

Saul Schleimer University of Warwick

Henry Segerman Oklahoma State University

Puzzling the 120-cell

Burr puzzles

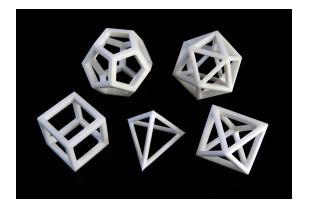
Burr puzzles, notched sticks.

Quintessence

Platonic solids

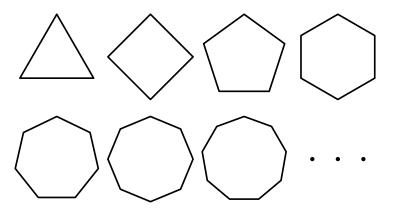
The Platonic solids

Platonic solids



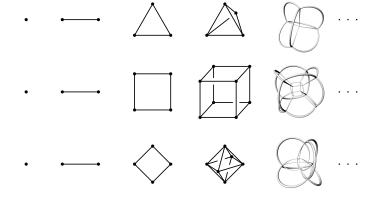
Regular polytopes in dimension three.

Regular polygons



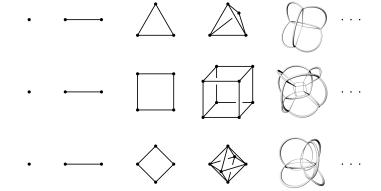
First infinite family of regular polytopes. Polygons.

Regular polytopes

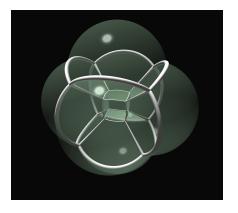


The other three families: simplices, cubes, cross-polytopes. Tilings.

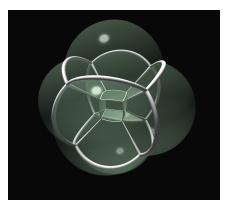
Regular polytopes



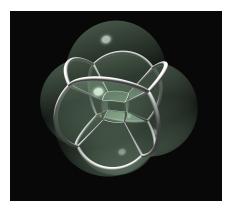
Odd-balls.



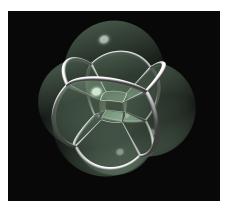
The 4–cube (or 8–cell, hypercube, tesseract, unit orthotope). F-vector.



Not a hypercube! Boundary...

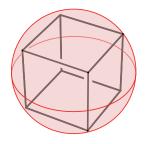


... missing a point. And projected.

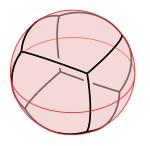


Curvy, dimensionality.

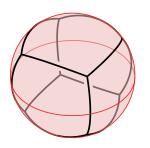
Projecting a cube from \mathbb{R}^3 to S^2 to \mathbb{R}^2



Projecting a cube from \mathbb{R}^3 to S^2 to \mathbb{R}^2

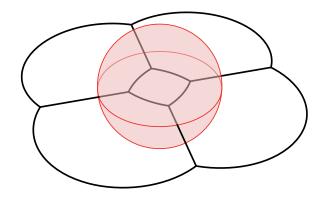


Projecting a cube from \mathbb{R}^3 to S^2 to \mathbb{R}^2



$$\mathbb{R}^{3} \setminus \{0\} \to S^{2}$$
$$(x, y, z) \mapsto \frac{(x, y, z)}{|(x, y, z)|}$$

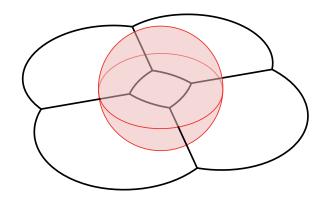
Projecting a cube from \mathbb{R}^3 to S^2 to \mathbb{R}^2



Radial projection

$$\mathbb{R}^{3} \setminus \{0\} \to S^{2}$$
$$(x, y, z) \mapsto \frac{(x, y, z)}{|(x, y, z)|}$$

Projecting a cube from \mathbb{R}^3 to S^2 to \mathbb{R}^2



Radial projection

$$\mathbb{R}^3 \setminus \{0\} \to S^2$$
$$(x, y, z) \mapsto \frac{(x, y, z)}{|(x, y, z)|}$$

Stereographic projection

$$S^2 \setminus \{N\} \to \mathbb{R}^2$$

 $(x, y, z) \mapsto \left(\frac{x}{1-z}, \frac{y}{1-z}\right)$

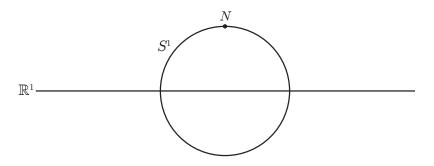
In general, stereographic projection maps from $S^n \setminus \{N\}$ to \mathbb{R}^n .

