Homework Solutions

Debajyoti Nandi

April 1, 2005

• Problem 1 (p119, #4.4.1)

(a) Show that $f(x) = x^3$ is continuous on all of \mathbb{R} .

(b) Argue, using theorem 4.4.6, that f is not uniformly continuous on \mathbb{R} .

(c) Show that f is uniformly continuous on any bounded subset of \mathbb{R} .

(a) By Theorem 4.3.4, we know that products of continuous functions are continuous. Hence, it is enough to show that the function g(x) = x is continuous on all of \mathbb{R} . Given any $\epsilon < 0$, choose $\delta = \epsilon$. Then for any $x, y \in \mathbb{R}$, $|x - y| < \delta \Rightarrow |g(x) - g(y)| = |x - y| < \epsilon$.

(b) Choose $x_n = n$, and $y_n = n - 1/n$. Then $|x_n - y_n| \to 0$, but

$$|f(x_n) - f(y_n)| = 3n - 1/n(3 - 1/n^2) \to \infty.$$

Thus, by Theorem 4.4.6, the function f is not uniformly continuous on \mathbb{R} .

(c) Let $A \subset \mathbb{R}$ be any bounded subset. Then \overline{A} , the closure of A in \mathbb{R} , is compact. By Theorem 4.4.8, f is uniformly continuous on \overline{A} , and hence on any subset of \overline{A} . In particular, f is uniformly continuous on A.

• Problem 2 (p119 #4.4.4) Show that if f is continuous on [a, b] with f(x) > 0 for all $a \le x \le b$, then 1/f is bounded on [a, b].

Let $m = \inf_{a \le x \le b} f(x)$. Since [a, b] is compact, and f is continuous, f attains its minimum m, say at $x_0 \in [a, b]$. Therefore, $m = f(x_0) > 0$. Hence $|1/f(x)| = 1/f(x) \le 1/m$ for all $a \le x \le b$.

• Problem 3 (p120 #4.4.9)

- (a) Show that if $f: A \to \mathbb{R}$ is Lipschitz, then it is uniformly continuous on A.
- (b) Is the converse statement true? Are all uniformly continuous functions necessarily Lipschitz?

(a) Assume that f is Lipschitz with Lipschitz constant M. Now, given $\epsilon > 0$, choose $\delta = \epsilon/M$. Then we have,

$$|x-y| < \delta \Rightarrow |f(x) - f(y)| \le M|x-y| < \epsilon,$$

as desired.

(b) The converse is not true.

Take $f : [0,1] \to \mathbb{R}$, given by $f(x) = \sqrt{x}$. Then f is uniformly continuous on [0,1], since it is continuous on a compact set. But f is not Lipschitz. Given any M > 0, choose x such that $0 < x < 1/M^2$, and y = 0. Then $\frac{|f(x) - f(y)|}{|x-y|} = 1/\sqrt{x} > M$.

• Problem 4 (p124 #4.5.3) Is there a continuous function on \mathbb{R} with range $f(\mathbb{R}) = \mathbb{Q}$?

We know that \mathbb{R} is connected (by completeness), whereas \mathbb{Q} is not. To see that \mathbb{Q} is not connected notice that $\mathbb{Q} = (\mathbb{Q} \cap (-\infty, \pi)) \cup (\mathbb{Q} \cap (\pi, \infty))$. Hence, by Theorem 4.5.2, there is no continuous function f with $f(\mathbb{R}) = \mathbb{Q}$.

([Saul] Here is a morally equivalent proof which avoids connectedness. Suppose f is a function with $f(\mathbb{R}) = \mathbb{Q}$. Then f takes on the values 3 and 4 but not the value π . Deduce from the IVT that f is not continuous.)

• Problem 5 (p124 #4.5.7) Let f be a continuous function on the closed interval [0,1] with range also contained in [0,1]. Prove that f must have a fixed point; that is, show f(x) = x for at least one value of $x \in [0,1]$.

We have $0 \le f(x) \le 1$ for all $0 \le x \le 1$. Consider a function $g:[0,1] \to \mathbb{R}$, given by g(x) = f(x) - x. Then g is continuous on [0,1]. Now $g(0) = f(0) \ge 0$, but $g(1) = f(1) - 1 \le 0$. Hence, by the Intermediate Value Theorem (Theorem 4.5.1), there exists $x_0 \in [0,1]$ such that $g(x_0) = 0$. Therefore, we have $f(x_0) = x_0$.