
INTRODUCTION TO TOWERS IN TOPOLOGY

SAUL SCHLEIMER

Abstract. These lecture notes were written for a GAGTA mini-
course in the summer of 2018. Our aim is to give a gentle introduc-
tion to three-manifolds. We will start with basic notions, prove the
disk theorem using the famous tower argument, and give a variety
of applications. If time permits we will discuss the JSJ theory and
give the statement of the geometrisation theorem.

1. Introduction

In these lecture notes we cover the following material:

• Introduction to surfaces and three-manifolds. Statement of the
disk theorem, loop theorem, and Dehn’s lemma.
• Towers and the proof of the disk theorem. Characterisation of

the unknot. Statements of the sphere, annulus, torus, and SFS
theorems.
• Stallings’ theorem on fibred manifolds. Statement of the Scott

core theorem. The JSJ theory. Geometrisation.

Accessible references on this material include the following.

• 3-manifolds by John Hempel,
• Notes on basic 3-manifold topology by Allen Hatcher, and
• 3-dimensional topology up to 1960 by Cameron Gordon.

There are exercises throughout the notes. Some of these are easy, some
are more difficult, and some become easy after reading ahead a bit.

Please do email me about any mistakes you find.

2. Topological background

We use Sn, Bn, and T n to denote the n–dimensional sphere, ball,
and torus. Note that S1 is also called the circle. We also use D2 to
denote B2, the disk. If M is a manifold with boundary then we take
∂M to be the subspace of boundary points. We often write Mm to
remind ourselves of the dimension of the manifold, and afterwards omit
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the superscript. We write M ∼= N if M and N are homeomorphic. We
say that a manifold M is closed if it is compact and without boundary.

One way to understand a manifold M is to cut it into pieces, under-
stand the pieces, and then reassemble. So, we will need something to
cut along. Recall that a map f is a continuous function. A topological
embedding of manifolds f : N →M is a map which is a homeomorphism
onto its image. If f : S1 → S2 is a topological embedding then we call
the image of f a Jordan curve. Here, then, is the Jordan-Schönflies
theorem.

Theorem 2.1. [Theorem 3.1, Thomassen, 1992] Suppose that A ⊂ S2

is a Jordan curve. Then there is an ambient isotopy of S2 taking A to
a round circle. �

We turn this into a definition as follows. Suppose that A is a circle
topologically embedded in a surface F . We say A is trivial if

• A separates F and
• one component of F − A has closure in F homeomorphic to a

disk with boundary A.

If either property fails then we call A essential. In particular, non-
separating curves are essential. If F is a compact connected oriented
surface then we may cut F repeatedly along disjoint essential curves
A1, A2, . . .. We require that Ak+1 is non-separating in F −∪ki=1Ak. The
length of any such sequence is the genus of F [Clebsch, 1865]. Jordan’s
theorem (??) tells us that the genus of the two-sphere is zero.

The obvious generalisation of Theorem ?? to the three-sphere is false;
one counterexample is the Alexander horned sphere [Alexander, 1924].
The difficulty is caused by linking happening on smaller and smaller
scales. If we restrict ourselves to locally flat maps, then we get a theory
of surfaces in three-manifolds that is “equivalent” to the piecewise linear
and smooth theories. A closely related discussion, with references and
exercises, can be found in the third chapter of [Thurston, 1997]. In
these notes we will work in whichever setting is the most convenient.

To define local flatness, we recall the notion of a pair of spaces : given
an N ⊂M we write (M,N). All of the usual notions (homeomorphism,
embedding, and so on) generalise to pairs.

Definition 2.2. Suppose that Nn ⊂Mm is a topologically embedded
manifold. We say that N is locally flat if for all x ∈ N there is a chart
U ⊂M about x so that (U,U ∩N) ∼= (Rm,Rn).

Local flatness rules out all bad behaviour, as shown by Alexander’s
theorem.
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Theorem 2.3. [Alexander, 1924] Suppose that A ⊂ S3 is a locally flat
two-sphere. Then there is an ambient isotopy of S3 taking A to a round
two-sphere. �

Exercise 2.4. Work through the details of a proof of Alexander’s
theorem. For example, see Theorem 1.1 of [Hatcher 2001].

From now on we will assume without mention that objects are suf-
ficiently nice (locally flat, piecewise linear, or smooth) to allow us to
carry out cut-and-paste constructions.