In general, stereographic projection maps from $S^n \setminus \{N\}$ to \mathbb{R}^n .

For n=1, we define $\rho \colon S^1 \setminus \{N\} \to \mathbb{R}^1$ by $\rho(x,y) = \frac{x}{1-y}$.

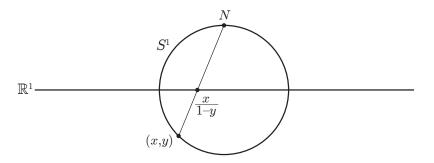
In general, stereographic projection maps from $S^n \setminus \{N\}$ to \mathbb{R}^n .

For n=1, we define $\rho \colon S^1 \setminus \{N\} \to \mathbb{R}^1$ by $\rho(x,y) = \frac{x}{1-y}$.



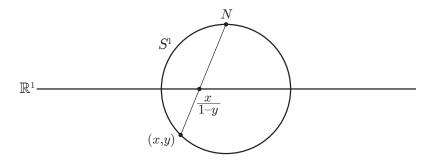
In general, stereographic projection maps from $S^n \setminus \{N\}$ to \mathbb{R}^n .

For n=1, we define $\rho \colon S^1 \setminus \{N\} \to \mathbb{R}^1$ by $\rho(x,y) = \frac{x}{1-y}$.

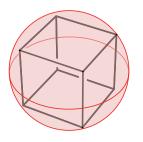


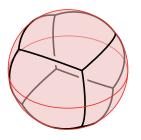
In general, stereographic projection maps from $S^n \setminus \{N\}$ to \mathbb{R}^n .

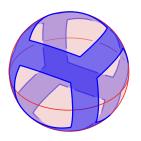
For n = 1, we define $\rho \colon S^1 \setminus \{N\} \to \mathbb{R}^1$ by $\rho(x, y) = \frac{x}{1-y}$.

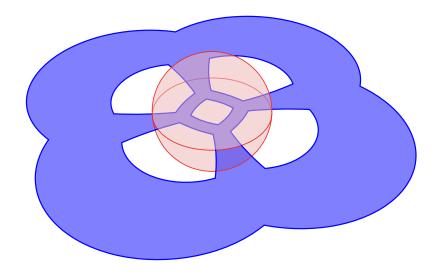


This is *also* a cross-section of stereographic projection for n > 1.

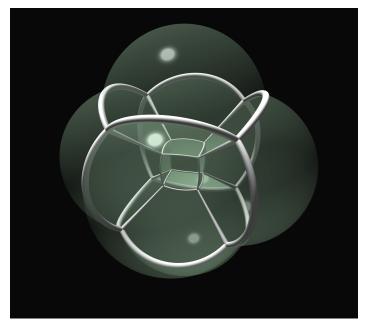






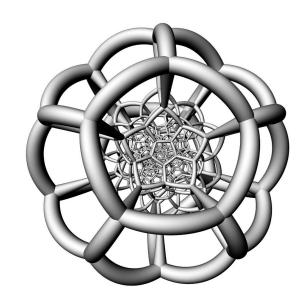


Hypercube, redux



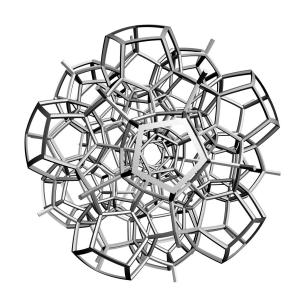
120-cell

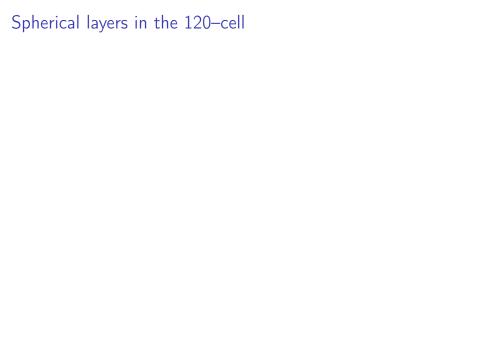
Cell-centered stereographic projection of the 120–cell. Dodecahedral symmetry in \mathbb{R}^3 .



