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Frieze patterns

Frieze patterns, Wikipedia.
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Triangles do not tile



Triangles do tile!



Reflections



The kite path



The kite path



The kite path



The kite path



The kite path



The kite path



Non-euclidean geometry, I



Non-euclidean geometry, I



Non-euclidean geometry, I



Non-euclidean geometry, I



Non-euclidean geometry, I



Non-euclidean geometry, I



Non-euclidean geometry, I



Non-euclidean geometry, I



Non-euclidean geometry, I



Non-euclidean geometry, I



Stereographic projection



Stereographic projection



Stereographic projection



Stereographic projection



Non-euclidean geometry, II

M.C. Escher, Circle Limit III



Non-euclidean geometry, II

Roice Nelson, (2, 3, 7) tiling



Non-euclidean geometry, II

Roice Nelson and Henry Segerman, (2, 3, 7) tiling with kite path
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Cylinder seals

Late Urak cylinder seal, about 3300-3000 BC. British Museum.
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Wrapping up a chequerboard

Figure 1: A 4⇥4 array of squares (left) fits on the square torus T1,0, which is conformally a quite thick round
torus (right). The diagonal grid lines – always meeting at right angles – help to show the conformality. They
form (1,±1) diagonals on the torus, each of which is a round (Villarceau) circle in space.

Figure 2: An 8⇥4 array of squares (left) fits on the rectangular torus T2,0, conformally a thinner round torus
(right). The diagonal grid lines again meet at right angles, but are now (2,±1) diagonals on the torus.

But other symmetric patterns fit most naturally on a rhombic torus. A lattice is rhombic if it is generated
by two vectors of equal length. (In the coordinates above, we have s = 1/2 or s2 + t2 = 1, depending on
whether the rhombus has an angle smaller than 60�). In particular, the symmetry groups 2⇤22 and ⇤⇥ fit on
any rhombic torus, while the five groups with three-fold symmetry (632, ⇤632, 333, ⇤333 and 3 ⇤ 3) use in
particular the hexagonal torus with (s, t) = (1/2,

p
3/2).

As we have noted, a nonrectangular torus (in particular, a rhombic torus other than the square torus) is
not conformally equivalent to any round torus or even to any torus embedded with mirror symmetry. To
embed it conformally in space, we need to twist things in some way. One way to understand this intuitively
is to note that the diagonals of the rhombus are unequal in length – thus the (1,1) and (1,�1) diagonals on
the torus must have unequal lengths (in the appropriate conformal sense).

Ulrich Pinkall [3] has described a nice way to isometrically embed any flat torus into S3 ⇢ R4 as a Hopf
torus, i.e., the lift (the preimage) of a closed curve g ⇢ S2 under the Hopf fibration S3 ! S2. Indeed, any
g that has length 4ps and encloses a fraction t of the area of the sphere will lift to the torus Ts,t . Again, by
stereographic projection, this isometric embedding in S3 yields a conformal embedding in R3.

On a Hopf torus, the (1,1) curves are still round (Hopf) circles, but the (1,�1) curves oscillate in
the same way g does, and are thus longer. Of course, given s and t, there is not a single natural choice
for the curve g . One idea is to minimize its elastic energy under the length and area constraints, perhaps
also imposing certain symmetry. If we do this, the resulting tori are known to be constrained Willmore
surfaces [1], that is, critical points for the Willmore bending energy given fixed conformal type. The surfaces
shown in Figures 4 and 5 were generated this way, using Brakke’s Evolver [2] to minimize the energy of g .
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John Sullivan, Conformal tiling on a torus, Figure 1
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Wrapping up the (2, 3, 6) tiling

Figure 3: This pattern of 12 hexagons (left) fits on the rectangular torus with aspect ratio s= 2/p3, confor-
mally again a round torus (right). The grid lines shown, meet at 60� angles and form latitudes and (2,±1)
curves on the torus.

Probably the most famous regular tiling of the torus is that by seven hexagons; this map of seven coun-
tries cannot be colored with fewer than seven colors, since each pair of countries is adjacent. It has three-fold
symmetry and thus lives on the hexagonal torus, which is (in a certain sense) the furthest from being rectan-
gular. Any conformal embedding of the hexagonal torus will be strongly twisted, as in Figures 4 and 5.

Figure 4: The map of seven countries fits on the hexagonal torus, with a rhombic fundamental domain (left).
If we conformally embed this torus, it will be highly twisted, far from having any mirror symmetry. A 2-fold
Hopf torus, the lift of a curve g looking like the seam of a baseball, has two huge spherical lobes (right).
This figure and the next two use grids of constant-width lines in the flat metric; their width in the conformal
pictures helps show the conformal stretch factor.

