
Math 311: Section 3.

Solutions for Workshop 6: Cantor set, Cantor set.

Solution 6.1. We sketch a proof of the fact that C + C = {x + y | x, y ∈ C} =
[0, 2], where C is the Cantor set.

Proof. We begin by introducing a few pieces of notation. Suppose that A and B
are subsets of R. Suppose that c ∈ R is any real number. We define A + B =
{a + b | a ∈ A, b ∈ B}. We define c + A = {c} + A = {c + a | a ∈ A}. We
finally define cA = {ca | a ∈ A}. Note also that A ⊂ A′ and B ⊂ B′ implies that
A + B ⊂ A′ + B′. Finally, given sets A,B,C,D we have the “FOIL” identity:
(A ∪B) + (C ∪D) = (A+ C) ∪ (B + C) ∪ (A+D) ∪ (B +D)

Now, let C be the Cantor set and let Cn be the nth approximation to C. Note
that C ⊂ [0, 1]. Thus, by the second to last remark of the previous paragraph we
have C + C ⊂ [0, 1] + [0, 1] and the latter is equal to [0, 2]. Thus C + C ⊂ [0, 2].
The opposite inclusion is more delicate and we turn to it now.

Fix s ∈ [0, 2]. We first must find, for all n, a pair of elements xn, yn ⊂ Cn so
that xn + yn = s.
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Now, we have already shown that C0 +C0 = [0, 1] + [0, 1] = [0, 2]. Suppose now
that Cn + Cn = [0, 2]. Note that
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The “FOIL” identity instructs us to take the union of these four sets. This gives
Cn+1 + Cn+1 = [0, 2], as desired. It follows that for all n there exists xn, yn ∈ Cn
so that xn + yn = s, the given value in [0, 2].

Recall that Cn ⊂ [0, 1] for all n. It follows that the sequence (xn) is bounded.
Thus by Bolzano-Weierstrass the sequence (xn) admits a convergent subsequence
(xnl). Suppose that (xnl) converges to x ∈ [0, 1]. Thus we have

lim
l→∞

ynl = lim
l→∞

(s− xnl) = s− x.

The last equality holds by Theorem 2.3.3. Thus the subsequence (ynl) also con-
verges and converges to y = s− x.

All that is left to show is that x, y ∈ C, the Cantor set, and the proof will be
complete. Recall that Cn+1 ⊂ Cn for all n ∈ N. So, for all L ∈ N and for all l ≥ L
we have that xnl is contained in CnL . As CnL is closed (it is a finite union of closed
intervals) we deduce that the limit x is contained in CnL . Finally, it follows that
x ∈

⋂
l Cnl . But this last intersection is exactly equal to the Cantor set. (Check

this!) A similar argument shows that y ∈ C and the proof is complete. �



Solution 6.2. Fix a set of distinct real numbers, indexed by the natural numbers,
A = {an}∞n=1. Define

fA(x) =

{
0 x/∈A
1/n x = an.

We will show that fA is discontinuous at exactly the points of A. (We will use
without proof the fact that the complement of A, Ac, is dense in R.)

Proof. We begin by showing that fA is discontinuous at the points of A. We use
Corollary 4.3.3. Let (xm) be a sequence in Ac converging to the point an in A.
(This sequence exists because Ac is dense.) Then lim f(xm) = 0 6= 1/n = f(an)
and thus fA is discontinuous at all points of A.

We now must show that fA is continuous at all points of Ac. Fix one point
b ∈ Ac. So fA(b) = 0. Fix now a value ε > 0. We need to find a δ > 0 small
enough to guarantee that |x− b| < δ implies |fA(x)− fA(b)| = |fA(x)| < ε.

So choose some N ∈ N where n > N implies that 1/n < ε. Let δ = 1
2

min{|aj −
b| | j = 1, 2, . . . , N}. Then if |x− b| < δ there are two possibilities:

• x ∈ Ac and fA(x) = 0 < ε or
• x = an for n > N and so fA(an) = 1/n < ε.

In either case |x− b| < δ implies |fA(x)| < ε and so fA is continuous at b. We are
done. �


