Math 311: Section 3.

Workshop 1: Writing proofs.

Recall that \mathbb{N} is the set of natural numbers: $\mathbb{N} = \{1, 2, 3, 4, 5, \ldots\}$. Here is the *Principle of induction*:

Principle 1.1. Suppose that P(n) is a statement, for every n in \mathbb{N} . Suppose also that P(1) is true and, for every n in \mathbb{N} , we have that P(n) implies P(n+1). It follows that P(n) is true for every n in \mathbb{N} .

The book gives a slightly different version on page 10.

Problem 1.2. Show that the principle of induction is equivalent to the *well-ordering* of the natural numbers: Every non-empty subset $A \subset \mathbb{N}$ has a least element.

Problem 1.3. Give a proof that the number \sqrt{n} , for n in \mathbb{N} , is *constructible*: there is a finite ruler and compass construction which, beginning with a line segment of length one, produces a line segment of length \sqrt{n} . You may use the principle of induction, if you like. Can you find a direct proof?

As a note: a figure, or sequence of figures, illustrating your proof, would be most welcome. However, pictures should not be relied upon to replace a clear exposition.

Problem 1.4. Prove that, for all n in \mathbb{N} , the number \sqrt{n} is either a natural number or is an irrational number. (That is, \sqrt{n} is never equal to p/q where p and q are in \mathbb{N} , q > 1, and gcd(p,q) = 1.)