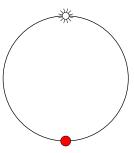
Cut-away

The one-half 120–cell. Dodecahedral symmetry in \mathbb{R}^3 .

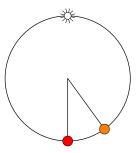




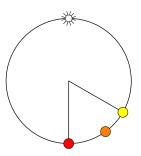
▶ 1 central dodecahedron



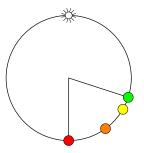
- ▶ 1 central dodecahedron
- ▶ 12 dodecahedra at distance $\pi/5$



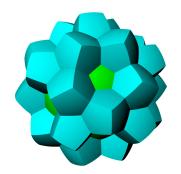
- ▶ 1 central dodecahedron
- ▶ 12 dodecahedra at distance $\pi/5$
- ▶ 20 dodecahedra at distance $\pi/3$

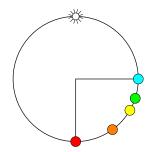


- ▶ 1 central dodecahedron
- ▶ 12 dodecahedra at distance $\pi/5$
- ▶ 20 dodecahedra at distance $\pi/3$
- ▶ 12 dodecahedra at distance $2\pi/5$



- ▶ 1 central dodecahedron
- ▶ 12 dodecahedra at distance $\pi/5$
- ▶ 20 dodecahedra at distance $\pi/3$
- ▶ 12 dodecahedra at distance $2\pi/5$
- ▶ 30 dodecahedra at distance $\pi/2$

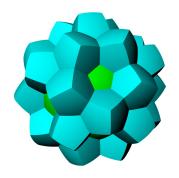


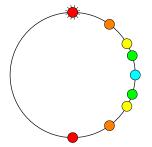


- ▶ 1 central dodecahedron
- ▶ 12 dodecahedra at distance $\pi/5$
- ▶ 20 dodecahedra at distance $\pi/3$
- ▶ 12 dodecahedra at distance $2\pi/5$
- ▶ 30 dodecahedra at distance $\pi/2$

The pattern is mirrored in the last four layers.

$$1+12+20+12+30+12+20+12+1=120$$





Hopf fibers in the 120-cell

A combinatorial version of the Hopf fibration.

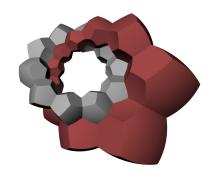
A combinatorial version of the Hopf fibration.

Each fiber is a "ring" of 10 dodecahedra.

A combinatorial version of the Hopf fibration.

Each fiber is a "ring" of 10 dodecahedra.

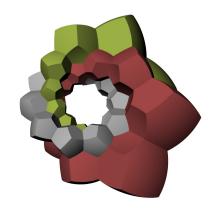
The rings wrap around each other.



A combinatorial version of the Hopf fibration.

Each fiber is a "ring" of 10 dodecahedra.

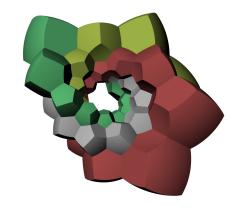
The rings wrap around each other.



A combinatorial version of the Hopf fibration.

Each fiber is a "ring" of 10 dodecahedra.

The rings wrap around each other.

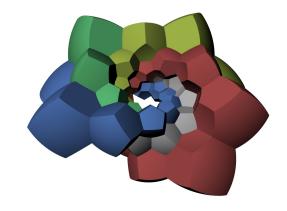


A combinatorial version of the Hopf fibration.

Each fiber is a "ring" of 10 dodecahedra.

The rings wrap around each other.

Each ring is surrounded by five others.

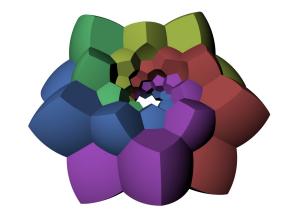


A combinatorial version of the Hopf fibration.