Any flat torus has plenty of intrinsic symmetry: 2-fold rotations around any point and translations by any
amount. (Rhombic and rectangular tori have in addition reflection symmetry, while the the square torus and
the hexagonal torus even have higher-oder rotations.) If a rectangular torus Ts,0 is conformally embedded as
above as a round torus in space, all its intrinsic symmetries are seen as Möbius transformations. (Indeed,
before stereographic projection, they are seen as ambient isometries of S3.)

For nonrectangular tori, the situation is quite not as nice. Pinkall’s Hopf tori have full translational
symmetry in one direction (along the Hopf circles). Again, these symmetries are seen as rigid motions in S3
or Möbius transformations in R3. But the most we can hope for is discrete translational symmetry in the
other direction, coming from symmetry of the curve g . By choosing a 7-fold symmetric g , for instance, we
can arrange for a conformal picture of the map of seven countries (Figure 5, right) in which any country can
be sent to any other by a Möbius transformation.

Conformal Tiling on a Torus
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John Sullivan, Conformal tiling on a torus, Figure 4



Wrapping up the (2, 3, 6) tiling

Figure 5: The hexgonal torus can also be realized as a Hopf torus in other ways, for instance with 4-fold
symmetry (left). For our regular tiling by seven hexagons, an especially nice version uses a 7-fold Hopf torus
(right), where the seven countries are Möbius-equivalent to each other. The grid lines – consistent across
Figures 4 and 5 – again demonstrate the conformality, since they clearly always meet at equal angles.

Any rhombic torus is double-covered by a rectangular torus. (A rectangle cut along its diagonals re-
assembles to two rhombi.) Thus if we don’t mind seeing two copies of our original pattern, we can embed
it conformally on a round torus. For instance, Figure 6 shows a tiling by 14 hexagons, double-covering the
map of seven countries, and fitting nicely on a round torus.

Figure 6: This regular tiling of the torus by 14 hexagons also fits on the rectangular torus Tp3,0 and thus
conformally on a round torus. It is a double cover of the map of seven countries.
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Wrapping up the (2, 3, 7) tiling



The Klein quartic



Q : X 3Y + Y 3Z + Z 3X = 0

The real points of Q in the plane X + Y + Z = 1. The defining
equation is degree four and is homogeneous.



Genus

Genus formula: A smooth curve X in CP2 of degree d has genus
g(X ) = (d − 1)(d − 2)/2. [So g(Q) = (4− 1)(3− 1)/2 = 3]



Symmetries of Q : X 3Y + Y 3Z + Z 3X = 0

The origin is a point of order three. Also, there are three reflection
lines.



Symmetries of Q : X 3Y + Y 3Z + Z 3X = 0

r ′ =

0 1 0
0 0 1
1 0 0

 , t =

ω4 0 0
0 ω2 0
0 0 ω



s =
−2√
7

 sin 2α sin 3α − sinα
sin 3α − sinα sin 2α
− sinα sin 2α sin 3α



Here α = π/7 and ω7 = 1 is a primitive root of unity.
So t has order seven, s has order two, and r = TS has order three
(and is conjugate to r ′). However, we also have (tsTS)4 = 1.
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Symmetries of the (2, 3, 7) tiling

Note s and t have orders two and seven. The product r = TS is a
rotation of order three. However, the element tsTS is not finite
order.



Symmetries of the (2, 3, 7) tiling

Note s and t have orders two and seven. The product r = TS is a
rotation of order three. However, the element tsTS is not finite
order. It is the kite path!
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Topological models

Carlo Séquin, Patterns on the genus-three Klein quartic



Topological models

Greg Egan, Klein’s quartic curve



Topological models

Helaman Ferguson, The eightfold way



Ramanujan’s q–series

a =
∞∑

n=−∞
(−1)n+1q(14n+5)2

b =
∞∑

n=−∞
(−1)nq(14n+3)2

c =
∞∑

n=−∞
(−1)nq(14n+1)2

Here z = x + iy is a point in the upper-half plane (y > 0) and
q = exp(2πiz/56). The q–series a, b, and c satisfy the quartic
equation! [Lachaud, Berndt, Ramanujan, Klein] This gives a
parametrisation of Q.
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Bihomogeneous polynomials

Noam Elkies says to look for degree 2d bihomogeneous polynomial
functions that are equivariant with respect to the A4 action. Here
are a few examples:

(Y Z̄ ,ZX̄ ,XȲ )/(XX̄ + Y Ȳ + ZZ̄ )

(YZX̄ 2,ZXȲ 2,XY Z̄ 2)/(XX̄ + Y Ȳ + ZZ̄ )2)

We found all such for d = 1, 2, 3. Next we took linear
combinations, searching for an embedding.
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Hill climbing

[Video]



Hill climbing



Thank you!
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