Problem 3.1. A function u(x, y) is *harmonic* if it satisfies the *Laplace equation*: $u_{xx} + u_{yy} = 0$. The left hand side is sometimes represented with the notation Δu .

- For each of the following find all values of k making u harmonic:
 - $u(x, y) = x^{2} + ky^{2}$ - u(x, y) = x^{3} + kxy^{2} - u(x, y) = e^{5x} cos(ky)
- Suppose that u is harmonic and that $u_{xx}(0,0) \neq 0$. Suppose also that the graph of z = u(x,0) is concave up at x = 0. Show that the graph of z = u(0,y) is concave down. (That is, the surface is *saddle-shaped* at (0,0).)
- Which examples from above have this property? Sketch the graphs of z = u(x, 0) and z = u(0, y) for these examples.

Problem 3.2. Let $F(x,y) = (x^2 - y^2, 2xy)$. Note that F is a function from \mathbb{R}^2 to \mathbb{R}^2 .

- Compute DF, the total derivative of F.
- Let $F^2(x, y) = F(F(x, y))$. That is, F^2 is the function "F composed with itself." Express F^2 in terms of x and y. Compute DF^2 two ways: first directly and second using the chain rule.

Problem 3.3. Consider the surface S : xyz = 6. This is identical to the graph of $z = f(x, y) = \frac{6}{xy}$.

- Sketch the intersection of S with the three planes x = 1, y = 2, and z = 3.
- Sketch a picture of S, restricted to the first octant (all coordinates nonnegative).
- Find an equation for $T_{(1,2,3)}$, the tangent plane to S at the point (1,2,3). Compute the x, y, and z intercepts of $T_{(1,2,3)}$. Compute their product.
- Let g(x, y, z) = xyz. Compute the gradient vector ∇g . Use this to find **n**, the normal vector to the surface S at the point (1, 2, 3). What do you notice?
- Find an equation for $T_{(a,b,c)}$, the tangent plane to S at the point (a, b, c) where we assume that abc = 6. Compute the product of the x, y, and z intercepts of this plane.

Problem 3.4. Let P = P(A, B, C, D) be the plane in \mathbb{R}^3 with equation Ax + By + Cz + D = 0.

• Compute $\mathcal{D}(A, B, C, D)$, the distance from the origin (0, 0, 0) to the plane P(A, B, C, D).

- Describe the domain and range of the function \mathcal{D} . (Not every point of \mathbb{R}^4 describes a *real* plane!)
- If λ is a non-zero number, prove that

$$\mathcal{D}(\lambda A, \lambda B, \lambda C, \lambda D) = \mathcal{D}(A, B, C, D).$$

Do this algebraically first, and then explain the result geometrically.

• The graph of \mathcal{D} is a subset of \mathbb{R}^5 . Sketch the cross-sections of this graph where B = C = 0. Sketch the cross-sections of this graph where C = D = 0.