9 The Construction of \mathbb{Z}

Basic idea

$$-1 = \{ \langle 0, 1 \rangle, \langle 1, 2 \rangle, \langle 2, 3 \rangle, \dots, \langle n, n+1 \rangle, \dots \}$$

$$-5 = \{ \langle 0, 5 \rangle, \langle 1, 6 \rangle, \langle 2, 7 \rangle, \dots, \langle n, n+5 \rangle, \dots \}$$

Definition 9.1. Let \sim be the binary relation on $\omega \times \omega$ defined by

$$\langle m, n \rangle \sim \langle p, q \rangle$$
 iff $m + q = p + n$.

Theorem 9.2. ~ *is an equivalence relation on* $\omega \times \omega$.

Proof. Suppose that $\langle m, n \rangle \in \omega \times \omega$. Then m + n = m + n and so $\langle m, n \rangle \sim \langle m, n \rangle$. Thus \sim is reflexive.

Next suppose that $\langle m, n \rangle \sim \langle p, q \rangle$. Then m + q = p + n. Hence p + n = m + q and so $\langle p, q \rangle \sim \langle m, n \rangle$. Thus \sim is symmetric.

Finally suppose that $\langle m,n\rangle\sim\langle p,q\rangle$ and $\langle p,q\rangle\sim\langle r,s\rangle.$ Then

$$m+q = p+n$$
$$p+s = r+q$$

and so

$$m+q+p+s = p+n+r+q.$$

This implies

$$(m+s) + (p+q) = (r+n) + (p+q)$$

and so, by the Cancellation Law,

$$m + s = r + n.$$

Hence $\langle m, n \rangle \sim \langle r, s \rangle$ and so ~ is transitive.

Definition 9.3. The set \mathbb{Z} of *integers* is defined by

$$\mathbb{Z} = \omega \times \omega / \sim$$

ie \mathbb{Z} is the set of \sim -equivalence classes.

Notation For each $\langle m, n \rangle \in \omega \times \omega$, the corresponding ~-equivalence class is denoted by $[\langle m, n \rangle]$.

eg

$$[\langle 0,3\rangle] = \{\langle 0,3\rangle, \langle 1,4\rangle, \langle 2,5\rangle, \ldots\} \in \mathbb{Z}$$

Now we want to define an operation $+_{\mathbb{Z}}$ on \mathbb{Z} . [Note that

$$(m-n) + (p-q) = (m+p) - (n+q)$$

This suggests we make the following definition.]

2006/10/18

Definition 9.4. We define the binary operation $+_{\mathbb{Z}}$ on \mathbb{Z} by

$$[\langle m, n \rangle] +_{\mathbb{Z}} [\langle p, q \rangle] = [\langle m + p, n + q \rangle].$$

Lemma 9.5. $+_{\mathbb{Z}}$ is well-defined.

Proof. We must prove that if $\langle m, n \rangle \sim \langle m', n' \rangle$ and $\langle p, q \rangle \sim \langle p', q' \rangle$, then $\langle m+p, n+q \rangle \sim \langle m'+p', n'+q' \rangle$. So suppose that $\langle m, n \rangle \sim \langle m', n' \rangle$ and $\langle p, q \rangle \sim \langle p', q' \rangle$. Then

$$m+n' = m'+n$$

$$p+q' = p'+q$$

and so

$$m + p + n' + q' = m' + p' + n + q$$

Hence $\langle m+p, n+q \rangle \sim \langle m'+p', n'+q' \rangle$.

Theorem 9.6. For all $a, b, c \in \mathbb{Z}$, we have that

$$a +_{\mathbb{Z}} b = b +_{\mathbb{Z}} a$$
$$(a +_{\mathbb{Z}} b) +_{\mathbb{Z}} = a +_{\mathbb{Z}} (b +_{\mathbb{Z}} c)$$

Proof. We just check the first identity. (The proof of the second identity is similar.) Let $a = [\langle m, n \rangle]$ and $b = [\langle p, q \rangle]$. Then

$$a +_{\mathbb{Z}} b = [\langle m, n \rangle] +_{\mathbb{Z}} [\langle p, q \rangle]$$

= $[\langle m + p, n + q \rangle]$ Def of $+_{\mathbb{Z}}$
= $[\langle p + m, q + n \rangle]$ Commutativity of $+$ on ω
= $[\langle p, q \rangle] +_{\mathbb{Z}} [\langle m, n \rangle]$ Def of $+_{\mathbb{Z}}$
= $b +_{\mathbb{Z}} a$.

