4 Relations

Functions \equiv Operations Relations \equiv Properties

Remark 4.1. In this course, we will only consider *binary* relations.

Example 4.2. Consider the order relation on $A = \{0, 1, 2\}$ of *less than*. Then 0 < 1, 0 < 2, and 1 < 2. But $2 \not< 1$, *etc.* We shall define the order relation to be

 $<= \{ \langle 0, 1 \rangle, \langle 0, 2 \rangle, \langle 1, 2 \rangle \}.$

Example 4.3. Consider the relation E on $A = \{0, 1, 2\}$ defined by

$$xEy$$
 iff $x - y$ is even.

Then we shall define

$$E = \{ \langle 0, 2 \rangle, \langle 2, 0 \rangle, \langle 0, 0 \rangle, \langle 1, 1 \rangle, \langle 2, 2 \rangle \}.$$

Definition 4.4. Let A be a set. Then R is a *relation* on A iff $R \subseteq A \times A$.

Remark 4.5. In this case, we would usually write xRy instead of $\langle x, y \rangle \in R$. eg "0 < 2" is more natural than " $\langle 0, 2 \rangle \in <$ ".

Definition 4.6 (More General Definition). A *relation* is a set of ordered pairs.

eg $R = \{ \langle 0, 3 \rangle, \langle 1, 4 \rangle, \langle 2, 5 \rangle, \langle 3, 6 \rangle \}$ is a relation.

Definition 4.7. Let R be a relation. Then we define dom R, ran R, and fld R by

 $x \in \operatorname{dom} R$ iff there exists y such that $\langle x, y \rangle \in R$

 $x \in \operatorname{ran} R$ iff there exists y such that $\langle y, x \rangle \in R$

 $\operatorname{fld} R = \operatorname{dom} R \cup \operatorname{ran} R$

Remark 4.8. Thus R is a relation on fld R.

Example 4.9. Let $R = \{ \langle l, n \rangle \mid l \text{ is the } n^{\text{th}} \text{ letter of the alphabet} \}$. Then dom $R = \{l \mid l \text{ is a letter of the alphabet} \}$ and ran $R = \{1, 2, \dots, 26\}$.

5 Equivalence Relations

Definition 5.1. Let R be a binary relation on A.

- R is reflexive iff xRx for all $x \in A$.
- R is symmetric iff for all $x, y \in A$, if xRy then yRx.
- R is transitive iff for all $x, y, z \in A$, if xRy and yRz then xRz.
- R is an *equivalence relation* iff R is reflexive, symmetric, and transitive.

Example 5.2. Let E be the relation on \mathbb{Z} defined by

$$xEy$$
 iff $3|x-y|$

Then E is an equivalence relation.

Proof. We check that E is reflexive, symmetric, and transitive.

- If $x \in \mathbb{Z}$, then 3|x x = 0 since $0 = 3 \cdot 0$. Thus xEx.
- Suppose that xEy. Then 3|x y and so there exists $z \in \mathbb{Z}$ such that $x y = 3 \cdot z$. Then $y - x = 3 \cdot (-z)$ and so 3|y - x. Thus yEx.
- Suppose that xEy and yEz. Thus 3|x y and 3|y z. Hence there exist $a, b \in \mathbb{Z}$ such that x y = 3a and y z = 3b. It follows that

$$x-z = (x-y) + (y-z)$$

= $3a + 3b$
= $3(a+b)$

and so 3|x-z. Thus xEz.

Exercise 5.3. Define a relation R on $\mathbb{N} \times \mathbb{N}$ by

$$\langle a, b \rangle R \langle c, d \rangle$$
 iff $a + d = c + b$

Prove that R is an equivalence relation on $\mathbb{N} \times \mathbb{N}$.

Definition 5.4. Suppose that R is an equivalence relation on A. Then, for each $x \in A$, the R-equivalence class of x is

$$[x]_R = \{ y \in A \mid xRy \}.$$

Theorem 5.5. Suppose that R is an equivalence relation on A.

• $x \in [x]_R$ for each $x \in A$.

2006/09/20

• If $x, y \in A$ and $[x]_R \cap [y]_R \neq \emptyset$, then $[x]_R = [y]_R$.

Proof.

- If $x \in A$, then xRx and so $x \in [x]_R$.
- Suppose that $z \in [x]_R \cap [y]_R$; *ie* xRz and yRz. Since yRz, it follows that zRy. Since xRz and zRy, it follows that xRy. We claim that $[y]_R \subseteq [x]_R$. To see this, suppose that $t \in [y]_R$; *ie* yRt. Since xRy and yRt, it follows that xRt and so $t \in [x]_R$. Similarly, $[x]_R \subseteq [y]_R$ and so $[x]_R = [y]_R$.

Definition 5.6. Let A be a set. Then Π is a *partition* of A iff:

- Π is a set of nonempty subsets of A.
- If $B, C \in \Pi$ are distinct, then $B \cap C = \emptyset$.
- $\bigcup \Pi = A$.

Example 5.7. $\Pi = \{0, 2\}, \{1, 3\}, \{4\}\}$ is a partition of $A = \{0, 1, 2, 3, 4\}$.

Theorem 5.8. Suppose that R is an equivalence relation on A. Then

$$\{[x]_R \mid x \in A\}$$

is a partition of A.

Example 5.9. Let E be the equivalence relation on \mathbb{Z} defined by

$$xEy$$
 iff $3|x-y|$

Then

$$[0]_E = \{\dots, -6, -3, 0, 3, 6, \dots\}$$
$$[1]_E = \{\dots, -5, -2, 1, 4, 7, \dots\}$$
$$[2]_E = \{\dots, -4, -1, 2, 5, 8, \dots\}$$

Thus $\{[0]_E, [1]_E, [2]_E\}$ is the corresponding partition of \mathbb{Z} .

Theorem 5.10. Suppose that Π is a partition of the set A. Define the relation R_{Π} by:

$$xR_{\Pi}y$$
 iff there exists $B \in \Pi$ such that $x, y \in B$.

Then:

- R_{Π} is an equivalence relation on A.
- Π is the set of R_{Π} -equivalence classes.

2006/09/20

Proof. Exercise!

Definition 5.11. Suppose that R is an equivalence relation on A. Then the *quotient* set is

$$A/R = \{ [x]_R \mid x \in A \}$$

and the natural map / canonical map $\varphi \colon A \to A/R$ is defined by

$$\varphi(x) = [x]_R.$$