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The word problem in the 
mapping class group is  
quasi-linear



Quasi-linear time

Suppose that  is a compact surface. S

Let  be the mapping class of  (equipped with a finite generating set).MCG(S) S

Theorem [Bell-Schleimer 2024]: There is a sub-quadratic time algorithm to 
solve the word problem in .MCG(S)



The mapping class group

Suppose that  is a compact surface. S

Suppose that .g, h ∈ Homeo(S)

We write  if  and  are isotopic.g ≅ h g h



The mapping class group

We write  if  and  are isotopic.g ≅ h g h

Dehn [1922] defines the mapping class group to be MCG(S) =

• proves  is finitely generated and 


• gives two solutions for the word problem in .

MCG(S)

MCG(S)

Dehn [1922] also 

Homeo(S)
≅



The word problem

A group  is finitely generated if there is a finite subset  so that every 
element  can be realised as a finite product of elements from .

G X ⊂ G
g ∈ G X ∪ X−1

Example:  is finitely generated by , the standard basis vectors.ℤ2 {x, y}

Example:  is not finitely generated.ℚ

A finite list of elements from  is called a word over .  The length of the 
list is the length of the word.  For example,  has length six.

X ∪ X−1 X
yxyx−1y−1y−1



The word problem

Suppose that  is a word over .  The word problem [Dehn 1912] asks if the 
group element of  represented by  is the trivial element of .

w X
G w G

Example: the word  represents the trivial element in .yxyx−1y−1y−1 ℤ2

To solve the word problem, we need an algorithm that, given a word  over , 
determines if .

w X
w =G 1



The word problem

The word problem is the “first” problem in theory of finitely generated groups.

It is needed to build the Cayley graph (the first step in understanding the 
geometry of a group).

As an example, we can solve the word problem in  by maintaining a pair of 
stacks (one for each generator). 

ℤ2



The word problem

We measure the time complexity of our algorithm in terms of the length  of the 
given word .

n
w

Example: the pair-of-stacks algorithm for the word problem in  takes time 
 — that is, linear in  with constants depending only on  and .

ℤ2

O(n) n G X

Exercise: Fix  and generate  by elementary matrices.  Now solve 
the word problem.  Now bound the time complexity of your algorithm.

d > 2 SL(d, ℤ)



The mapping class group

Dehn [1922] gives two solutions to the word problem in .MCG(S)

Solution (A), via the “action” of  on , has time complexity .MCG(S) π1(S) 2O(n)

Solution (B), via the action of  on , has time complexity .MCG(S) 𝒞(S) O(n2)



Multi-curves

Suppose that  is a compact surface. S

Suppose that  and   are curves in .α β S

We write  if  and  are isotopic.α ≅ β α β



A multi-curve in  is a finite disjoint union of curves. S

We can simplify the figures by using weights.

We define  to be the set of multi-curves in , considered up to isotopy. 𝒞(S) S

2

13

Multi-curves (with weights)



The mapping class group

(A) via action on  has time complexity . π1(S) 2O(n)

(B) via action on  has time complexity .  Other quadratic time 
algorithms include the following.

𝒞(S) O(n2)

Penner [1982] implements Thurston’s action of  on 


Mosher [1995] gives an automatic structure on  for 


Takarajima [1999] gives an automatic structure on  for 


Hamidi-Tehrani [2000] gives an action on  using Birman-Series -tracks 


D.Thurston [2008] computes the geometric intersection number using smoothing lemma 


Dynnikov [2022] computes the geometric intersection number using curve shortening

MCG(S) PML(S)

MCG(S) ∂S ≠ ∅

MCG(S) ∂S = ∅

PML(S) π1(S)

S- [2008] accelerates to poly-time using straight-line programs.