Alexander’s theorem says that an embedded two-sphere A in S3

bounds three-balls on both “sides”. To formalise this, recall that a
proper map of compact pairs f : (F, ∂F )→ (M,∂M) has the property
that f−1(∂M) = ∂F .

Definition 2.5. Suppose that F 2 is a connected surface, properly em-
bedded in a three-manifold M3. Let N(F ) be a regular neighbourhood
of F , taken in M . If F separates N(F ) then we say that F is two-sided
in M . Otherwise we say that F is one-sided.

As a simple example, there is a one-sided proper embedding of the
Möbius strip into the solid torus D2 × S1.

Exercise 2.6. Any proper embedding of S2, into any three-manifold
M , is two-sided.

Exercise 2.7. Any closed surface F 2 embedded in S3 separates; thus
F is two-sided and also orientable.

Remark 2.8. The property of F 2 ⊂ M3 being two-sided is equiva-
lent to F being transversely orientable in M . Thus for surfaces in
three-manifolds there are three important notions of orientability: the
orientability of M , the orientability of F , and the transverse orientabil-
ity of F in M . It is interesting to think about how these three properties
interact.

Suppose that (M3, F 2) is a compact pair where F is connected,
properly embedded, and separates. Let N be the closure of one of the
two components of M − F . If N is disjoint from ∂M we say that F
bounds N in M .

Exercise 2.9. If S2 ⊂M3 bounds three-balls on both sides, then M is
homeomorphic to S3.

Here is a nice generalisation of Theorem ??, also found in [Alexander,
1924].
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Exercise 2.10. Suppose that T 2 ⊂ S3 is an embedded torus. Then T
bounds a solid torus on at least one side.

Exercise 2.11. Suppose that T 2 ⊂ M3 is a separating torus which
bounds solid tori on both sides. Then M is a lens space. Prove that M
is either homeomorphic to S2 × S1 or M is finitely covered by S3.

3. Irreducible and prime

Cutting a three-manifold M along embedded two-spheres was first
studied in [Kneser, 1929]. Suppose that A2 ⊂M is a properly embedded
two-sphere. We say that A is trivial in M if A bounds a three-ball on
at least one side. If A is not trivial, we call A essential.

Definition 3.1. A three-manifold M is irreducible if all properly em-
bedded two-spheres in M are trivial.

Definition 3.2. A three-manifold M is prime if all properly embedded,
separating, two-spheres in M are trivial.

Thus, if M is irreducible it is prime.

Exercise 3.3. List all three-manifolds which are prime but not irre-
ducible.

If M and N are connected three-manifolds, then we may

(1) remove a small open ball from each and
(2) glue the resulting boundary two-spheres.

This gives a new three-manifold M#N : the connect sum of M and N .
If both M and N are oriented, we may require that the gluing be orien-
tation reversing, and so obtain an orientation on M#N . Some work is
required to prove that this is all well-defined. See for example [Gugen-
heim, 1953]. Note that M#S3 ∼= S3 and L#(M#N) ∼= (L#M)#N .

Theorem 3.4. [Kneser, 1929] Suppose that M3 is a compact and
connected. There there is a finite collection of prime manifolds {Pi}
so that M ∼= #iPi. Furthermore, the collection {Pi} is unique up to
reordering. �

The opposite of connect sum is sphere surgery, as follows. Suppose
that A ⊂ M is a properly embedded two-sphere. Let n(A) be the
interior of N(A). Form MA = M − n(A). Finally, attach three-balls to
the resulting pair of two-sphere boundary components of MA.
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4. The disk theorem

Given a three-manifold M , Kneser tells us which spheres to surger:
the essential ones. All attempts to understand cutting along surfaces of
higher genus lead to the disk theorem. We give the statement here, but
defer some of the definitions to Section ?? and the proof to Section ??.

Theorem ??. [Disk theorem] Suppose that (M3, F 2) is a compact,
connected pair with F ⊂ ∂M non-empty. Suppose that H / π1(F ) is
a normal subgroup. Suppose that f : (D, ∂D) → (M,F ) is a general
position map with [f |∂D] /∈H. Then there is a proper embedding of a
disk g : (E, ∂E)→ (M,F ) so that

(1) g is made from sectors of f and
(2) [g|∂E] /∈H.

The key idea in the proof, namely the tower argument, is due to
[Papakyriakopoulos, 1957]. This formulation of the disk theorem is due
to [Stallings, 1960]. See [Gordon, 1999] for a detailed history of the
proofs (and false proofs!) of the disk theorem. There are two well-known
variants of the disk theorem, which follow quickly from it.

Theorem 4.1. [Loop theorem] Suppose that (M3, F 2) is a compact,
connected pair with F ⊂ ∂M non-empty. Suppose that the induced
homomorphism i∗ : π1(F )→ π1(M) is not injective. Then there is an
essential embedded loop A ⊂ F which is null-homotopic in M . �

Theorem 4.2. [Dehn’s lemma] Suppose that (M3, F 2) is a compact,
connected pair with F ⊂ ∂M non-empty. Suppose that A ⊂ F is
an embedded curve which is null-homotopic in M . Then A bounds a
properly embedded disk in M . �

Here was Dehn’s desired application.

Exercise 4.3. Suppose that K is knot in S3: an embedded copy of
S1. Prove that K is ambiently isotopic to a round circle if and only if
π1(S

3 − n(K)) ∼= Z.

5. One-half lives, one-half dies

Suppose that Γ is a finite, connected, polygonal graph embedded
in R3. So the fundamental group π1(Γ) is isomorphic to a free group,
say Fg. We define V = N(Γ), a regular neighbourhood of Γ, to be a
handlebody of genus g.

Exercise 5.1. Show that V contains a collection of disjoint properly
embedded disks D1, D2, . . . so that Dk+1 is non-separating in V −∪ki=1Di.
Prove that the length of any such sequence is g, the genus of V .
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If F 2 is a closed, connected, oriented surface of genus g thenH1(F,Z) ∼=
Z2g. If V is a handlebody of genus g then H1(V,Z) ∼= Zg. Also, ∂V is
homeomorphic to F .

Exercise 5.2. Give a direct proof that i∗ : H1(∂V,Z) → H1(V,Z) is
surjective. Also, the kernel is isomorphic to Zg.

This generalises to give the “one-half lives, one-half dies” lemma.

Lemma 5.3. Fix a field K. Suppose that M3 is compact, connected,
and oriented (over K). Let i : ∂M →M be the inclusion, which induces
a homomorphism i∗ : H1(∂M,K)→ H1(M,K). Then

1

2
dim(H1(∂M)) = dim(ker(i∗)) = dim(image(i∗)). �

Exercise 5.4. Suppose that M is a compact connected three-manifold.
Can ∂M be homeomorphic to P 2, the real projective plane?

Here is the consequence we will need in our proof of the disk theorem.

Corollary 5.5. Suppose that M is a compact, connected three-manifold.
Suppose that M does not admit a double cover. Then M is orientable
(over any field). Furthermore, all boundary components of M (if any)
are two-spheres. �

6. Transversality and general position

6.1. Transversality. We follow [Guillemin and Pollack, 1974] in defin-
ing transversality. We abbreviate this to [GP].

Suppose that f : Nn →Mm is a smooth map. Suppose that L` ⊂M
is a submanifold. Recall that f is transverse to L if, for every point
x ∈ f−1(L), we have df(TxN) + Tf(x)L = Tf(x)M . As a consequence,
the preimage f−1(L) is a submanifold of N . Also, the codimension of
f−1(L) in N equals that of L in M [GP, page 28]. This generalises in
a natural way to manifolds with boundary [GP, page 60]. Finally, if
f : N → M is smooth, and L ⊂ M is a submanifold, then there is a
smooth perturbation of f making it transverse to L [GP, page 68].

6.2. General position. We now follow pages 8 to 13 of [Hempel, 1976]
in defining general position, a weak form of self-transversality. Suppose
that f : (F 2, ∂F )→ (M3, ∂M) is a proper map of compact pairs.

Definition 6.1. Suppose that, at x ∈ F , there is a neighbourhood
Ux ⊂ F so that f |Ux is conjugate to the map

F : D2 → D2 × R, z 7→ (z2, Im z)
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where we think of D2 as the unit disk in the complex plane. Then
we say that f(x) is a simple branch point of f . (The image of F is
sometimes called a Whitney umbrella.)