Each fiber is a "ring" of 10 dodecahedra.

The rings wrap around each other.

Each ring is surrounded by five others.

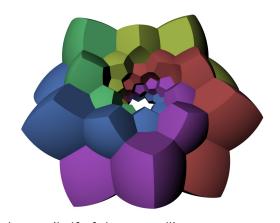


A combinatorial version of the Hopf fibration.

Each fiber is a "ring" of 10 dodecahedra.

The rings wrap around each other.

Each ring is surrounded by five others.



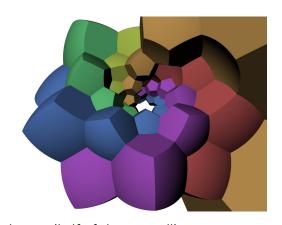
$$1 + 5 + 5 + 1 = 12 = 120/10$$

A combinatorial version of the Hopf fibration.

Each fiber is a "ring" of 10 dodecahedra.

The rings wrap around each other.

Each ring is surrounded by five others.



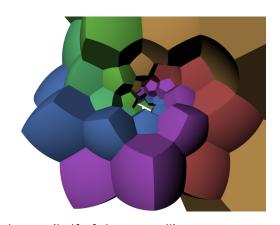
$$1+5+5+1=12=120/10$$

A combinatorial version of the Hopf fibration.

Each fiber is a "ring" of 10 dodecahedra.

The rings wrap around each other.

Each ring is surrounded by five others.



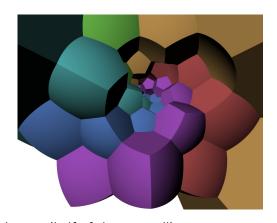
$$1+5+5+1=12=120/10$$

A combinatorial version of the Hopf fibration.

Each fiber is a "ring" of 10 dodecahedra.

The rings wrap around each other.

Each ring is surrounded by five others.



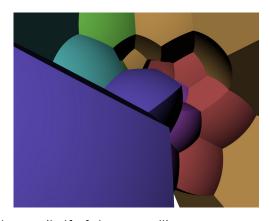
$$1+5+5+1=12=120/10$$

A combinatorial version of the Hopf fibration.

Each fiber is a "ring" of 10 dodecahedra.

The rings wrap around each other.

Each ring is surrounded by five others.



$$1+5+5+1=12=120/10$$

A combinatorial version of the Hopf fibration.

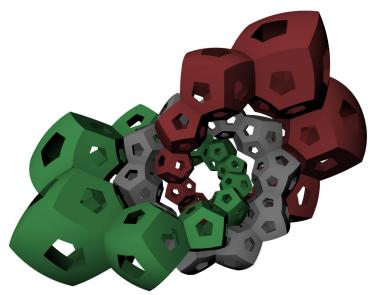
Each fiber is a "ring" of 10 dodecahedra.

The rings wrap around each other.

Each ring is surrounded by five others.

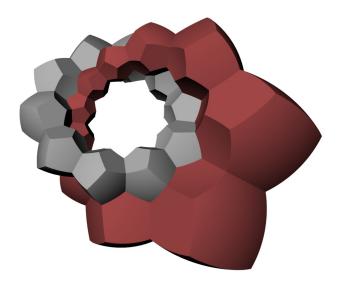
$$1+5+5+1=12=120/10$$

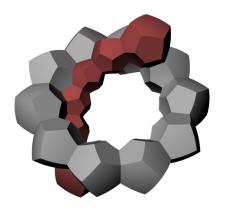
We wanted to 3D print all six of the inner rings together; it seems this cannot be done without them touching each other. (Parts intended to move must not touch during the printing process.)

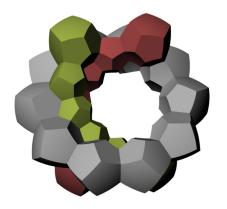


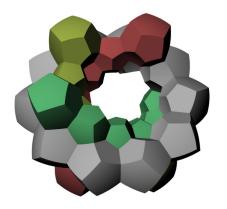


To print all five we use a trick...