Definition 9.7 (Identity element for addition).

$$0_{\mathbb{Z}} = [\langle 0, 0 \rangle].$$

Theorem 9.8.

- For all $a \in \mathbb{Z}$, $a +_{\mathbb{Z}} 0_{\mathbb{Z}} = a$.
- For any $a \in \mathbb{Z}$, there exists a unique $b \in \mathbb{Z}$ such that

$$a +_{\mathbb{Z}} b = 0_{\mathbb{Z}}$$

Proof.

• Let $a = [\langle m, n \rangle]$. Then

$$a +_{\mathbb{Z}} 0_{\mathbb{Z}} = [\langle m, n \rangle] +_{\mathbb{Z}} [\langle 0, 0 \rangle]$$
$$= [\langle m + 0, n + 0 \rangle]$$
$$= [\langle m, n \rangle]$$
$$= a$$

• Let $a = [\langle m, n \rangle]$. To see that there exists at least one such element, consider $b = [\langle n, m \rangle]$. Then

$$a +_{\mathbb{Z}} b = [\langle m, n \rangle] +_{\mathbb{Z}} [\langle n, m \rangle]$$
$$= [\langle m + n, n + m \rangle].$$

Note that m + n + 0 = 0 + n + m. Hence

$$a +_{\mathbb{Z}} b = [\langle m + n, n + m \rangle]$$
$$= [\langle 0, 0 \rangle]$$
$$= 0_{\mathbb{Z}}.$$

To see that there exists at most one such element, suppose that $a +_{\mathbb{Z}} b = 0_{\mathbb{Z}}$ and $a +_{\mathbb{Z}} b' = 0_{\mathbb{Z}}$. Then

$$b = b +_{\mathbb{Z}} 0_{\mathbb{Z}}$$

= $b +_{\mathbb{Z}} (a +_{\mathbb{Z}} b')$
= $(b +_{\mathbb{Z}} a) +_{\mathbb{Z}} b'$
= $(a +_{\mathbb{Z}} b) +_{\mathbb{Z}} b'$
= $0_{\mathbb{Z}} +_{\mathbb{Z}} b'$
= $b' \square$

Definition 9.9. For any $a \in \mathbb{Z}$, -a is the unique element of \mathbb{Z} such that

$$a +_{\mathbb{Z}} (-a) = 0_{\mathbb{Z}}.$$

Definition 9.10. We define the binary operation $-_{\mathbb{Z}}$ on \mathbb{Z} by

$$a - \mathbb{Z} b = a + \mathbb{Z} (-b).$$

Remark 9.11.

• Clearly $-_{\mathbb{Z}}$ is well-defined.

2006/10/18

• From the above proof, if $a = [\langle m, n \rangle]$, then $-a = [\langle n, m \rangle]$.

[Next we want to define a multiplication operation on \mathbb{Z} . Note that

$$(m-n) \cdot (p-q) = mp + nq - (mq + np).$$

This suggests that we make the following definition.]

Definition 9.12. We define the binary operation $\cdot_{\mathbb{Z}}$ on \mathbb{Z} by

$$[\langle m, n \rangle] \cdot_{\mathbb{Z}} [\langle p, q \rangle] = [\langle mp + nq, mq + np \rangle].$$

Lemma 9.13. $\cdot_{\mathbb{Z}}$ is well-defined.

Proof. We must show that if $\langle m, n \rangle \sim \langle m', n' \rangle$ and $\langle p, q \rangle \sim \langle p', q' \rangle$, then

$$\langle mp + nq, mq + np \rangle \sim \langle m'p' + n'q', m'q' + n'p' \rangle$$

Tedious reading exercise, Enderton p. 96.

