Math 291 Curves/Surfaces

1 Describing sets
Here is a set of points:
A={(z,y,2) eR® | 22+ >+ 22 =1}.

The description of the set is implicit: for every point (z,y,z) € R? we can apply the

equation to decide whether or not the point is in the set. For example, (1,0, %) is not in

Aasl+ i > 1. However, it is not clear how we can actually find a point that lies in A.
Here is another set:

B = {(cos(0) sin(¢), sin(#) sin(¢), cos(¢)) | 0 € [0,2x],¢ € [0,7]}.

The description of B is explicit: a recipe is given for generating points in the set.
However, given a point (z,y, z) € R? it is not clear how to determine if it lies in the set!

It is somewhat reassuring to note that A = B. Both sets describe the unit two-sphere
S2. Tt is somewhat unsettling that one set can be described in many ways. Can we list
the points of a set given implicitly? Can we decide if a given point belongs to a set given
explicitly? Can we decide if two descriptions give the same set or not?

Exercise 1.1. Suppose that C = {(z,y,2) | *+y+2=0and z = (r —y)?}. That is,
C is the set of points (z,y,2) in R? which satisfy both of the conditions z +y + 2z = 1
and z = (x — y)?. Prove that the point (3,1,0) is in C. Now find any other point in C.
What does the set C' look like? Give a sketch. Can you describe C' explicitly?

2 In dimension two

As a quick review, lets recall the situation in R%2. We begin with sets described implicitly.
For example, we have L : y = max+b. So L is the set of points (z, y) satisfying y = ma+b.
(Here m and b are fixed constants.) This is a line with slope m and y-intercept b. Not
all lines can be described in this form — the remainder are vertical lines and we describe
them via L : z = c.

Also familiar are the conic sections.

Circle — S' : 22 +y? = 1 is the unit circle. It is the only conic section with a rotation
symmetry

Ellipse — E : z—z + ?é—i = 1is an ellipse with axes of length 2a and 2b. If a > b then
the magjor axis of F is the segment connecting the points (+a,0). The minor azxis of E

is then the segment collecting the points (0, £b). We define the quantity e = /1 — (9)2

a
to be the eccentricity of E. Thus circles may be regarded as ellipses of eccentricity 0.

Parabola — P : y = 2°. Equally well, we could take P’ : x = y?> or P" : x +y =
(x — y)? etc.
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Hyperbola — H : 22 — y?> = 1. Again, it is not a good idea to rely completely on
these particular implicit forms — for example H' : xy = 1 is again a hyperbola. H and
H' differ only by a /2 rotation.

All of these are special cases of the general quadratic: the set of points (x, y) satisfying
the equation

Ax* + Bay +Cy* + Dz + Ey + F = 0.

However, qualitatively speaking, no matter the choices of A, B, C, etc the resulting
curve always “looks like” one of the examples already given after rotation, translation,
and /or rescaling of the coordinate plane.

Exercise 2.1. Create a movie (say, using Maple) of all of the hyperbolas H; : 2?—y? =t
as t ranges between —10 and 10. What happens when t = 07 Make a movie of the
parabolas P, : tz* = y for t is the same range. What happens at ¢ = 07?

Of course, these sets can also be given explicitly. There are several ways to do this.
The best known is L : (t,mt + b) or in point/vector form L : (0,b) + t(1,m). Also
well known is S' = {(z,+v1 —22) | = € [-1,1]}. As always the square root causes
difficulty — this description of S! is really a description of the upper and lower semicircles
“glued together”. We can cure this defect by noting that S* = {(cos(),sin(d)) | 0 €
[0,27]}. Now we have removed the arbitrary separation of S! into “top” and “bottom”
at the cost of introducing non-arithmetic functions, cosine and sine.

Exercise 2.2. Give explicit descriptions of E, P, and H. Avoid square roots as much
as possible. (Hint for H: a “hyperbolic” version of cosine and sine will be useful.)

3 Geometric descriptions

We end our discussion of sets in dimension two by recalling the many possible geometric
descriptions of sets. For example, a straight line is the shortest distance between two
points. Alternatively, a line is obtained by taking all vectors (based at (0,0)) which
have dot product equal to A with a fixed normal vector, n. We then write L = {p €
R? | n-(p—0)= A}. As an example we take L : —mx + y = b and rewrite to obtain
L:(—m,1)-(z,y) = b of the desired form.

The unit circle S* is the set of points at distance one from the origin. An ellipse
has two foci — if you take a point on the ellipse and add its distances to the foci the
result is constant. The parabola is the set of points equidistant from a point and a line.
The hyperbola also has two foci — if you take a point of the hyperbola and subtract its
distances to the foci the result is constant.

