Math 311: Section 3.

Solutions for Workshop 6: Cantor set, Cantor set.

Solution 6.1. We sketch a proof of the fact that C +C ={z+y | z,y € C} =
[0, 2], where C' is the Cantor set.

Proof. We begin by introducing a few pieces of notation. Suppose that A and B
are subsets of R. Suppose that ¢ € R is any real number. We define A + B =
{a+blae Abe B}, Wedefinec+ A= {c}+A={c+alac A}. We
finally define cA = {ca | a € A}. Note also that A C A" and B C B’ implies that
A+ B Cc A+ B'. Finally, given sets A, B,C, D we have the “FOIL” identity:
(AUB)+(CUD)=(A+C)U(B+C)U(A+D)U(B+ D)

Now, let C' be the Cantor set and let C,, be the n'" approximation to C. Note
that C' C [0,1]. Thus, by the second to last remark of the previous paragraph we
have C' + C C [0,1] + [0,1] and the latter is equal to [0,2]. Thus C' + C' C [0, 2].
The opposite inclusion is more delicate and we turn to it now.

Fix s € [0,2]. We first must find, for all n, a pair of elements z,,y, C C, so
that z,, + vy, = s.

Recall that Cy = [0,1], C; = [0 ,3] [%,1],02: [O,%]U[%,%]U[%,%]U[g, 1], and
so on. It is easy to check, say by induction, that C,,; = % n U (% + %C’n)
Now, we have already shown that Cy+ Cy = [0, 1] + [0, 1] = [0, 2]. Suppose now

that C,, + C,, = [0,2]. Note that

1 2 1 1 2 1
Cn—l—l + Cn+1 = (gCn U (g + —Cn)) + (gcn @) (g + §0n>)

The sum of the first terms is (3C, —|— sCy) = 3[0 2] [ 2], by induction.
Similarly the sum of the outer terms is 1C, + (g +1C,) =2+1(0,2] = [2,3]. The
sum of the inner terms is (3 + 3C,) + 5C, = [3, —] glvmg the same set as the

outer terms. Finally the sum of the last terms is ( +3C) + (3 +3C,) = (5,2
The “FOIL” identity instructs us to take the union of these four sets. This gives
Cri1 + Criq = 10,2], as desired. Tt follows that for all n there exists z,,y, € C,
so that x, + y, = s, the given value in [0, 2].
Recall that C,, C [0, 1] for all n. It follows that the sequence (z,) is bounded.
Thus by Bolzano-Weierstrass the sequence (z,,) admits a convergent subsequence
(2n,). Suppose that (x,,) converges to x € [0,1]. Thus we have

lim y,, = lim (s —z,,) = s — x.
l—o00 l—o00

The last equality holds by Theorem 2.3.3. Thus the subsequence (y,,) also con-
verges and converges to y = s — x.

All that is left to show is that x,y € C, the Cantor set, and the proof will be
complete. Recall that C),.1 C C,, for all n € N. So, for all L € N and forall [ > L
we have that x,, is contained in C,,,. As C,,, is closed (it is a finite union of closed
intervals) we deduce that the limit  is contained in C,,,. Finally, it follows that
x € (), Cp,. But this last intersection is exactly equal to the Cantor set. (Check
this!) A similar argument shows that y € C' and the proof is complete. O



Solution 6.2. Fix a set of distinct real numbers, indexed by the natural numbers,
A = {a,}>,. Define
0 x2¢A
fA(l‘) - { 1/n T = a,.
We will show that f4 is discontinuous at exactly the points of A. (We will use
without proof the fact that the complement of A, A€ is dense in R.)

Proof. We begin by showing that f, is discontinuous at the points of A. We use
Corollary 4.3.3. Let (z,,,) be a sequence in A° converging to the point a, in A.
(This sequence exists because A is dense.) Then lim f(x,,) = 0 # 1/n = f(a,)
and thus f4 is discontinuous at all points of A.
We now must show that f is continuous at all points of A¢. Fix one point
b e A So fa(b) = 0. Fix now a value ¢ > 0. We need to find a § > 0 small
enough to guarantee that |z — b| < ¢ implies |fa(z) — fa(b)| = |fa(z)]| < e
So choose some N € N where n > N implies that 1/n < e. Let § = %min{|aj —
b | 7=1,2,...,N}. Then if |z — b| < ¢ there are two possibilities:
o r € A°and fa(x) =0<e€or
e x =a, forn> N and so fa(a,) =1/n <e.
In either case |z — b| < § implies |f4(z)| < € and so f4 is continuous at b. We are
done. 4