Definition 6.2. Suppose that, at x ∈ F , the map f is self-transverse:

• the set f−1(f(x)) has size at most three and,
• for all y, z ∈ f−1(f(x)) there are neighbourhoods Uy, Uz ⊂ F

so that f |Uy and f |Uz are embeddings with the image of each
transverse to the image of the other.

In this case we call f(x) a triple point, a double point, or a regular point
as f−1(f(x)) has size three, two, or one.

Definition 6.3. We say f is a general position map if it satisfies the
following.

(1) It is an immersion away from a finite collection of simple branch
points.

(2) It is at worst two-to-one away from a finite collection of triple
points.

(3) It is an embedding away from a finite collection of arcs and
curves of double points.

In particular, f |∂F is an immersion. The points of f(∂F ) with two
preimages are called boundary double points.

We define the complexity of a general position map f to be

c(f) = (s(f), t(f), d(f))

where s, t, and d count the number of simple branched points, triple
points, and double arcs and curves of f , respectively. We order com-
plexities lexicographically. If s(f) is zero then f is an immersion. If
c(f) = (0, 0, 0) then f is an embedding.

Exercise 6.4. There is no proper embedding of the Mobius strip M2

into the three-ball B3. Find a general position map f : M2 → B3. What
is the minimal possible complexity for such a map?

We end this section with result similar to Theorem 1.14 of [Hempel,
1976].

Theorem 6.5. Suppose that f : (F, ∂F ) → (M,∂M) is a proper map
of compact pairs. Then there is a proper homotopy (with tracks as small
as desired) making f into general position map. �

7. Singularities, sectors, and swaps

Suppose that f : (F, ∂F ) → (M,∂M) is a general position map of
compact pairs.
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Definition 7.1. We define

Σ(f) = {x ∈ F : |f−1(f(x))| > 1}
to be the singular set of f . This is a union of arcs, curves, and graphs.
The latter have vertices of valence four, two, or one. Set S(f) = f(Σ(f)).
The vertices of S(f) have valence six or one: the former are triple points
while the latter are simple branch points or boundary double points.
We call the components of f(F )− S(f) the sectors of f .

Exercise 7.2. Draw Σ(f) ⊂ F and S(f) ⊂M for the general position
map you found in Exercise ??. Mark all simple branch points and triple
points.

We now say what it means to be made from sectors of a general
position map.

Definition 7.3. Suppose that f : (F, ∂F ) → (M,∂M) is a general
position map with F oriented. For every vertex v ∈ S(f) let B(v) be
a sufficiently small three-ball about v so that f(F ) ∩B(v) is a model
neighbourhood for v ∈ f(F ).

Set
B(f) = ∪vB(v).

Take N(S(f)) a much smaller neighbourhood. Set

T (f) = N(S(f))− interior(B(f)).

For every component α of S(f)− interior(B(f)) there is a component
T (α) ⊂ T (f) containing it; note that T (α) comes with a homeomor-
phism to D2 × α. A surface R ⊂ T (α) is vertical if R is of the form
β × α for some properly embedded arc β ⊂ D2.

Suppose that g : (G, ∂G)→ (M,∂M) is a proper embedding. We say
that g is made from sectors of f if

• every component C of g(G) − n(S(f)) is contained in some
sector of f ,
• for every arc α of S(f)− interior(B(f)) the intersection g(G) ∩
T (α) is a (perhaps empty) disjoint union of vertical surfaces,
and
• for every vertex v of S(f) the intersection g(G) ∩ B(v) is a

(perhaps empty) disjoint union of disks.

As a very special case of Definition ??, suppose that f : (F, ∂F )→
(M,∂M) is a general position map without simple branch or triple
points. That is, c(f) = (0, 0, d) and S(f) is a one-manifold properly
embedded in M . Suppose that g : (G, ∂G) → (M,∂M) is a proper
embedding. Suppose that g is made from sectors of f . Then we say
that g is obtained from f by swaps and discards.
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8. Beginning the proof of the disk theorem

From now on our general position map will have the form f : (D, ∂D)→
(M,F ) where F ⊂ ∂M . We recall the statement before tackling the
proof.

Theorem 8.1. [Disk theorem] Suppose that (M3, F 2) is a compact,
connected pair with F ⊂ ∂M non-empty. Suppose that H / π1(F ) is
a normal subgroup. Suppose that f : (D, ∂D) → (M,F ) is a general
position map with [f |∂D] /∈H. Then there is a proper embedding of a
disk g : (E, ∂E)→ (M,F ) so that

(1) g is made from sectors of f and
(2) [g|∂E] /∈H.

