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3 Relations and functions

Preliminary Definition of a Function

Let A,B be sets. Then a function f : A → B is a rule which assigns to each element
a ∈ A a unique element f(a) ∈ B.

We want to reduce this notion to set theory. So a function should be a certain kind
of set. Consider the function g : R→ R defined by g(x) = x2.

Eventually we shall define

g = {〈x, x2〉 | x ∈ R}

In general, a function f : A→ B will be defined to be a certain set of ordered pairs
〈a, b〉, where a ∈ A and b ∈ B.

What is an ordered pair? An object such that 〈a, b〉 = 〈c, d〉 iff a = c and b = d.
In particular, 〈a, b〉 6= {a, b}. Order counts in the former but not in the latter.

Definition 3.1. We define 〈x, y〉 = {{x}, {x, y}}.

We must check that this definition works.

Theorem 3.2. 〈u, v〉 = 〈x, y〉 iff u = x and v = y.

Proof. ⇐ If u = x and v = y, then clearly

{{u}, {u, v}} = {{x}, {x, y}}

ie 〈u, v〉 = 〈x, y〉.
⇒ Suppose that 〈u, v〉 = 〈x, y〉, ie {{u}, {u, v}} = {{x}, {x, y}}.

Case 1 Suppose that u = v. Then

{{u}, {u, v}} = {{u}, {u, u}}
= {{u}, {u}}
= {{u}}

Since
{{x}, {x, y}} = {{u}}

it follows that
{x} = {u} and {x, y} = {u}

Thus x = y = u. Hence u = x and v = y.

Case 2 Suppose that x = y. By a similar argument, we find that x = y = u = v. Hence
u = x and v = y.
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Case 3 Suppose that u 6= v and x 6= y. Since

{{u}, {u, v}} = {{x}, {x, y}}
we must have that (a) {u} = {x} or (b) {u} = {x, y}. Clearly (b) is impossible, since
{u} contains one element and {x, y} contains two elements. Thus {u} = {x} and so
u = x. Also, we must have that (c) {u, v} = {x} or (d) {u, v} = {x, y}. Again (c) is
clearly impossible and so

{u, v} = {x, y} = {u, y}
It follows that v = y.

Question. Suppose that x, y are sets. Do our current axioms prove that 〈x, y〉 is a set?

Answer. Yes! Suppose that x, y are sets. Applying the Pairing Axiom, we see that
{x, y} and {x, x} = {x} are both sets. Applying the Pairing Axiom once more,

{{x}, {x, y}}
is also a set.

Definition 3.3. Let A,B be sets. Then their Cartesian product is defined to be

A×B = {〈x, y〉 | x ∈ A and y ∈ B}.
Question. Suppose that A,B are sets. Do our current axioms prove that A×B is a
set?

Answer. Yes! But this requires a bit more effort...

Lemma 3.4. Let C be a set. If x, y ∈ C, then 〈x, y〉 ∈ PPC.

Proof. Suppose that x, y ∈ C. Then {x} ⊆ C and {x, y} ⊆ C. Thus {x}, {x, y} ∈ PC.
Hence {{x}, {x, y}} ⊆ PC and so

{{x}, {x, y}} ∈ PPC
Theorem 3.5. Suppose that A,B are sets. Then there exists a set D such that for all
x,

x ∈ D iff there exists a ∈ A and b ∈ B such that x = 〈a, b〉.
In other words, the Cartesian product of A and B is a set.

Proof. Let A,B be sets. By Pairing, {A,B} is a set. By Union,
⋃{A,B} = A ∪ B is

a set. Applying Powerset twice, we see that PP(A ∪ B) is a set. Futhermore, by the
Lemma, 〈a, b〉 ∈ PP(A ∪ B) for all a ∈ A and b ∈ B. By Subset, there exists a set D
such that

x ∈ D iff x ∈ PP(A ∪B) and x = 〈a, b〉 for some a ∈ A and b ∈ B.

Cleaarly D satisfies our requirements.
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Definition 3.6. Let A,B be sets. Then f is a function from A to B, written f : A→ B,
iff

• f ⊆ A×B; and

• for each a ∈ A, there exists a unique b ∈ B such that 〈a, b〉 ∈ f . We denote this
unique element b by f(b).

