
Math 291 Partial derivatives and tangent planes

1 One-variable

Recall the definition of the one-variable functions. It is defined to be

f ′(t) = lim
h→0

f(t+ h)− f(t)

h

wherever defined. This measures the rate of change of f in the direction of x.

Exercise 1.1. Can you express limh→0
f(t+2h)−f(t)

h
in terms of f ′(t)? What about

limh→0
f(t+ah)−f(t)

h
? (Note that t and a are both constant in the above limit. Only

h is changing.)

2 Multivariable functions

As a first example: a weather map takes points on the surface of the earth (2-dimensional,
so requires two-variables) and gives back a single number. An isothermal lines is a curve
on the earth of all the places with the same temperature. This is a special case of level
curve.

There is a close connection between implicit plane curves (such as C : x2 + y2 = 1),
level curves of two-variable functions (f(x, y) = x2 + y2), and implicit surfaces (P : z =
x2 +y2). We have seen the sets C ⊂ R2 and P ⊂ R3 but not the function f(x, y). Notice
that that the implicit surface P is the graph of f(x, y).

The weather map example extends to three dimensions – think of a function which
measures the temperature in the room you are sitting in. The function takes a point
and returns the temperature of that point. All of the points near the ceiling are a bit
warmer than the points further down, because heat rises. The points close to your body
are also a bit hotter, because humans radiate. Of course, instead of isothermal curves,
in dimension three we have isothermal surfaces, wrapping us like a blanket...

Exercise 2.1. Perhaps it is not yet time to discuss general functions f : Rn → Rm
taking multiple variables to multiple variables. But if we did then the graph of f lives
in Rn+m. These graphs can be understood using cross-sections, just as we did with
surface in R3. For example, we have already discussed in class, in some sense, the w = c
cross-sections of w = f(x, y, z) = x2 + y2 − z2.

3 Derivatives

To fix ideas let’s look at a function f(x, y) = x2 + y3. Suppose that we are interested in
the point P = (1, 1). In one-variable there is only one derivative (up to scale!) and it is
obtained by adding h to the x variable. This is because in dimension one there is only
one direction to move in. We now have two independent directions. Let’s choose one,
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say the vector V = (2,−1). Then we can plug in P + hV into f to vary the function.
We define the directional derivative:

fV (P ) = lim
h→0

f(P + hV )− f(P )

h
.

To get a “number” we can decend to coordinates: compute f(1, 1) = 2 and f(P +
tV ) = (1+2h)2 +(1−h)3. So f(P +hV )−f(P ) = 1+4h+4h2 +1−3h+3h2−h3−2 =
h + 7h2 − h3. Divide by h and take h → 0 (in that order!) to get fV (P ) = 1. So
the rate of change of f at (1, 1) in the direction (2,−1) is 1. Another way to think
of this: The surface z = x2 + y3 has a tangent line with slope one lying over the line
L(t) = P + tV = (1, 1) + t(2,−1) in the xy plane. To find the formula of the tangent
line, we just need to fill in the third coordinate: T (t) = (1, 1, 2) + t(2,−1, 1).

In general, if P = (x, y) and V = (v, w) then then the “tangent line to the graph of f
at the point (x, y, f(x, y)) in the direction V ” is the line T (t) = (P, f(P ))+t(V, fV (P )) =
(x, y, f(P )) + t(v, w, fV (P )). Don’t get confused here – there is only one variable, t!

Exercise 3.1. Before reading on: suppose that f(x, y) = x2+y3. At the point P = (1, 1)
compute the tangent lines Tθ in the directions Vθ = (cos(θ), sin(θ)) as θ varies between
0 and 2π. What space curve does Tθ(1) describe?

There are a few directional derivatives which deserve special names: we take fx to
be the direction derivative in the direction i, fy in the direction j, and fz in the direction
k. For example, if f(x, y, z) = x2 + y3 + xz then fx(x, y, z) = 2x + z, fy(x, y, z) = 3y,
and fz(x, y, z) = x. In general, given g(x, y, z) you can compute gx by holding y and z
fixed and differentating with respect to x. (Again, this is just the direction derivative
in the i direction.)

We put these special derivatives together in a package:

∇f = (fx, fy, fz)

or, in dimension two:
∇f = (fx, fy).

This is called the gradient of f . (The ∇ symbol is called nabla, for some reason?) The
function fx(x, y, z) is also called the partial derivative of f in the direction of x.

4 Tangent planes

We have two ways of presenting sets: implicitly, as the level set of a function, and
explicitly, with a parameterization. (Graphs of functions are either, depending on how
they are given. If we write S : z = x2 + y3 the graph is implicit. If we write S :
(x, y, x2 + y3) it is explicit. As we have seen, it is not always so easy to rewrite an
implicit set as an explicit one!)
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Today we will find tangents to implicit sets, ie to level curves. Let f(x, y) = x2 + y3,
say. As above take P = (1, 1). Then P lies on the level curve C : x2 + y3 = 1 of the
function f . We wish to find the tangent to C at P . But you will remember that this
was covered in one-variable calculus using implicit differentiation: compute d

dx
of both

sides and solve for dy
dx

. This gives the slope of the tangent line and so gives the tangent
line.

Exercise 4.1. Do this now.

Now lets do this the multivariable way: We have f(x, y) = x2 +y3. So fx(x, y) = 2x,
fy(x, y) = 3y2, and so ∇f = (2x, 3y2). At the point P we find ∇Pf = (2, 3). We define
the tangent line to be L : ∇Pf ·VP = 0. That is, the tangent line is the set of all vectors
based at P which are orthogonal to the gradient. (Alternatively, T may be thought of
as the set of points Q satisfying ∇Pf · (Q− P ) = 0.) Does this agree with the line you
computed in the exercise above?

Generally, if g : Rn → R then g = c describes a level curve (n = 2), surface (n = 3),
space (n = 4), etc. Call it Lc. Let tangent line, plane, space etc to Lc at P be T . Then
T is given by:

T : ∇Pg · VP = 0.

Now, just as graphs of one-variable functions have their tangent planes, so do the
graphs of two-variable functions have tangent planes. (Generally, a map f : Rn → R has
a tangent n-space at every point of its graph. Here we are tacitly assuming that f has
directional derivatives in all directions and that these are continuous.)

As we shall see, the tangent plane to a graph at P is also equal to the union of all
tangent lines to the graph at P . However, to prove this we will need to investigate the
chain rule.
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