We begin with two easy lemmas.

Lemma 8.2. If f has a simple branch point, then there is another
general position map f ′ : (D, ∂D) → (M,F ) so that c(f ′) < c(f) and
[f ′|∂D] /∈H.

Proof. Suppose that the vertex u ∈ S(f) is the given simple branch
point. Let α be the double arc adjacent to u. Let v be the other
endpoint of α.

• If v is a branch point then, as D is oriented, we can do a swap
along α and discard the sphere component. This reduces s by
at least two and d by at least one.
• If v is a triple point then we can homotope u along α and past
v. This leaves s unchanged but reduces t by one and d by at
least one.
• If v is a boundary double point, then we do a swap along α.

This separates D into a pair of disks, D′ and D′′. Since the
product of [f ′|∂D′] and [f ′|∂D′′] equals [f |∂D] at least one of
the former is essential. We discard the other. This reduces s
and d by at least one. �

Lemma 8.3. Suppose that c(f) = (0, 0, d). Then there is some collec-
tion of swaps and discards giving the desired embedding g. �

Exercise 8.4. Provide a proof of Lemma ??.

9. The tower

Suppose that f : (D, ∂D)→ (M,F ) is as in the statement of the disk
theorem (??). Applying Lemma ??, we may assume that s(f) = 0.

9.1. At the base. We build the base of the tower as follows. Set
(M0, F0) = (M,F ). Set H0 = H. Set f0 = f .
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9.2. Climbing the tower. Induction gives us a general position map
fk : (D, ∂D) → (Mk, Fk) so that [fk|∂D] /∈ Hk. Let Nk be a regu-
lar neighbourhood of fk(D), taken in Mk. Let Gk = Nk ∩ Fk. Let
ik : (Nk, Gk)→ (Mk, Fk) be the inclusion map. Define Kk = (ik)

−1
∗ (Hk).

Note that Kk / π1(Gk)
Let hk : (D, ∂D) → (Nk, Gk) be the induced general position map.

Note that fk = ik ◦ hk. Thus [hk|∂D] /∈Kk.
If Nk has no connected double cover then we set n = k and the

construction of the tower is complete. Suppose instead that pk : Mk+1 →
Nk is a non-trivial double cover. Set Fk+1 equal to the full lift of Gk.
Define Hk+1 = (pk)

−1
∗ (Kk). Let h′ and h′′ be the two lifts of hk to Mk+1.

Since hk(D) is a spine for Nk, the union h′(D) ∪ h′′(D) is a spine for
Mk+1. Thus the union is connected. Thus

c(h′) = c(h′′) < c(hk) = c(fk).

Set fk+1 = h′. Thus fk+1 : (D, ∂D)→ (Mk+1, Fk+1) is a general position
map. Thus [fk+1|∂D] /∈Hk+1 and c(fk+1) < c(fk). This completes the
induction step.

Since the complexity decreases after every lift, we eventually reach
the top of the tower.

9.3. Enjoying the view. Since hn(∂D) is contained in Gn, the mani-
fold Nn has non-empty boundary. Since Nn has no non-trivial double
cover, by Corollary ?? all components of ∂Nn are two-spheres. Let
Sn ⊂ ∂Nn be the two-sphere containing Gn. Note that, as [hn|∂D] ∈
π1(Gn)−Kn, the normal subgroup Kn is not all of π1(Gn). Since the
boundary components of Gn normally generate π1(Gn), there is some
boundary component, say γ ⊂ ∂Gn so that [γ] /∈ Kn. By Jordan’s
theorem (??) the curve γ bounds a disk E ⊂ Sn − Gn. Perform a
small isotopy, moving E into Nn. After applying in we obtain a proper
embedding gn : (E, ∂E)→ (Mn, Fn) which is made from sectors of fn.
Finally, [gn|∂E] /∈Hn.

9.4. Descending the tower. Induction gives us a proper embedding
gk : (E, ∂E)→ (Mk, Fk), made from the sectors of fk with [gk|∂E] /∈Hk.
We form

g′ = ik−1 ◦ pk−1 ◦ gk with g′ : (E, ∂E)→ (Mk−1, Fk−1).