Quasi-linear time

Theorem [Bell-Schleimer 2024]: There is an algorithm to solve the word 
problem in  in time MCG(S) O(n…



Quasi-linear time

Theorem [Bell-Schleimer 2024]: There is an algorithm to solve the word 
problem in  in time MCG(S) O(n log(n)…



Quasi-linear time

Theorem [Bell-Schleimer 2024]: There is an algorithm to solve the word 
problem in  in time  MCG(S) O(n log(n) log(n)…



Quasi-linear time

Theorem [Bell-Schleimer 2024]: There is an algorithm to solve the word 
problem in  in time  MCG(S) O(n log(n) log(n) log(n)…



Quasi-linear time

Theorem [Bell-Schleimer 2024]: There is an algorithm to solve the word 
problem in  in time . MCG(S) O(n log(n) log(n) log(n))



Quasi-linear time

Theorem [Bell-Schleimer 2024]: There is an algorithm to solve the word 
problem in  in time . MCG(S) O(n log3(n))



Quasi-linear time

Theorem [Bell-Schleimer 2024]: There is an algorithm to solve the word 
problem in  in time . MCG(S) O(n log3(n))

Theorem [Bell-Schleimer 2024]: There is an algorithm that, given weighted 
standard tracks carrying multi-curves  and , computes the geometric 
intersection number  in time .

α β
ι(α, β) O(n log2(n))

Theorem [Bell-Schleimer 2024]: There is an algorithm that, given a weighted 
train track carrying a multi-curve , performs curve shortening in time 

.
α

O(n log2(n))



Quasi-linear time

Theorem [Bell-Schleimer 2024]: There is an algorithm to solve the word 
problem in  in time . MCG(S) O(M(n) log2(n))

Theorem [Bell-Schleimer 2024]: There is an algorithm that, given weighted 
standard tracks carrying multi-curves  and , computes the geometric 
intersection number  in time .

α β
ι(α, β) O(M(n) log(n))

Theorem [Bell-Schleimer 2024]: There is an algorithm that, given a weighted 
train track carrying a multi-curve , performs curve shortening in time 

.
α

O(M(n) log(n))



Weighted train tracks

Here is a multi-curve.  It has six components. 



Weighted train tracks

A more complicated multi-curve.  Exercise: Count the components!



Weighted train tracks

We can represent complicated multi-curves using weighted train tracks.

2

2

5 3

4
2



Weighted train tracks

A train track  is a closed subset with the following local models. τ ⊂ S

We define  to be the set of switches in .  We define  to be the set of 
branches in : that is, the connected components of .

S(τ) τ B(τ)
τ S − S(τ)

branch point switch



Weighted train tracks

A weighting  is any function satisfying the switch equalities.μ : B(τ) → ℕ

That is, for each switch  we have .


By taking parallel strands we can build a multi curve .

s ∈ S(τ) μ(a) = μ(b) + μ(c)

αμ ∈ 𝒞(S)

a
b

c αμ



Weighted train tracks

Suppose that  is a train track.  Suppose that  and  are given weightings on .  
Suppose that  and  are the resulting multi-curves.

τ μ ν τ
α = αμ β = αν

There are various questions we can ask:



Weighted train tracks

Suppose that  is a train track.  Suppose that  and  are given weightings on .  
Suppose that  and  are the resulting multi-curves.

τ μ ν τ
α = αμ β = αν

There are various questions we can ask:

Count the number of components of .
α



Weighted train tracks

Suppose that  is a train track.  Suppose that  and  are given weightings on .  
Suppose that  and  are the resulting multi-curves.

τ μ ν τ
α = αμ β = αν

There are various questions we can ask:

Count the number of components of .


Decide if there is a mapping class  so that .


α

f ∈ MCG(S) f(α) = β



Weighted train tracks

Suppose that  is a train track.  Suppose that  and  are given weightings on .  
Suppose that  and  are the resulting multi-curves.

τ μ ν τ
α = αμ β = αν

There are various questions we can ask:

Count the number of components of .


Decide if there is a mapping class  so that .


Compute .  


α

f ∈ MCG(S) f(α) = β

[α] ∈ H1(S, ℤ)



Weighted train tracks

Suppose that  is a train track.  Suppose that  and  are given weightings on .  
Suppose that  and  are the resulting multi-curves.

