Math 311: Section 3.

Handout: When is \sqrt{n} irrational?

Here is one answer to Problem 0.4 from Workshop 1, adapted from a student's paper. Recall that $n \in \mathbb{N}$ is a *perfect square* if there is an $m \in \mathbb{N}$ so that $n = m^2$.

Theorem 0.1. If $n \in \mathbb{N}$ then either n is a perfect square or \sqrt{n} is irrational.

Proof. Fix $n \in \mathbb{N}$. Note that $\sqrt{n} \geq 1$.

Exercise 0.2. Can you prove if $n \in \mathbb{N}$ then $\sqrt{n} \geq 1$, directly from the ordered field axioms? To be precise: suppose that a is a positive real number. Prove that $a \geq 1$ if and only if $a^2 \geq 1$.

Suppose that \sqrt{n} is rational. Then there are many ways to write \sqrt{n} as a fraction. Let $B = \{b \in \mathbb{N} \mid \exists a \in \mathbb{N} \text{ with } \sqrt{n} = a/b\}$. The set B is nonempty because \sqrt{n} is rational and positive. By the well-ordering principle for \mathbb{N} there is a smallest element $q \in B$.

We may now write $\sqrt{n} = p/q$. It follows that $nq^2 = p^2$. As $\sqrt{n} \ge 1$ we also have that $p \ge q$. Using long division, we may write p = qm + r where $m \in \mathbb{N}$ and r is an integer, $0 \le r < q$.

Exercise 0.3. Long division is an *algorithm* and, strictly speaking, its correctness requires a proof. Write down the algorithm and give a proof (necessarily by induction) that the algorithm always gives correct output. As a hint: the input to the algorithm is two natural numbers p and q. What should you induct on?

Suppose now that r = 0. Then $\sqrt{n} = \frac{qm+r}{q} = \frac{qm}{q} = m$. It follows that q = 1 and that $n = m^2$. So n is a perfect square.

Suppose instead that r > 0. Since q > r it follows that q > 1. Recall that $nq^2 = p^2$. Subtract mpq from both sides to find $nq^2 - mpq = p^2 - mpq$. Factor to find q(nq - mp) = p(p - mq) = pr. As $r, q \neq 0$ we can cross-divide to find $\sqrt{n} = p/q = (nq - mp)/r$.

Exercise 0.4. Show that nq - mp is positive.

So we have found another way to write \sqrt{n} as a fraction, with positive numerator, but with a smaller denominator. This contradicts the fact that q is the smallest element of B.

It follows that \sqrt{n} is either a perfect square or is irrational.

Exercise 0.5. Why does this proof work? How can we justify the "magic step" where we subtracted *mpq* from both sides?