
Math 361 Construction of Z

9 The Construction of Z

Basic idea
−1 = {〈0, 1〉, 〈1, 2〉, 〈2, 3〉, . . . , 〈n, n+ 1〉, . . .}
−5 = {〈0, 5〉, 〈1, 6〉, 〈2, 7〉, . . . , 〈n, n+ 5〉, . . .}

Definition 9.1. Let ∼ be the binary relation on ω×ω defined by

〈m,n〉 ∼ 〈p, q〉 iff m+ q = p+ n.

Theorem 9.2. ∼ is an equivalence relation on ω×ω.

Proof. Suppose that 〈m,n〉 ∈ ω×ω. Then m+n = m+n and so 〈m,n〉 ∼ 〈m,n〉. Thus
∼ is reflexive.

Next suppose that 〈m,n〉 ∼ 〈p, q〉. Then m + q = p + n. Hence p + n = m + q and
so 〈p, q〉 ∼ 〈m,n〉. Thus ∼ is symmetric.

Finally suppose that 〈m,n〉 ∼ 〈p, q〉 and 〈p, q〉 ∼ 〈r, s〉. Then

m+ q = p+ n

p+ s = r + q

and so
m+ q + p+ s = p+ n+ r + q.

This implies
(m+ s) + (p+ q) = (r + n) + (p+ q)

and so, by the Cancellation Law,

m+ s = r + n.

Hence 〈m,n〉 ∼ 〈r, s〉 and so ∼ is transitive.

Definition 9.3. The set Z of integers is defined by

Z = ω×ω/ ∼
ie Z is the set of ∼–equivalence classes.

Notation For each 〈m,n〉 ∈ ω×ω, the corresponding ∼–equivalence class is denoted by
[〈m,n〉].
eg

[〈0, 3〉] = {〈0, 3〉, 〈1, 4〉, 〈2, 5〉, . . .} ∈ Z
Now we want to define an operation +Z on Z. [Note that

(m− n) + (p− q) = (m+ p)− (n+ q)

This suggests we make the following definition.]
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Definition 9.4. We define the binary operation +Z on Z by

[〈m,n〉] +Z [〈p, q〉] = [〈m+ p, n+ q〉].

Lemma 9.5. +Z is well-defined.

Proof. We must prove that if 〈m,n〉 ∼ 〈m′, n′〉 and 〈p, q〉 ∼ 〈p′, q′〉, then 〈m+p, n+q〉 ∼
〈m′ + p′, n′ + q′〉. So suppose that 〈m,n〉 ∼ 〈m′, n′〉 and 〈p, q〉 ∼ 〈p′, q′〉. Then

m+ n′ = m′ + n

p+ q′ = p′ + q

and so
m+ p+ n′ + q′ = m′ + p′ + n+ q.

Hence 〈m+ p, n+ q〉 ∼ 〈m′ + p′, n′ + q′〉.

Theorem 9.6. For all a, b, c ∈ Z, we have that

a+Z b = b+Z a

(a+Z b)+Z = a+Z (b+Z c)

Proof. We just check the first identity. (The proof of the second identity is similar.) Let
a = [〈m,n〉] and b = [〈p, q〉]. Then

a+Z b = [〈m,n〉] +Z [〈p, q〉]
= [〈m+ p, n+ q〉] Def of +Z

= [〈p+m, q + n〉] Commutativity of + on ω

= [〈p, q〉] +Z [〈m,n〉] Def of +Z

= b+Z a.

Definition 9.7 (Identity element for addition).

0Z = [〈0, 0〉].

Theorem 9.8.

• For all a ∈ Z, a+Z 0Z = a.

• For any a ∈ Z, there exists a unique b ∈ Z such that

a+Z b = 0Z.
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Proof.

• Let a = [〈m,n〉]. Then

a+Z 0Z = [〈m,n〉] +Z [〈0, 0〉]
= [〈m+ 0, n+ 0〉]
= [〈m,n〉]
= a

• Let a = [〈m,n〉]. To see that there exists at least one such element, consider
b = [〈n,m〉]. Then

a+Z b = [〈m,n〉] +Z [〈n,m〉]
= [〈m+ n, n+m〉].

Note that m+ n+ 0 = 0 + n+m. Hence

a+Z b = [〈m+ n, n+m〉]
= [〈0, 0〉]
= 0Z.

To see that there exists at most one such element, suppose that a +Z b = 0Z and
a+Z b

′ = 0Z. Then

b = b+Z 0Z

= b+Z (a+Z b
′)

= (b+Z a) +Z b
′

= (a+Z b) +Z b
′

= 0Z +Z b
′

= b′

Definition 9.9. For any a ∈ Z, −a is the unique element of Z such that

a+Z (−a) = 0Z.

Definition 9.10. We define the binary operation −Z on Z by

a−Z b = a+Z (−b).

Remark 9.11.

• Clearly −Z is well-defined.
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• From the above proof, if a = [〈m,n〉], then −a = [〈n,m〉].

[Next we want to define a multiplication operation on Z. Note that

(m− n) · (p− q) = mp+ nq − (mq + np).

This suggests that we make the following definition.]

Definition 9.12. We define the binary operation ·Z on Z by

[〈m,n〉] ·Z [〈p, q〉] = [〈mp+ nq,mq + np〉].

Lemma 9.13. ·Z is well-defined.

Proof. We must show that if 〈m,n〉 ∼ 〈m′, n′〉 and 〈p, q〉 ∼ 〈p′, q′〉, then

〈mp+ nq,mq + np〉 ∼ 〈m′p′ + n′q′,m′q′ + n′p′〉.

Tedious reading exercise, Enderton p. 96.