So g′ is a proper immersion without triple points, made from sectors
of fk−1 and having [g′|∂E] /∈ Hk−1. We apply Lemma ?? to obtain
an proper embedding gk−1 : (E, ∂E) → (Mk−1, Fk−1), made from the
sectors of fk−1, and again having [gk−1|∂E] /∈Hk−1.
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Thus g = g0 is the desired proper embedding. This completes the
proof of the disk theorem. �

10. The sphere, annulus, torus, and SFS theorems

The compact connected oriented surfaces of non-negative Euler char-
acteristic are the sphere S2, the disk D2, the annulus A2, and the
torus T 2. It is a theme of low-dimensional topology that these sur-
faces, embedded in a three-manifold, lead to “flexibility”. To obtain
three-manifolds with more rigid structures (namely unique hyperbolic
metrics) we should cut along such surfaces.

It is often easier to detect homotopy versions of these surfaces. The
disk theorem tells us that a homotopy essential disk implies the existence
of a embedded essential disk. The following theorems give the same
result for the sphere, the annulus, and the torus. We first follow [Hempel
1976].

Theorem 10.1. [Sphere theorem] Suppose that M3 is closed, connected,
and oriented. Suppose that π2(M) is non-trivial. Then M contains an
essential embedded two-sphere. �

Now we follow [Scott, 1980].

Theorem 10.2. [Annulus theorem] Suppose that M3 is compact, ori-
ented, and irreducible with incompressible boundary. Suppose that
f : (A2, ∂A) → (M,∂M) is an essential map. Then there is an es-
sential embedded annulus in M . �

Theorem 10.3. [Torus theorem] Suppose that M3 is compact, oriented,
and irreducible, with incompressible boundary. Suppose that f : T 2 →M
is an essential proper map. Then either

• there is an essential embedded torus in M or
• Z / π1(M).

This last should be combined with work of [Gabai, 1992] and [Casson-
Jungreis, 1994].

Theorem 10.4. [Seifert fibred space theorem] Suppose that M3 is closed,
connected, oriented, and irreducible. Suppose that Z / π1(M). Then M
is a Seifert fibred space. �

11. Incompressible surfaces

When dealing with surfaces of higher complexity, there are two basic
definitions.
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Definition 11.1. We say that a connected surface F 2 embedded in a
connected three-manifold M3 is π1–injective if the inclusion induces an
injection on fundamental groups.

Before giving the second definition, we need a new concept. Suppose
that F 2 ⊂M3 is properly embedded. Suppose that (D, ∂D) ⊂ (M,F )
is an embedded disk, disjoint from ∂M , and with D ∩ F = ∂D. Then
we call D a surgery disk for F . This is because we can carry out the
following operation. Let N(D) be a regular neighbourhood of D, taken
in M . Set A = F ∩N(D). So A is an annulus neighbourhood of ∂D
taken in F . Let D′ and D′′ be the disk components of ∂N(D)−F . The
disk surgery of F along D is the surface

FD = (F − A) ∪ (D′ ∪D′′).
Note that FD is again properly embedded in M . If ∂D is essential in F
then we call D a compressing disk for F .

Definition 11.2. Suppose that F 2 ⊂ M3 is properly embedded. We
say that F is incompressible if F has no compressing disk.

We extend the definition of incompressibility to subsurfaces of ∂M
by isotoping them slightly into M , while keeping the boundary in the
boundary.

Exercise 11.3. If F ⊂ M is properly embedded, connected, and π1–
injective, then F is incompressible.

Exercise 11.4. Find an example of a connected surface F 2, properly
embedded in some three-manifold M3, so that F is incompressible but
not π1–injective.

Definition 11.5. Suppose that A ⊂ D2 is a disjoint union of embedded
curves. By Jordan’s theorem (??) every curve α ⊂ A bounds an
embedded disk Dα ⊂ D. If Dα ∩ A = α then we call α an innermost
curve and Dα an innermost disk for A in D.

Exercise 11.6. Suppose that F ⊂M is properly embedded and incom-
pressible. Then every connected component F ′ ⊂ F is incompressible.

Exercise 11.7. Suppose that M3 is compact, connected, and irre-
ducible. Suppose that F,G ⊂ ∂M are compact and disjoint subsurfaces.
Suppose that φ : F → G is a homeomorphsim. Then the quotient
three-manifold Mφ = M/(x ∼ φ(x)) is irreducible.