Exercise 3.1. Fix a point p € R?. Describe the set D = {qg € R? | |¢—p| < 1}. Also,
describe the set {q} so that |¢ — 0] <1 and |¢— (1,0)| < 1 and |g — (1/2,v/3/2)] < 1.

Exercise 3.2. Fix a number a € R. Find an explicit description of the parabola which
is equidistant from the point (a,0) and from the line L(t) = (—a, ).
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4 In dimension three

We now tackle sets in dimension three. Again, the simplest implicit example is linear.
Choose constants A, B, C', and D and let P be the set of points satisfying Az+ By+Cz =
D. Equivalently, we could choose a normal vector n = (A, B,C') and a real number D.
Then we can describe the plane P to be the set of points p so that n- (p —0) = D.

As in dimension two, we have the general quadratic:

Az? + Bry+ Cazz+ Dy* + Eyz + F2* + Gr + Hy + 1z + L = 0.

This now implicitly describes a quadric surface. Again, after rotation, translation, and
rescaling of the coordinates we may assume that any quadric surface is one of the
following;:

Sphere - the points of the unit sphere S? solve 2+y2+2% = 1. In general, the sphere
of radius R centered at (g, 4o, 20) has equation (x — z0)* + (y — yo)? + (2 — 20)* = R2.
There is an obvious connection with the set of vectors, based at (xo, 3o, 20), of length R.
One way to obtain the sphere is to rotate the unit sphere in the xz plane about the z
axis.

Exercise 4.1. Before reading on sketch pictures of the sets obtained by spinning the

standard line, ellipse, parabola, and hyperbolas (there are two!) about the z axis. To

be precise, spin the sets in the zz plane given by 2 = z, 222 + 22 = 1, 2z = 22, and
2 2

¢ —x* =+l

All of these “spun” sets have a rotation symmetry. This symmetry need not be
present in a general quadric surface!

Ellipsoid - F : 2—2 + Z—j + z—j = 1. In general we order the axes of the ellipsoid by
length. The ellipsoid is obtained by spinning if and only if two of its axes have the same
length.

Paraboloid ~ P: & + % = 2.

Hyperbolic paraboloid - HP : "’;—3 — %—; = z. The set HP cannot be obtained by
spinning, even if a = b. The behaviour of H P near the origin deserves close inspection.

Hyperboloid - H : 2—5 + ?;—; — i—; = +1. Careful: the sign of the right hand side
is quite important! The two possibilities give the hyperboloid of one or two sheets,
respectively.

Exercise 4.2. It is possible to go between geometric and implicit descriptions of the
various spun quadric surfaces. Here is a more interesting challenge: Let L(t) = (¢,0,—1)
and M(s) = (0,s,1) be two lines in R3. Let W be the set of points in R? equidistant
from the lines L and M: for every point p = (z,y,2) in W the distance from p to L
equals the distance from p to M. Draw a sketch of W. Give an implicit description of

w.
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5 Cross sections

It is not so easy to understand a surface in R3. Let us end these notes by discussing the
important notion of cross sections. In complete generality, suppose that S is a subset
of R™. Let H be a hyperplane in R"™: every p € H satisfies the equation n- (p —0) = A
where n is a unit vector normal to H and A is the height of H. We call the intersection
of the set S with H a cross section.

To make things less general, here is a simple example. Fix S to be the unit sphere in
R3. Let H; = {(x,y,t)} be the plane parallel to the zy coordinate plane and containing
the point (0,0,t). When ¢ is very negative, H; misses S. As we increase t we reach
t = —1 and find an intersection of a single point. Increasing ¢ from —1 to 0 causes the
point to first turn into a small circle which then grows in size. At ¢ = 0 the circle is
as large as it gets, giving a unit circle in Hy. Going from ¢ = 0 to ¢ = 1 and onward
reverses the collection of pictures.

In fact, all non-empty cross sections of the sphere are circles of varying radii. The
sphere is the only surface in R? with this property. Reviewing our work above, note that
the “spun” surfaces also have circular cross-sections, parallel to the xy plane. Sections
taken parallel to the other coordinate planes are more interesting.

Exercise 5.1. Let H be the hyperboloid of one sheet. Sketch pictures of all cross-
sections of H, taken parallel to the zz plane. Note that the xz plane is itself a section.

Exercise 5.2. The set C' : 2% + y? = 2? is called the cone. Check that examples of all
of the conic sections (ie, quadratic curves in two dimensions) may be obtained as cross
sections of the cone. This is why they are called conic sections!

Exercise 5.3. Prove that every ellipsoid (including ones not obtained by spinning) have
a circular cross section.
6 Parametrized curves and surfaces

Explicitly defined sets are given by functions. As we have seen, any line in R?® has the
form L(t) = p + tv. Here p is a point in space and v is a vector. You can think of the
function L(t) as telling you the position of
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