Theorem 9.14. For all $a, b, c \in \mathbb{Z}$, we have that

$$a \cdot_{\mathbb{Z}} b = b \cdot_{\mathbb{Z}} a$$

 $(a \cdot_{\mathbb{Z}} b) \cdot_{\mathbb{Z}} c = a \cdot_{\mathbb{Z}} (b \cdot_{\mathbb{Z}} c)$
 $a \cdot_{\mathbb{Z}} (b +_{\mathbb{Z}} c) = a \cdot_{\mathbb{Z}} b +_{\mathbb{Z}} (a \cdot_{\mathbb{Z}} c)$

Proof. We just check the first equality. (The proofs of the other equalities are similar.) Let $a = [\langle m, n \rangle]$ and $b = [\langle p, q \rangle]$. Then

$$a \cdot_{\mathbb{Z}} b = [\langle m, n \rangle] \cdot_{\mathbb{Z}} [\langle p, q \rangle]$$
$$= [\langle mp + nq, mq + np \rangle]$$

and

$$b \cdot_{\mathbb{Z}} a = [\langle p, q \rangle] \cdot_{\mathbb{Z}} [\langle m, n \rangle]$$
$$= [\langle pm + qn, pn + qm \rangle]$$

Using the commutivity of addition and multiplication in ω we see that

$$mp + nq = pm + qn$$
 and $mq + np = pn + qm$.

Thus

$$a \cdot_{\mathbb{Z}} b = b \cdot_{\mathbb{Z}} a.$$

2006/10/18

Definition 9.15 (Identity for multiplication).

 $1_{\mathbb{Z}} = [\langle 1, 0 \rangle].$

Theorem 9.16. For all $a \in \mathbb{Z}$, $a \cdot_{\mathbb{Z}} 1_{\mathbb{Z}} = a$.

Proof. Let $a = [\langle m, n \rangle]$. Then

$$a \cdot_{\mathbb{Z}} 1_{\mathbb{Z}} = [\langle m, n \rangle] \cdot_{\mathbb{Z}} [\langle 1, 0 \rangle]$$

= $[\langle m \cdot 1 + n \cdot 0, m \cdot 0 + n \cdot 1 \rangle]$
= $[\langle m, n \rangle]$
= $a \square$

Finally we want to define an order relation on \mathbb{Z} . [Note that

$$m-n < p-q$$
 iff $m+q < p+n$.

This suggests the following definition.]

Definition 9.17. We define the binary relation $<_{\mathbb{Z}}$ on \mathbb{Z} by

$$[\langle m, n \rangle] <_{\mathbb{Z}} [\langle p, q \rangle]$$
 iff $m + q .$

Lemma 9.18. $<_{\mathbb{Z}}$ is well-defined.

Proof. Reading Exercise, Enderton p. 98.

Theorem 9.19. $<_{\mathbb{Z}}$ is a linear order on \mathbb{Z} .

Proof. First we prove that $<_{\mathbb{Z}}$ is transitive. Let $a = [\langle m, n \rangle]$, $b = [\langle p, q \rangle]$, and $c = [\langle r, s \rangle]$. Suppose that $a <_{\mathbb{Z}} b$ and $b <_{\mathbb{Z}} c$. Thus

$$\begin{array}{rcl} m+q &< p+n & (1) \\ p+s &< r+q & (2) \end{array}$$

Using our earlier theorems, this implies that

$$m + q + s (3) $p + s + n < r + q + n$ (4)$$

Using (3), (4), and the transitivity of < on ω , we obtain

$$m + q + s < r + q + n \quad (5)$$

By our earlier theorem,

$$m + s < r + n$$

Hence $[\langle m, n \rangle] <_{\mathbb{Z}} [\langle r, s \rangle]$; ie $a <_{\mathbb{Z}} c$.

Next we prove trichotomy. Again let $a = [\langle m, n \rangle]$ and $b = [\langle p, q \rangle]$. Then the following statements are equivalent:

2006/10/18

(I) Exactly one of the following holds

$$a <_Z Zb, \quad a = b, \quad b <_Z a$$

(II) Exactly one of the following holds

m+q < p+n, m+q = p+n, p+n < m+q

Clearly (II) follows from the fact that < satisfies trichotomy on ω . Hence (I) also holds.

Definition 9.20.

An integer $b \in \mathbb{Z}$ is positive iff $0_{\mathbb{Z}} <_{\mathbb{Z}} b$. An integer $b \in \mathbb{Z}$ is negative iff $b <_{\mathbb{Z}} 0_{\mathbb{Z}}$.