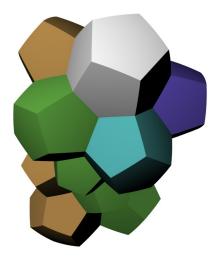


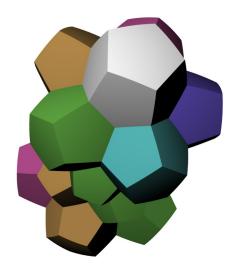
Dc30 Ring puzzle

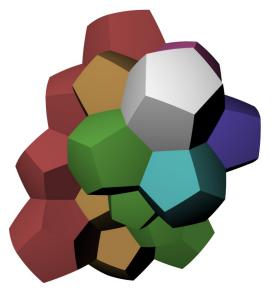




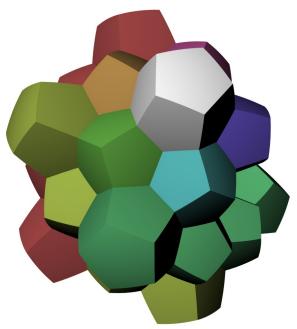


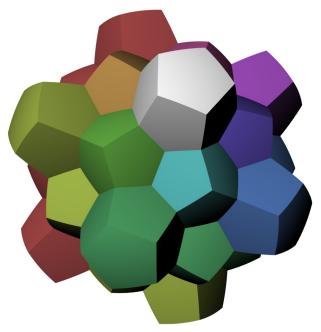






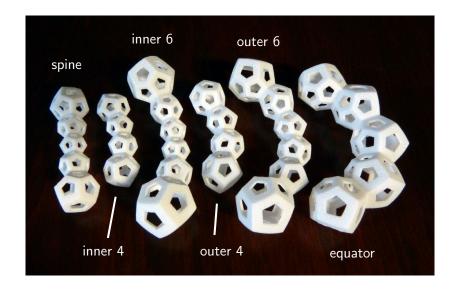




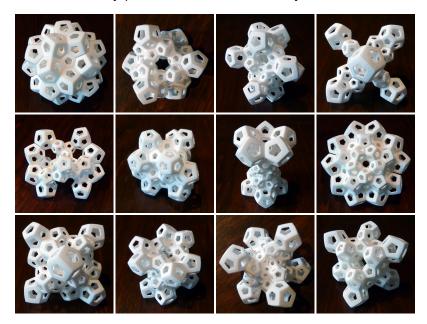


Dc45 Meteor puzzle

Six kinds of ribs



These make many puzzles, which we collectively call Quintessence.



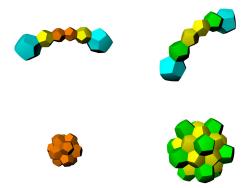
- At most six inner ribs are used in any puzzle.
- At most six outer ribs are used in any puzzle.
- At most ten inner and outer ribs are used in any puzzle.

- At most six inner ribs are used in any puzzle.
- ▶ At most six outer ribs are used in any puzzle.
- At most ten inner and outer ribs are used in any puzzle.

Proof.

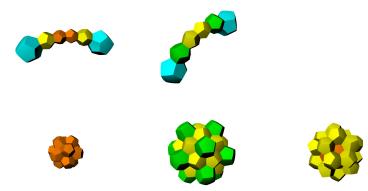
- At most six inner ribs are used in any puzzle.
- At most six outer ribs are used in any puzzle.
- At most ten inner and outer ribs are used in any puzzle.

Proof.



- At most six inner ribs are used in any puzzle.
- At most six outer ribs are used in any puzzle.
- At most ten inner and outer ribs are used in any puzzle.

Proof.



Further possibilities: vertex centered projection Dv30 Asteroid puzzle

Further possibilities: other polytopes

The 600-cell works, although the ribs now have handedness.

Tv270 Meteor puzzle

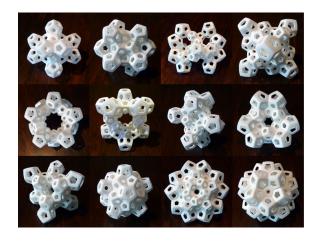
Further possibilities: other polytopes

The 600-cell works, although the ribs now have handedness.

Tv270 Meteor puzzle

The other regular polytopes seem to have too few cells to make interesting puzzles.

Thanks!



http://homepages.warwick.ac.uk/~masgar/ (Schleimer)

http://segerman.org (Segerman)
http://youtube.com/user/henryseg

http://www.shapeways.com/shops/henryseg?section=Quintessence

