Math 291 Dot and cross product

1 Dot product

Suppose that v = (v1, va,...,v,) is a vector in R™. We need to define the length
of v. There is no way to deduce the length from first principles. We instead
make this our main definition:

Definition 1.1. The norm of v = (vy,vs,...,v,) is defined to be

|v|:\/v%+v§+...+v%.

So in R?, if v = (x,y) then |v| = /22 + y2. In R3] the vector v = (z,v, 2 )

has norm |v| = /22 4+ y2 + 22. The distance between two points p,q € R™ i
then the norm (or length) of the vector ¢ — p. The norm is also sometimes called
the magnitude of the vector.

Exercise 1.2. Recall the sets O = {£i,+j, £k} and C defined in the 9/01
notes — the vertices of the cube and octahedron. What are the lengths of the
edges of the cube and of the octahedron?

If v and w are both vectors it is naturally of interest to relate the length of
v+ w and v — w to the lengths of v and w. So consider v — w|?, as it is always
nice to avoid unnecessary square roots:

v —w|* = (v1 —w1)? + (v2 —wo)® + ...+ (v —wp)%
Multiplying out the right hand side we find:
v — w|* = v¥ — 20w +wi+ ... 02— 2w, +w.
Rearranging the terms we find that
v —w|* = |v|* = 2(vwy + ... + vawy) + |w|*

That is, |[v—w|? is almost equal to |[v|2+|w|?. The only obstruction is the “error
term” viwi + ...+ vy,w,. We give this error term a name:

Definition 1.3. The dot product of two vectors v and w is
VW =v1W1 + ...+ VW,

With this notation we have |v —w|? = |v|? + |w|?> — 2v-w. (Can you produce
a similar formula for [v 4+ w|??) It follows that the dot product is zero if and
only if the “Pythagorean Theorem” holds for the three vectors v, w, and v —w.
See Figure 1.

As a bit of terminology we say that v and w are orthogonal if v - w = 0.

Exercise 1.4. Check that i, j, and k are all orthogonal to each other.

The dot product has many nice properties and the most important of these
is v-v = |[v]?. (Again we see that the square of the norm is algebraically more
natural than the norm itself.) Also, if w is parallel to v, say w = rv then we
have v-w = v - (rv) = rv-v = rfv|%
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Figure 1: The dotted line is parallel to the vector v — w.

Exercise 1.5. Verify the parallelogram law: |v+w|? +|v —w|? = 2|v|? + 2|w]|?.
Explain what the law has to do with parallelograms.

To repeat, if v and w are orthogonal then the dot product is zero and if v
and w are parallel then the dot product is a multiple of |v|?. Thus in some sense
the dot product measures how much v and w “point in the same direction”. We
can eventually make this precise, as follows: if |v| = 1 we call v a unit vector.
Note that for any non-zero vector w the parallel vector w/|w| is always a unit
vector.

Definition 1.6. The unit sphere in R™ is theset S"~! = {p e R | |p—0| = 1}.
Here 0 = (0,0,...,0) is the origin of R™. Another way to write this set is
Sl = {(z1,29,...,0,) | 23 +23+...+22 =1}. Yet another way to denote
this set will be S 1: 2% + 23 +... + 22 — 1.

Moral: The point of introducing the unit sphere is that it perfectly records all
possible directions of vectors while forgetting all information about their norm.

Exercise 1.7. Draw a picture of S' C R2. Draw a picture of S? C R3. Verify
that all points of O and C' (defined in the 9/01 notes) lie in S?, the unit sphere
in R3. Explain why we use the notation S? for the sphere in R3 instead of using
the notation S3.

Here is a nice fact, called the Cauchy-Schwartz Inequality:

Theorem 1.8. For any pair of vectors v and w we have |v - w| < |v||w|, with
equality holding if and only if v and w are parallel. O

In particular, if v, w are unit vectors then deduce that —1 < v-w < 1. Since
this is exactly the set of possible values of cosine we can define the angle between
the vectors to be § = arccos(v - w). It is easier to remember this definition in
the form cos(f) = v - w: see Figure 2.