Lemma 9.21. For all $b \in \mathbb{Z}$, exactly one of the following holds:

- b is positive.
- *b* is negative
- $b = 0_{\mathbb{Z}}$.

Proof. An immediate consequence of trichotomy for $<_{\mathbb{Z}}$.

Exercise 9.22. For all $b \in \mathbb{Z}$, $b <_{\mathbb{Z}} 0_{\mathbb{Z}}$ iff $0_{\mathbb{Z}} <_{\mathbb{Z}} -b$.

Exercise 9.23. Suppose that $m, n \in \omega$ and that m < n. Then there exists $p \in \omega$ such that $n = m + p^+$. [Hint: argue by induction on p.]

Remark 9.24. Clearly ω is not *literally* a subset of \mathbb{Z} . However, \mathbb{Z} does contain an "isomorphic copy" of ω

Definition 9.25. Let $E: \omega \to \mathbb{Z}$ be the function defined by

$$E(n) = [\langle n, 0 \rangle].$$

Theorem 9.26. *E* is an injection of ω into \mathbb{Z} which satisfies the following properties for all $m, n \in \omega$:

- (a) $E(m+n) = E(m) +_{\mathbb{Z}} E(n)$.
- (b) $E(mn) = E(m) \cdot_{\mathbb{Z}} E(n).$
- (c) m < n iff $E(m) <_{\mathbb{Z}} E(n)$.

Proof. First we prove that E is an injection. So suppose that $m, n \in \omega$. Then

 $E(m) = E(n) \quad \text{implies} \quad [\langle m, 0 \rangle] = [\langle n, 0 \rangle]$ implies $\langle m, 0 \rangle \sim \langle n, 0 \rangle$ implies m + 0 = n + 0implies m = n.

Next we prove that (a) holds. Let $m, n \in \omega$. Then

$$E(m) +_{\mathbb{Z}} E(n) = [\langle m, 0 \rangle] +_{\mathbb{Z}} [\langle n, 0 \rangle]$$

= $[\langle m+n, 0+0 \rangle]$
= $[\langle m+n, 0 \rangle]$
= $E(m+n).$

The proofs of (b) and (c) are similar.

Theorem 9.27. For all $b \in \mathbb{Z}$, exactly one of the following holds:

- (i) $b = 0_Z Z$
- (ii) There exists $p \in \omega$ such that $b = E(p^+)$.
- (iii) There exists $p \in \omega$ such that $b = -E(p^+)$.

Proof. Let $b = [\langle m, n \rangle]$. There are three cases to consider.

Case 1 If m = n, then $\langle m, n \rangle \sim \langle 0, 0 \rangle$ and so $b = [\langle 0, 0 \rangle] = 0_{\mathbb{Z}}$.

Case 2 If m > n, then there exists $p \in \omega$ such that $m = n + p^+$. It follows that $\langle m, n \rangle = \sim \langle p^+, 0 \rangle$ and so $b = [\langle p^+, 0 \rangle] = E(p^+)$.

Case 3 If m < n, then there exists $p \in \omega$ such that $n = m + p^+$. It follows that $\langle m, n \rangle = \sim \langle 0, p^+ \rangle$ and so

$$b = [\langle 0, p^+ \rangle] = -[\langle p^+, 0 \rangle] = -E(p^+).$$

Theorem 9.28 (Cancellation Law for \mathbb{Z}). (a) For any $a, b, c \in \mathbb{Z}$,

 $a +_{\mathbb{Z}} c = b +_{\mathbb{Z}} c$ implies a = b.

• For any $a, b \in \mathbb{Z}$ and $0_{\mathbb{Z}} \neq c \in \mathbb{Z}$,

 $a \cdot_{\mathbb{Z}} c = b \cdot_{\mathbb{Z}} c$ implies a = b.

Proof. Reading Exercise Enderton, p. 99-100.

Notation From now on, we write $+, \cdot, <, 0, 1$ instead of $+_{\mathbb{Z}}, \cdot_{\mathbb{Z}}, <_{\mathbb{Z}}, 0_{\mathbb{Z}}, 1_{\mathbb{Z}}$. We also usually write ab instead of $a \cdot b$

2006/10/18