of tetrahedra;

• obtained a computational examples confirming the results.
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Thank you for your kind attention!
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