Math 311: Section 3.

Handout: Axioms for \mathbb{R} .

We won't give a construction of \mathbb{R} in this class. If you are interested in a precise construction, you could read up on the theory of *Dedekind cuts* either in Abbot's book (Section 8.4) or in Rudin's.

Instead, we will be satisfied with the following list of axioms. We are given a set \mathbb{R} with two binary operations $(x, y) \stackrel{+}{\mapsto} x + y$ and $(x, y) \stackrel{\cdot}{\mapsto} xy$ satisfying the following properties:

The field axioms:

- Right identities: There are elements $0 \neq 1$ in \mathbb{R} so that for all $x \in \mathbb{R}$ we have x + 0 = x and $x \cdot 1 = x$.
- Right inverses: For all $x \in \mathbb{R} \setminus \{0\}$ there are elements $-x, 1/x \in \mathbb{R}$ so that we have x + (-x) = 0 and $x \cdot (1/x) = 1$.
- Commutativity: For all $x, y \in \mathbb{R}$ we have x + y = y + x and xy = yx.
- Associativity: For all $x, y, z \in \mathbb{R}$ we have (x + y) + z = x + (y + z) and (xy)z = x(yz).
- Right distributivity: For all $x, y, z \in \mathbb{R}$ we have (x + y)z = xz + yz.

Moreover, \mathbb{R} is an *ordered* field: there is a binary relation < with the following properties:

The ordered field axioms:

- Trichotomy: For all $x, y \in \mathbb{R}$ we have exactly one of the following: x = y, x < y, or y < x.
- Transitivity: For all $x, y, z \in \mathbb{R}$ if x < y and y < z then x < z.
- Order distributivity: For all $x, y, z \in \mathbb{R}$ if x < y then x + z < y + z.
- Positivity: For all $x, y \in \mathbb{R}$ if 0 < x and 0 < y then 0 < xy.

As a bit of notation, for all $x, y \in \mathbb{R}$ we write $x \leq y$ whenever either x = y or x < y. Finally \mathbb{R} is *complete*:

The axiom of completeness: Every non-empty subset of \mathbb{R} admitting an upper bound has a supremum.

Recall the definitions: Suppose that $A \subset \mathbb{R}$ is non-empty. We say $x \in \mathbb{R}$ is an *upper bound* for A if for all $a \in A$ we have $a \leq x$. We say $x \in \mathbb{R}$ is a *supremum* for A, and write $x = \sup A$, if x is an upper bound for A and for any other upper bound y for A we have $x \leq y$.