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Puzzling the 120–cell



Burr puzzles

Burr puzzles, notched sticks.

Quintessence



Platonic solids

The Platonic solids



Platonic solids

Regular polytopes in dimension three.



Regular polygons

First infinite family of regular polytopes. Polygons.



Regular polytopes

The other three families: simplices, cubes, cross-polytopes. Tilings.



Regular polytopes

Odd-balls.



Hypercube

The 4–cube (or 8–cell, hypercube, tesseract, unit orthotope).
F -vector.



Hypercube

Not a hypercube! Boundary...



Hypercube

... missing a point. And projected.



Hypercube

Curvy, dimensionality.



Projecting a cube from R3 to S2 to R2

Radial projection Stereographic projection

R3 r {0} → S2

(x , y , z) 7→ (x , y , z)

|(x , y , z)|

S2 r {N} → R2

(x , y , z) 7→
(

x

1− z
,

y

1− z

)
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Stereographic projection

In general, stereographic projection maps from Sn r {N} to Rn.

For n = 1, we define ρ : S1 r {N} → R1 by ρ(x , y) = x
1−y .

N

R1

S  1

This is also a cross-section of stereographic projection for n > 1.
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Thickening the edges



Thickening the edges



Thickening the edges



Thickening the edges



Hypercube, redux



120–cell

Cell-centered
stereographic
projection of the
120–cell. Dodecahedral
symmetry in R3.



Cut-away

The one-half 120–cell.
Dodecahedral
symmetry in R3.



Spherical layers in the 120–cell

I 1 central dodecahedron
I 12 dodecahedra at distance π/5
I 20 dodecahedra at distance π/3
I 12 dodecahedra at distance 2π/5
I 30 dodecahedra at distance π/2

The pattern is mirrored in the last four
layers.

1+12+20+12+30+12+20+12+1 = 120
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Hopf fibers in the 120–cell

A combinatorial version of
the Hopf fibration.

Each fiber is a “ring” of 10
dodecahedra.

The rings wrap around
each other.

Each ring is surrounded by
five others.

Six rings tile a solid Clifford torus (half of the 120–cell).

1+ 5+ 5+ 1 = 12 = 120/10
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We wanted to 3D print all six of the inner rings together; it seems
this cannot be done without them touching each other. (Parts
intended to move must not touch during the printing process.)







To print all five we use a trick...

don’t print the whole ring. We call
part of a ring a rib.
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Dc30 Ring puzzle



Another decomposition, with even shorter ribs.
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Another decomposition, with even shorter ribs.



Dc45 Meteor puzzle



Six kinds of ribs

spine

inner 6 outer 6

inner 4 outer 4 equator



These make many puzzles, which we collectively call Quintessence.



Theorem
I At most six inner ribs are used in any puzzle.
I At most six outer ribs are used in any puzzle.
I At most ten inner and outer ribs are used in any puzzle.

Proof.
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Further possibilities: vertex centered projection
Dv30 Asteroid puzzle



Further possibilities: other polytopes

The 600–cell works, although the ribs now have handedness.

Tv270 Meteor puzzle

The other regular polytopes seem to have too few cells to make
interesting puzzles.
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Thanks!

http://homepages.warwick.ac.uk/~masgar/ (Schleimer)
http://segerman.org (Segerman)
http://youtube.com/user/henryseg
http://www.shapeways.com/shops/henryseg?section=Quintessence

http://homepages.warwick.ac.uk/~masgar/
http://segerman.org
http://youtube.com/user/henryseg
http://www.shapeways.com/shops/henryseg?section=Quintessence