In contrast to Exercise ?? we have the following.

Lemma 11.8. Suppose that F 2 ⊂M3 is properly embedded, connected,
two-sided, and incompressible. Then F is π1–injective.
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Proof. We prove the contrapositive. Suppose that γ is an immersed
loop in F so that [γ] lies in the kernel of i∗. Let f : (D, ∂D)→ (M,F )
be a null-homotopy of γ. Homotope f so that

• f |∂D is an immersion,
• on a collar C ⊂ D of ∂D, the image f(C) lies on one side of F ,

and
• f |interior(D) is transverse to F .

So A = f−1(F ) ⊂ D is a disjoint union of curves.
Pick α, bounding Dα, innermost in A. If [f |α] = 1 ∈ π1(F ) then we

can replace f |Dα by the null-homotopy of f |α in F . We then push off
to get a null-homotopy of γ in M meeting F fewer times.

So we may assume, instead, that [f |α] 6= 1 ∈ π1(F ). Take MF =
M −n(F ). Note that there are two copies of F , say F ′ and F ′′, lying in
∂MF . The image of Dα meets exactly one of these, say F ′. So f |Dα is a
null-homotopy, in MF , of a loop in F ′. By the disk theorem (??) there
is a compressing disk E for F ′ in MF . Thus F compresses in M . �

Exercise 11.9. Suppose that F is a closed, connected surface, of genus
at least one, properly embedded in the three-ball B3. Show that F is
compressible on at least one side.

12. Stallings’ theorem

Suppose that F 2 is compact, connected, and oriented. Suppose that
φ : F → F is an orientation preserving homeomorphism. We form Mφ,
the surface bundle over the circle with fibre F and monodromy φ, as
follows.

Mφ = F × [0, 1]
/

(x, 1) (φ(x), 0)

The associated map f : Mf → S1 = [0, 1]/(0 1) is defined by f(x, t) = t.
Note that if F is not a two-sphere then, by Exercise ??, the three-
manifold Mφ is irreducible. Also, every fibre Ft = F×{t} is π1–injective
in Mφ.

We follow [Stallings, 1961].

Theorem 12.1. Suppose that M3 is closed, connected, oriented, and
irreducible. Suppose that f : M → S1 is a map so that

• K = ker(f∗ : π1(M)→ Z) is finitely generated and
• f∗ is surjective.

Then M is a surface bundle over the circle, f is homotopic to the bundle
map, and K is isomorphic to the fundamental group of the fibre.

Proof. Fix p ∈ S1. Homotope f to make it transverse to p. Define
F = f−1(p). By transversality, F is a closed, oriented, two-sided surface.
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Suppose that F is compressible, say by the disk (D, ∂D) ⊂ (M,F ).
Let N(D) be a regular neighbourhood of D. We define a homotopy
from f0 = f to f1 which is fixed on M − n(D) and which moves f(D)
past p. This done, the new map f1 has a new preimage F1 = f−11 (p)
which is isotopic to FD, the result of compressing F along D. This
reduces the genus of some component of F . So after finitely many such
homotopies we arrive at a map fn with preimage Fn being a disjoint
union of incompressible surfaces (Exercise ??) and two-spheres. We
abuse notation and again call the map f and the preimage F .

Suppose that F is a disjoint union of incompressible surfaces and
two-spheres. Since M is irreducible, each two-sphere bounds a ball in
M . Let S ⊂ F be an innermost two-sphere, bounding an innermost
three-ball B. We again define a homotopy from f0 = f to f1 which
is fixed on M − n(B) and which moves B past p. This done, the new
map f1 has a new preimage F1 = f−11 (p) with one fewer two-sphere
than F . After finitely many such homotopies we arrive at a map fn
with preimage Fn being a disjoint union of incompressible surfaces. We
abuse notation and again call the map f and the preimage F .

Thus F is closed, orientable, two-sided, and incompressible. By
Lemma ?? and Exercise ?? every component of F is π1–injective in M .

Now, set MF = M − n(F ). Note that ∂MF
∼= F− ∪ F+ is two copies

of F . Let MK be the cover of M corresponding to K = ker(f∗). So
MK is obtained from MF × Z by gluing F+ × {n} to F− × {n+ 1}.

