
Math 311: Section 3.

Hints for some Chapter 6 problems.

Solution 15.1 (6.2.1). Let fn(x) = nx
1+nx2 .

• To find the pointwise limit means “fix x and let n go to infinity.” We find,
if x > 0, that

lim
n→∞

nx

1 + nx2
= lim

x
1
n

+ x2
= x/x2 = 1/x

If x = 0 then the limit does not exist. For future use, let f(x) = 1/x.
• Let xn = 1/n for n ∈ N. Then f(nn) = n while fn(xn) = 1

1+1/n
. Now prove

that the existence of such a sequence contradicts uniform convergence.
• As the xn → 0 the “proof” given above shows that the functions fn do not

converge uniformly on any open interval with zero as an endpoint.
• Yes. Compute the difference |fn(x) − f(x)| and prove that it is bounded

above by 1/n, independently of the value of x ∈ (1,∞).

Solution 15.2 (6.2.11). Assume that (fn) and (gn) are uniformly convergent
sequences of functions. Let f and g be the limit functions.

• Bound the difference |(fn + gn)− (f + g)|. The triangle inequality will be
useful.

• Consider the sequences fn(x) = gn(x) = x + 1
n
. Show that these converge

uniformly on R to the function f(x) = x. Now consider (fn gn)(x) =
x2 + 2x

n
+ 1

n2 . How close is this to the function 1/x2? Is the convergence
uniform?

• If all functions involved are uniformly bounded (i.e., there is a single
M ∈ R bounding all the functions) then the limit functions f and g are
also bounded. To prove that the convergence is uniform again bound the
difference |fngn− fg|. Add and subtract fgn inside the absolute value and
think about how you could use the triangle inequality.

Solution 15.3 (6.3.2). Consider the sequence of functions gn(x) = xn/n defined
on [0, 1].

• The pointwise limit of (gn) is the function g(x) = 0. As |gn(x)| ≤ 1/n in
the domain of interest, the convergence is uniform.

Here is a complete proof, directly following the definition of uniform
convergence: Fix ε > 0. Choose N ∈ N so that N > 1/ε. (Archimedean
Property) It follows that ε > 1/N . Note that, for any n ≥ N we have
1/N ≥ 1/n and thus ε > 1/n. Now compute |gn(x)− g(x)| = |xn/n− 0| =
xn/n ≤ 1/n, this last because x ∈ [0, 1]. We conclude that |gn(x)−g(x)| <
ε, as desired.

Finally, since g(x) = 0 is a constant function g′(x) exists for x ∈ [0, 1]
and equals zero.



• Note that g′n(x) = xn−1. So (g′n) converges pointwise to the function h(x)
which is zero for all x ∈ [0, 1) while h(1) = 1. This function h is not con-
tinuous. As the functions g′n are continuous we deduce from Theorem 6.2.6
that the convergence g′n → h is not uniform.

Note also that g′ disagrees with h at a single point. This is not a con-
tradiction to Theorem 6.3.1.

Solution 15.4 (6.4.1). Apply the Cauchy criterion (Theorem 6.4.4) with n =
m + 1.

Solution 15.5 (6.4.5). Let

f(x) =
∑ sin(kx)

k3

This usually referred to as a Fourier series.

• This is a direct application of Theorem 6.4.3, several uses of the M -test
(6.4.5), and the so-called “p-test”:

∑
1
kp converges if and only if p > 1

which we proved in workshop. The continuity of the derivative follows
from Theorem 6.2.6.

• The only honest answer is “No.” By the above we have f ′(x) =
∑ cos(kx)

k2 .
The term-by-term derivative of this, and thus our only candidate for a

second derivative of f , is h(x) = −
∑ sin(kx)

k
. We cannot apply the M -test

here, as the harmonic series diverges. Without the M -test we cannot show
that h converges uniformly and so cannot use Theorem 6.4.3.

In fact, f ′(x) is a Fourier expansion of the 2π-periodic function which

takes the value 1
4

(
(x− π)2 − π2

3

)
for x ∈ [0, 2π]. It follows that f ′ is

differentiable everywhere except at 2π · Z ⊂ R. Thus the original function
f is not twice-differentiable.

This last problem raises an interesting question: does h(x) = −
∑ sin(kx)

k
con-

verge uniformly in the interval (0, 2π)? Nothing we said above rules this out.
However, this is again not case – the problem is the Gibbs phenomenon. This is
distantly related to the frankly jaw-dropping identity∫ ∞

0

sin(t)

t
dt =

π

2

which seems like as good a place as any to end.


