Math 361 Counstruction of Z

9 The Construction of 7Z

Basic idea
—1={(0,1),(1,2),(2,3),...,(n,n+1),...}
-5 ={(0,5),(1,6),(2,7),...,(n,n+5),...}
Definition 9.1. Let ~ be the binary relation on wxw defined by
(m,n) ~(p,q) iff m+q=p+n.
Theorem 9.2. ~ is an equivalence relation on wXw.

Proof. Suppose that (m,n) € wxw. Then m+mn =m+n and so (m,n) ~ (m,n). Thus
~ is reflexive.

Next suppose that (m,n) ~ (p,q). Then m + ¢ = p+ n. Hence p+n =m + ¢ and
so (p,q) ~ (m,n). Thus ~ is symmetric.

Finally suppose that (m,n) ~ (p,q) and (p,q) ~ (r,s). Then

m+q = p+n
p+s = r+q
and so
m+q+p+s=p+n+r+q.
This implies
(m+s)+(@+q) =+n)+({p+q
and so, by the Cancellation Law,
m+4s=r+mn.
Hence (m,n) ~ (r,s) and so ~ is transitive. O
Definition 9.3. The set Z of integers is defined by
7 =wxw/ ~

ie Z is the set of ~—equivalence classes.

Notation For each (m,n) € wxw, the corresponding ~—equivalence class is denoted by

[(m,n)].
eg
[(0,3)] ={(0,3),(1,4),(2,5),...} € Z

Now we want to define an operation +7z on Z. [Note that

(m—n)+({p—-q) =m+p)—(n+q)

This suggests we make the following definition.]
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Definition 9.4. We define the binary operation +7 on Z by

[(m,n)] 4z [(p, @)] = [(m +p,n+ q)].
Lemma 9.5. +7 is well-defined.

Proof. We must prove that if (m,n) ~ (m’,n’) and (p,q) ~ (p',¢’), then (m+p,n+q) ~
(m' +p',n" +¢'). So suppose that (m,n) ~ (m/,n’) and (p,q) ~ (p',¢'). Then
m+n" = m' +n
p+d = p+g
and so
m+p+n'+q¢ =m'+p +n+q
Hence (m +p,n+q) ~ (m' +p',n' + ¢'). O

Theorem 9.6. For all a,b,c € Z, we have that

a+zb=>b+za
(CL +z b)-i-z =a-+yg (b+z; C)

Proof. We just check the first identity. (The proof of the second identity is similar.) Let
a = [(m,n)] and b = [(p,q)]. Then

;)] +z [{p, 4)]
m—i—p,n—l—q)] Def of +
p+m,q+n)] Commutativity of + on w
Q)] +z [(m,n)] Def of 4+
= b+yza.

atzb =

[(m
[
[
[P,

/\/\/\/\

Definition 9.7 (Identity element for addition).
0z = [{0, 0)].
Theorem 9.8.
e Foralla€Z, a+z0z =a.

o For any a € 7Z, there exists a unique b € Z such that

a—l—zb:OZ.
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Proof.

e Let a = [(m,n)]. Then

a+z0z = [{m,n)]+2[(0,0)]
= [(m+0,n+0)]
= [(m,n)]
a
o Let a = [(m,n)]. To see that there exists at least one such element, consider
b= [(n,m)]. Then
at+zb = [(m,n)]+z[(n,m)]
= [(m+n,n+m).

Note that m +n+0 =0+ n + m. Hence

a+zb = [(m+n,n+m)

= [(0,0)]
= 0z.

To see that there exists at most one such element, suppose that a +7 b = 0z and
a+7 b = 0z7. Then

b = b+20y

b+z (CL +7z b/)
(b +z G) +2, b
(a+zb)+z 0
Oz +2 0
=0 O

Definition 9.9. For any a € Z, —a is the unique element of Z such that
a+z (—a) = 0z.
Definition 9.10. We define the binary operation —z on Z by
a—zb=a+z(-b).
Remark 9.11.

e Clearly —7 is well-defined.
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e From the above proof, if a = [(m, n)], then —a = [(n,m)].
[Next we want to define a multiplication operation on Z. Note that
(m—mn)-(p—q) =mp+nqg— (mq + np).
This suggests that we make the following definition.]
Definition 9.12. We define the binary operation -z on Z by
[(m, n)] -z [{p, )] = [(mp + ng, mq + np)].
Lemma 9.13. -5 is well-defined.
Proof. We must show that if (m,n) ~ (m’,n’)y and (p,q) ~ (p',¢'), then
(mp +nq, mq + np) ~ (m'p' +n'q,m'q +n'p).
Tedious reading exercise, Enderton p. 96. O
Theorem 9.14. For all a,b,c € Z, we have that
a-zb=0b-za

(a'zb) 'ZCZG'Z(b'ZC)

a-Z(b—l—Zc):a-Zb—l—z(a-Zc)

Proof. We just check the first equality. (The proofs of the other equalities are similar.)
Let a = [(m,n)] and b = [(p, q)]. Then

azb = [(mn)]z[(pq)]
= [(mp + ng, mq + np)]

and

bza = [(p,q)] z[(m,n)]
= [(pm + qn,pn + qm)]

Using the commutivity of addition and multiplication in w we see that
mp+nqg=pm+qn and mq-+ np=pn+ qm.