Claim. MF and F are both connected.

Proof. Every component of MF has boundary, as M was connected.
Suppose some component N of MF only meets components of F+ (say).
Then we may homotope f to move N past p, and so reduce the number
of components of the preimage. Thus we may assume that every
component of MF meets both F+ and F−.

Suppose that some component N of MF meets two components of F+.
Then the pigeonhole principle implies that there is some component N ′

of NF that meets two components of F−. Since M is connected, we can
construct a loop γ in M so that

• f∗([γ]) = 0 and
• γ has algebraic intersection number one with some component

of F .

Thus γ lifts to MK . The translates of γ under the deck group gives a
subgroup of H1(M

K ,Z) of infinite rank, which is a contradiction.
So every component ofMF meets exactly one component of F+ and F−.

If MF is not connected, then f∗ is not surjective, a contradiction. �
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Claim. The homomorphism i∗ : π1(F−)→ π1(MF ) is surjective.

Proof. Fix any loop α ⊂ MF . Recall that K ∼= π1(M
K) is finitely

generated. We obtain MK from MF × Z by gluing copies of F+ to the
corresponding copies of F−. Let MF (n) be the nth copy. Let MF [0, n] be
the union ∪n−1i=0MF (i). We take n large enough so that MF [0, n] contains
a generating set for π1(M

K). Let α(n) be the copy of α in MF (n). Thus
there is free homotopy h : A2 →MK with one end in MF [0, n] and the
other on α(n). We make h transverse to F (n), the copy of F between
MF [0, n] and MF (n). Thus h−1(F (n)) is a collection of loops in A. We
eliminate all trivial curves, innermost first, via homotopies of h, relative
to the boundary of A. Since F (n) separates there is now a sub-annulus
of A giving a homotopy of α(n) into F (n), as desired. �

Thus inclusion induces isomorphisms π1(F−) ∼= π1(MF ) ∼= π1(F+).
By Exercise ?? we have that MF

∼= F × [0, 1]. This completes the proof
of Theorem ??. �

Exercise 12.2. Suppose that M3 is a compact connected oriented
irreducible three-manifold. Suppose that π1(M) ∼= Fg is a free group.
Prove that M is homeomorphic to a genus g handlebody.

Exercise 12.3. Suppose that F 2 is closed, connected, oriented, and
not a two-sphere. Suppose that M3 is a compact connected oriented
irreducible three-manifold. Suppose that π1(M) ∼= π1(F ). Prove that
M is homeomorphic to F × [0, 1].

13. Further topics

Similar to the Seifert fibred space theorem (??), Stallings’ theorem
(??) takes very minimal algebraic hypotheses and converts them to a
very strong topological conclusion. Here is another such, similar in
spirit to Stallings’ theorem, due to [Scott, 1973]

Theorem 13.1. [Scott core theorem] Suppose that H < π1(M) is
finitely generated. Then H is finitely presented. In fact, in the cover
MH corresponding to H there is a compact submanifold N so that
i∗ : π1(N)→ π1(M

H) ∼= H is an isomorphism. �

Setting aside the study of subgroups of three-manifold groups, we
return to the theory of decomposing manifolds. After reducing along
essential spheres, and cutting along essential disks, there is the JSJ
theory due to [Jaco-Shalen, 1979] and [Johannson, 1979]. Every compact,
connected, oriented irreducible three-manifold has a canonical sub-
manifold which contains all essential, non-peripheral annuli and tori.
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After removing the canonical JSJ sub-manifold, the pieces of M that
remain are irreducible, acylindrical, atoroidal, and have incompressible
boundary. These pieces are the subject of Thurston’s geometrisation
programme, proven by [Perelman, 2002, 2003, 2003].

Theorem 13.2. Suppose that M is compact, connected, oriented, irre-
ducible, acylindrical, atoroidal, and all boundary components are incom-
pressible.

• If π1(M) is finite then M is homeomorphic to either B3 or a
spherical space form.
• If π1(M) is infinite, and all components (if any) of ∂M are

tori, then the interior of M is homeomorphic to a finite volume
hyperbolic manifold. �

Note that the first conclusion includes the Poinaré conjecture as a
special case. The second conclusion asserts that hyperbolic geometry is,
unavoidably, an integral part of three-manifold topology.
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