τ μ ν τ
α = αμ β = αν

There are various questions we can ask:

Count the number of components of .


Decide if there is a mapping class  so that .


Compute .  


Compute  (algebraic intersection number). 


α

f ∈ MCG(S) f(α) = β

[α] ∈ H1(S, ℤ)

[α] ⋅ [β]



Weighted train tracks

Suppose that  is a train track.  Suppose that  and  are given weightings on .  
Suppose that  and  are the resulting multi-curves.

τ μ ν τ
α = αμ β = αν

There are various questions we can ask:

Count the number of components of .


Decide if there is a mapping class  so that .


Compute .  


Compute  (algebraic intersection number). 


Compute  (geometric intersection number).

α

f ∈ MCG(S) f(α) = β

[α] ∈ H1(S, ℤ)

[α] ⋅ [β]

ι(α, β)



Curve shortening

Suppose that  is a track and weighting.  We may split  according to  to 
obtain a new track  equipped with the induced weighting .

(τ, μ) τ μ
τ′￼ μ′￼

μ(d) > μ(a) μ(d) = μ(a) μ(d) < μ(a)

μ′￼(e′￼) = μ(e) − μ(a) − μ(c) μ′￼(e′￼) = μ(e) − μ(b) − μ(d)

e
ad

bc

e′￼ e′￼

Left split Right splitCentral split



Curve shortening

Suppose that  is a train track with weights.  Suppose that  is a 
combed train loop.  Then we may untwist  according to , say  times, to 
obtain the same track  equipped with the induced weighting .

(τ, μ) γ ⊂ τ
τ μ k

τ μ′￼

μ′￼(a) = μ(a) − k ⋅ μ(b)

a

d

b

c

μ′￼(c) = μ(c) − k ⋅ μ(b)



Curve shortening versus euclidean algorithm

Curve shortening                       




split


untwist


# of components of 





Euclidean algorithm




subtraction


division with remainder





(τ, μ)

αμ

MCG(S)

(u, v) ∈ ℕ2

gcd(a, b)

GL(2,ℤ)



Curve shortening

Theorem: There is a constant  with the following property.  Suppose 
that  is a train track with weights.  Then there is a splitting and untwisting 
sequence  starting at , ending at a track without switches, and with 
the bit-size of  at least one less than that of .

k = k(S)
(τ, μ)

(τi, μi) (τ, μ)
μi+k μi

This (modulo subtle details) gives us an  algorithm.O(n2)

This version of curve shortening, and the usual euclidean algorithm, are both 
 for essentially the same reasons.O(n2)



Half-GCD algorithm

a = 8345399854518752, b = 5743132135431331  # full

A = 83453998        , B = 57431321          # partial


cf(a,b)=[1,2,4,1,4,1,14,1,11,1,1,1,3,1,3,4,1,11,1,6,1,5, …

cf(A,B)=[1,2,4,1,4,1,14,1,11,1,1,3,1,13,1,1,1,2,4]

That is, the continued fractions of (a, b) and of (A, B) have a common prefix.

This leads to a recursive algorithm, called the half-GCD, which computes 
continued fraction expansions in time . O(M(n) log(n))



Half-GCD algorithm Full
Partial



Half-GCD algorithm Full
Partial

0 1/2

1/8 5/8

0 1

M0

M1

M1 ∘ M0
0 1

11/4

M

0 1/2



Accelerated curve shortening

(Again, ignore untwisting in order to simplify the discussion.)


We only need the “most significant bits” of  to determine the first 
split.  Similarly, we only need  significant bits of  in order to determine the 
first  splits.  


This idea leads to a recursive curve shortening algorithm, modelled on the half-
GCD, which finds the splitting sequence  — the weights  are only needed to 
full precision along the rightmost branch of the call tree.

μ : B(τ) → ℕ
O(ℓ) μ

ℓ

τi μi
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Thank you!