Theorem 9.14. For all a, b, c ∈ Z, we have that

a ·Z b = b ·Z a

(a ·Z b) ·Z c = a ·Z (b ·Z c)
a ·Z (b+Z c) = a ·Z b+Z (a ·Z c)

Proof. We just check the first equality. (The proofs of the other equalities are similar.)
Let a = [〈m,n〉] and b = [〈p, q〉]. Then

a ·Z b = [〈m,n〉] ·Z [〈p, q〉]
= [〈mp+ nq,mq + np〉]

and

b ·Z a = [〈p, q〉] ·Z [〈m,n〉]
= [〈pm+ qn, pn+ qm〉]

Using the commutivity of addition and multiplication in ω we see that

mp+ nq = pm+ qn and mq + np = pn+ qm.

Thus
a ·Z b = b ·Z a.
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Definition 9.15 (Identity for multiplication).

1Z = [〈1, 0〉].
Theorem 9.16. For all a ∈ Z, a ·Z 1Z = a.

Proof. Let a = [〈m,n〉]. Then

a ·Z 1Z = [〈m,n〉] ·Z [〈1, 0〉]
= [〈m · 1 + n · 0,m · 0 + n · 1〉]
= [〈m,n〉]
= a

Finally we want to define an order relation on Z. [Note that

m− n < p− q iff m+ q < p+ n.

This suggests the following definition.]

Definition 9.17. We define the binary relation <Z on Z by

[〈m,n〉] <Z [〈p, q〉] iff m+ q < p+ n.

Lemma 9.18. <Z is well-defined.

Proof. Reading Exercise, Enderton p. 98.

Theorem 9.19. <Z is a linear order on Z.

Proof. First we prove that <Z is transitive. Let a = [〈m,n〉], b = [〈p, q〉], and c = [〈r, s〉].
Suppose that a <Z b and b <Z c. Thus

m+ q < p+ n (1)

p+ s < r + q (2)

Using our earlier theorems, this implies that

m+ q + s < p+ n+ s (3)

p+ s+ n < r + q + n (4)

Using (3), (4), and the transitivity of < on ω, we obtain

m+ q + s < r + q + n (5)

By our earlier theorem,
m+ s < r + n

Hence [〈m,n〉] <Z [〈r, s〉]; ie a <Z c.
Next we prove trichotomy. Again let a = [〈m,n〉] and b = [〈p, q〉]. Then the following

statements are equivalent:
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(I) Exactly one of the following holds

a <Z Zb, a = b, b <Z a

(II) Exactly one of the following holds

m+ q < p+ n, m+ q = p+ n, p+ n < m+ q

Clearly (II) follows from the fact that < satisfies trichotomy on ω. Hence (I) also
holds.

Definition 9.20.
An integer b ∈ Z is positive iff 0Z <Z b.
An integer b ∈ Z is negative iff b <Z 0Z.

Lemma 9.21. For all b ∈ Z, exactly one of the following holds:

• b is positive.

• b is negative

• b = 0Z.

Proof. An immediate consequence of trichotomy for <Z.

Exercise 9.22. For all b ∈ Z, b <Z 0Z iff 0Z <Z −b.

Exercise 9.23. Suppose that m,n ∈ ω and that m < n. Then there exists p ∈ ω such
that n = m+ p+. [Hint: argue by induction on p.]

Remark 9.24. Clearly ω is not literally a subset of Z. However, Z does contain an
“isomorphic copy” of ω

Definition 9.25. Let E : ω → Z be the function defined by

E(n) = [〈n, 0〉].

Theorem 9.26. E is an injection of ω into Z which satisfies the following properties
for all m,n ∈ ω:

(a) E(m+ n) = E(m) +Z E(n).

(b) E(mn) = E(m) ·Z E(n).

(c) m < n iff E(m) <Z E(n).
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Proof. First we prove that E is an injection. So suppose that m,n ∈ ω. Then

E(m) = E(n) implies [〈m, 0〉] = [〈n, 0〉]
implies 〈m, 0〉 ∼ 〈n, 0〉
implies m+ 0 = n+ 0

implies m = n.

Next we prove that (a) holds. Let m,n ∈ ω. Then

E(m) +Z E(n) = [〈m, 0〉] +Z [〈n, 0〉]
= [〈m+ n, 0 + 0〉]
= [〈m+ n, 0〉]
= E(m+ n).

The proofs of (b) and (c) are similar.

Theorem 9.27. For all b ∈ Z, exactly one of the following holds:

(i) b = 0ZZ

(ii) There exists p ∈ ω such that b = E(p+).

(iii) There exists p ∈ ω such that b = −E(p+).

Proof. Let b = [〈m,n〉]. There are three cases to consider.

Case 1 If m = n, then 〈m,n〉 ∼ 〈0, 0〉 and so b = [〈0, 0〉] = 0Z.

Case 2 If m > n, then there exists p ∈ ω such that m = n + p+. It follows that
〈m,n〉 =∼ 〈p+, 0〉 and so b = [〈p+, 0〉] = E(p+).

Case 3 If m < n, then there exists p ∈ ω such that n = m + p+. It follows that
〈m,n〉 =∼ 〈0, p+〉 and so

b = [〈0, p+〉] = −[〈p+, 0〉] = −E(p+).

Theorem 9.28 (Cancellation Law for Z). (a) For any a, b, c ∈ Z,

a+Z c = b+Z c implies a = b.

• For any a, b ∈ Z and 0Z 6= c ∈ Z,

a ·Z c = b ·Z c implies a = b.

Proof. Reading Exercise Enderton, p. 99-100.

Notation From now on, we write +, ·, <, 0, 1 instead of +Z, ·Z, <Z, 0Z, 1Z. We also
usually write ab instead of a · b
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