Math 428 A party

1 Introduction

Graphs are among the simplest objects in mathematics! Usually they are used
to record a single kind of yes/no relationship between a collection of objects.
Here is an example:
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Figure 1: Who invited Bob and Fred?

In this example, we have a bird’s eye view of a party. The black dots repre-
sent the people at the party, and the lines represent pairs of people who know
each other. Clearly, Bob and Fred know each other, but neither of them knows
anybody else at the party.

Abstracting the example just a bit we make the following definition:

Definition 1.1. A simple graph G is a set V(G) of vertices and a set E(G) of
edges. An edge is an unordered pair of vertices.

In the example shown in Figure 1 there are six vertices. Namely,
V(G) = {Alice, Bob, Clarice, Doug, Emily, Fred}.

There are also six edges. Using the abbreviation A for Alice, B for Bob, and so
on we have

E(G) = {{A»C}a{A’E}v{BaF}v{Ca‘D}v{C’E}’{DvE}}'

Notice that certain questions are easier to answer if you look at the picture and
harder to answer just from the information V(G) and E(G).

For example, “does Alice know Doug?” In the picture we just need to make
sure that no edge connects the A vertex to the D vertex. Without the picture
we would have to check all of E(G) to make sure that the pair {A, D} does not
appear. Here is another kind of information: how many triples of mutual friends
are there at the party? (A triple of mutual friends is a set of three people, all of
whom know each other.) Staring at the graph we realize that a triple of mutual
friends is just a triangle! There are two triples: {A,C,E} and {C,D,E}. 1
invite you to check this just using the information encoded in the list E(G).

Here is yet another kind of information: a triple of mutual strangers is a set
of three people, all of whom don’t know each other.

Exercise 1.2. How many triples of mutual strangers are there at the party?
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2 Complete graphs and complements

At a very unfriendly party, nobody knows anyone else. At a very friendly party
indeed, we see that everybody knows everybody else.
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Figure 2: The null graph Ng and the complete graph Kg.

These two extremes are called the null graph on the vertex set V' and the
complete graph on V', respectively. To be precise:

Definition 2.1. Fix a vertex set V of size n. The null graph on V has F = ()
and is denoted by N,,. The complete graph on V' has E as large as possible and
is denoted by K,,. Said another way: FE(K,) contains all possible edges.

Null graphs are not terribly interesting. Complete graphs are a bit more
interesting.

Exercise 2.2. How many edges does K¢ have? How many triangles? How many
edges does K, have? How many triangles? (Do this for n = 1,2,3,4,5,... and
look for a pattern.)

Suppose now that we are given a graph, say the one shown in Figure 1. Let’s
call this graph P, for “party”. Note that P has six vertices and six edges. We
can form a new graph, P which tells us something different about the party —
namely take P to have the same vertex set as P but connect two people if they
don’t know each other. I'll draw this “strangers graph” with dotted lines. Next
to it I’ll draw the friends graph and the strangers graph together:

B

Figure 3: Dotted lines indicate strangers. Solid lines indicate friends.
It is easier to answer Exercise 1.2 now we have drawn the strangers graph.

Also, notice that the friends graph P with the strangers graph P taken together
is a complete graph. This is not an accident!
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Definition 2.3. Fix a simple graph G. The complement of G, called G, is the
simple graph with the same vertices as G but where two vertices are connected
by an edge if and only if they are not connected in G.

Suppose that G and G’ are two graphs with the same underlying vertex set
(that is, V(G) = V(G")). We can form GUG’, the union of G and G’, by taking
V(GUG') =V (G) and E(GUG") = E(G) U E(G"). For example:

G G’ GUG
Figure 4: The third graph is the union of the first two.

Lemma 2.4. The union of G and G is a complete graph. O

Exercise 2.5. Prove Lemma 2.4.

3 Ramsey theory

Staring at the right-hand side Figure 3 for a few moments we see that there
is both a solid triangle (a triple of friends) and also a dotted triangle (a triple
of strangers). Must this always happen? Is there always both a triangle of
friends and a triangle of strangers? Well, looking at the very unfriendly and
very friendly parties shown in Figure 2 we see that this is not the case. The null
graph Ng has a triple of strangers and no triple of friends. For the complete
graph Kjg the situation is reversed.

We therefore make a new conjecture: every party has either a triple of friends
or a triple of strangers. Is this new conjecture true? Well, a bit of thought shows
that this is not always the case. See Figure 5.

B

Figure 5: A party with no triangles of either type.

This leads us to a new conjecture (which is actually true and so is called a
theorem):
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Theorem 3.1. For any simple graph G with at least siz vertices either G con-
tains a triangle or G contains a triangle. (That is, “any party of at least six
people has either a triple of friends or a triple of strangers.”)

Before discussing the proof, I invite you to draw a few random six vertex
graphs, and check that the theorem holds for those graphs.

Exercise 3.2. Do it!
Before we begin the proof, we introduce one more piece of notation:

Definition 3.3. Suppose that v € V(@) is a vertex of a graph G. The degree
of v, denoted deg(v), is the number of edges touching v.

As an example, check that the degrees of all of the vertices of the graph in
Figure 1 are (deg(A),...,deg(F)) = (2,1,3,2,3,1). Here, now, is a sketch of
the proof of Theorem 3.1:

Proof. Fix attention on a graph G with exactly six vertices. Pick one of the
vertices and label it with the letter a. Suppose for the moment that deg(a) > 3.
Attach the labels b, ¢, and d to three of the vertices which a is connected to.

Now, if there is any edge connecting any of the pairs {b,c}, {¢,d}, or {d, b}
then there is a triangle in G and the theorem holds. If none of the edges {b, c},
{e,d}, or {d,b} are present in G, then all of them are present in G. Again, the
theorem holds.

What happens if our assumption that deg(a) > 3 is false? What happens if
G has more than 6 vertices? I leave it to you. O

Question 3.4. How many people must you invite to your party to guarantee
that there are either four mutual friends or four mutual strangers? (This is very
hard. An easier question would be: How many people must you invite to your
party to guarantee that there are either three mutual friends or four mutual
strangers?)
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