Now, if v and w are any non-zero vectors then v/|v| and w/|w| are unit
vectors, and we now define the angle between v and w to be

voow vew
0 = arccos (— . —) = arccos (—) .
lv|  wl |v||wl
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cos(0)

Figure 2: The distance from the origin to the foot of the perpendicular is cos(6).

This follows the moral set out above: the direction of the vector is captured by
its parallel unit vector. Again, it is probably easier to remember the formula
v-w = |v]|w| cos(#). This is sufficiently intricate to require an exercise or two.

Exercise 1.9. Compute the angles between the vectors with initial point the
origin and with terminal points at the vertices of the octahedron. (This is very
easy.) Do the same for the cube. (This is less easy!)

We now have enough tools to do an honest calculus problem. Here is the
question. Suppose that p and ¢ are points in R? and suppose that L(t) = t(¢—0)
is the line connecting the origin to gq. What is the closest point of L to p?
Another way to say this is: what is the closest point projection of p to L?

Clearly this is an optimization problem. The way to solve the problem is to
compute the distance from p to L(t), take the derivative with respect to ¢, set
equal to zero, and solve. (Hint: if you actually do this, don’t differentiate the
distance, but rather the distance squared — the algebra will be nicer.) However,
this is not a one variable calculus class.

Instead let us argue as follows: suppose that L(t) is the desired closest point.
Connect p to L(t) by a straight line M, as that is the shortest distance between
two points. The angle between L and M is a right angle — otherwise we could
move the foot of M slightly in one direction or the other and decrease the length
of M. Thus the desired point L(t) is found by forming a right triangle with p—0
as the hypotenuse, M as one leg, and L(¢)—0 as the other leg. Now, let v = p—0,
w=¢q—0,and u= L(t) — 0. (It may help here to draw a picture showing p, g,
0, v, w, and u.) Now, u and w are parallel. So the angle between v and w is the

same as the angle between v and u. Calling this angle § we have cos(6) = %
Deduce, perhaps by lookinf at your picture, that |u| = |v| cos(). Since u has
the same direction as w we have u = Ww = %ﬂw = L%y, This

removes any mention of ¢, and so solves the problem. The book calls the vector

. v-w
u=proj,(v) = =

the vector projection of v to w.
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2 Cross product

We do not actually have enough time in the class to discuss determinants in any
depth. So we will simply assert a few facts.

Suppose that u, v, and w are vectors in R3, all based at the origin, say. Then
these vectors span a parallelepiped: the set P(u,v,w) = {ru+sv+tw | r,s,t €
[0,1]}. See Figure 3.

Figure 3: What happens when two of the vectors are parallel?

Suppose that v = (us, uj, uk), v = (v, 05, vx), and w = (w;, wj, wk), where
i, j, and j are the usual coordinate directions. Then following is an amazing
formula for the volume of P(u, v, w):

vol(P) = 4305wk — UjUkWj + UjUkW; — UjViWk + UVjWj — UkVjWj.
If we have the courage to rearrange this, pulling the u terms out, we find
VOI(P) = ui(vjwk — vkwj) + u; (vkwi — viwk) + uk(viwj — vjwi)
and this can be written as a dot product:
u - (Vywk — VkWj, VWi — VjWi, ViWj — VjWi).

In a final fit of insanity, we define a new kind of product, the cross product, to
record the second vector of the dot product above:

vxXw = (Vjwk — VKWj, VkW; — ViWk, ViWj — VjWi).
At this point the book makes many claims. Such as:

vol(P) = u - (vxw),

the vector vxw is orthogonal to both v and w,

the norm |vxw| is the area of the parallelogram spanned by v and w, and

|[vxw| = |v||w|sin(8), where 0 is the angle between v and w, as above.

To properly discuss these topics requires some linear algebra. We won’t go
any farther than this.
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