Thus
(I'Zb:b'za. O
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Definition 9.15 (Identity for multiplication).
1z = [(1,0)].

Theorem 9.16. For alla € Z, a -z 17 = a.

Proof. Let a = [(m,n)]. Then

a-z 1z [(m, n)] -z [(1,0)]
= [(m-14n-0,m-0+n-1)]
= [(m,n)]
= a [

Finally we want to define an order relation on Z. [Note that
m-n<p—q it m4+qg<p+n.
This suggests the following definition.]
Definition 9.17. We define the binary relation <z on Z by
[(m,m)] <z [{(p.q)] T m+q<p+n.
Lemma 9.18. <y is well-defined.
Proof. Reading Exercise, Enderton p. 98. O
Theorem 9.19. <y is a linear order on Z.

Proof. First we prove that <z is transitive. Let a = [(m, n)], b = [(p, ¢)], and ¢ = [(r, s)].
Suppose that a <z b and b <z ¢. Thus

m+q < p+n (1)
pt+s < r+q (2)

Using our earlier theorems, this implies that

m+qg+s < p+n+s (3)

p+s+n < r+qg+n (4
Using (3), (4), and the transitivity of < on w, we obtain

m+qg+s < r+q+n (5)

By our earlier theorem,
m4+s<r+mn
Hence [(m,n)] <z [(r,s)]; e a <z c.
Next we prove trichotomy. Again let a = [(m,n)] and b = [(p, ¢)]. Then the following
statements are equivalent:
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(I) Exactly one of the following holds

a<z74b, a=0b, b<gza

(II) Exactly one of the following holds

m+qg<p+n, m+qg=p+n, p+n<<m-tgq

Clearly (II) follows from the fact that < satisfies trichotomy on w. Hence (I) also
holds. ]

Definition 9.20.
An integer b € Z is positive iff 07 <z b.
An integer b € 7Z is negative iff b <z 0.

Lemma 9.21. For all b € Z, exactly one of the following holds:

e b is positive.

e b is negative

e b=0z.
Proof. An immediate consequence of trichotomy for <. [
Exercise 9.22. For all b € Z, b <z 0z iff 07 <z —b.

Exercise 9.23. Suppose that m,n € w and that m < n. Then there exists p € w such
that n = m + p*. [Hint: argue by induction on p.]

Remark 9.24. Clearly w is not literally a subset of Z. However, Z does contain an
“isomorphic copy” of w

Definition 9.25. Let F: w — Z be the function defined by
E(n) = [(n,0)].

Theorem 9.26. E is an injection of w into Z which satisfies the following properties
for allm,n € w:

(a) E(m+n) = E(m) +z E(n).
(b) E(mn) = E(m) -z E(n).

(c) m <n iff E(m) <z E(n).
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Proof. First we prove that F is an injection. So suppose that m,n € w. Then
E(m) = E(n) implies [(m,0)] = [(n,0)]
implies (m,0) ~ (n,0)
implies m+0=n+0
implies m =n.
Next we prove that (a) holds. Let m,n € w. Then

E(m) +z E(n) = [(m,0)] +z [(n, 0)]
= [(m+n,0+0)]
= |

(m +n,0)]
= E(m+n).
The proofs of (b) and (c) are similar.
Theorem 9.27. For all b € Z, exactly one of the following holds:
(i) b=0,2
(11) There exists p € w such that b= E(p™).
(111) There exists p € w such that b= —E(p™).

Proof. Let b = [(m,n)]. There are three cases to consider.

Case 1 If m = n, then (m,n) ~ (0,0) and so b = [(0,0)] = 0z.

Case 2 If m > n, then there exists p € w such that m = n + p*. It follows that

(m,n) =~ (p*,0) and so b = [(p*, 0)] = E(p™).

Case 3 If m < n, then there exists p € w such that n = m + p*. It follows that

(m,n) =~ (0,p") and so

b=1[{0,p")] = ~[{p",0)] = —E(p").
Theorem 9.28 (Cancellation Law for Z). (a) For any a,b,c € Z,

a+zc=b+zc implies a=b.

o Foranya,b € Z and Oz # c € Z,
a-zc=b-zc implies a=D>.

Proof. Reading Exercise Enderton, p. 99-100.

Notation From now on, we write +,-,<,0,1 instead of +z, 7, <z, 0z, 1.
usually write ab instead of a - b
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