Definition 3.7. Let A,B be sets. Then

BA = {f | f : A→ B}.

It is easily seen that our current axioms imply that BA is a set. To see this, note
that if f : A→ B, then f ⊆ A×B and so f ∈ P(A×B). By Subset,

BA = {f ∈ P(A×B) | f is a function from A to B}

is a set.
We shall develop the basic theory of functions in a little while. First we want to

introduce the more general notion of a relation. On second thoughts... we’ll develop the
basic theory of functions.

Definition 3.8. A function f : A→ B is one-to-one / an injection iff for all a1, a2 ∈ A
if a1 6= a2 then f(a1) 6= f(a2).

Example 3.9.

• f : N→ N, f(n) = n+ 1, is an injection.

• g : Z→ Z, g(z) = z2, isn’t an injection, since g(1) = 1 = g(−1).

Definition 3.10. A function f : A → B is onto / a surjection iff for all b ∈ B, there
exists a ∈ A such that f(a) = b.

Example 3.11.

• f : Z→ Z, f(z) = z + 1, is a surjection.

• g : N → N, g(n) = n + 1, isn’t a surjection, since there doesn’t exist n ∈ N such
that g(n) = 0.

Definition 3.12. Suppose that f : A→ B and C ⊆ A. Then

f [C] = {f(c) | c ∈ C}.

Thus f : A→ B is a surjection iff f [A] = B.
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Definition 3.13. Suppose that f : A → B and g : B → C. Then their composition is
the function g ◦ f : A→ C defined by

(g ◦ f)(a) = g(f(a)).

Example 3.14. Suppose that f : R → R and g : R → R are defined by f(x) = x2 + 1
and g(x) = sin(x). Then

(g ◦ f)(x) = g(f(x))

= g(x2 + 1)

= sin(x2 + 1)

(f ◦ g)(x) = f(g(x))

= f(sin(x))

= sin2(x) + 1

Proposition 3.15. If f : A→ B and g : B → C are surjections, then g ◦ f : A→ C is
also a surjection.

Proof. Let c ∈ C. Since g is a surjection, there exists b ∈ B such that g(b) = c. Since f
is a surjection, there exists a ∈ A such that f(a) = b. Hence

(g ◦ f)(a) = g(f(a))

= g(b)

= c

Exercise 3.16. If f : A→ B and g : B → C are injections, then g◦f is also an injection.

Definition 3.17. A function f : A → B is a bijection iff f is both an injection and a
surjection.

Remark 3.18. Thus f : A→ B is a bijection iff for each b ∈ B there is a unique a ∈ A
such that f(a) = b.

Example 3.19. For each set A, we define the identity function on A

IA : A→ A

by IA(a) = a. Clearly IA is a bijection.

Definition 3.20. Suppose that f : A→ B is a bijection. Then we can define the inverse
function f−1 : B → A by

f−1(b) = the unique a ∈ A such that f(a) = b.
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Remark 3.21. Thus we have that f−1 ◦ f = IA and f ◦ f−1 = IB. Also notice that f−1

is a bijection and that (f−1)−1 = f . Also notice that

f−1 = {〈b, a〉 | 〈a, b〉 ∈ f}.

Proposition 3.22. If f : A → B and g : B → C are bijections, then g ◦ f : A → C is
also a bijection.

Proof. Immediate consequence of the corresponding results for injections and surjec-
tions.

Theorem 3.23. If f : A→ B and g : B → C are bijections, then (g ◦ f)−1 = f−1 ◦ g−1.

Example 3.24. Consider f : R→ R, f(x) = 2x and g : R→ R, g(x) = x+ 2 etc.

Proof of Theorem. Let c ∈ C. Let b = g−1(c), so that g(b) = c. Let a = f−1(b), so that
f(a) = b. Then

(g ◦ f)(a) = g(f(a))

= g(b)

= c

Hence (g ◦ f)−1(c) = a. Also

(f−1 ◦ g−1)(c) = f−1(g−1(c))

= f−1(b)

= a

Hence (g ◦ f)−1(c) = (f−1 ◦ g−1)(c).
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