11 Construction of \mathbb{R}

Theorem 11.1. There does not exist $q \in \mathbb{Q}$ such that $q^2 = 2$.

Proof. Suppose that $q \in \mathbb{Q}$ satisfies $q^2 = 2$. Then we can suppose that q > 0 and express q = a/b, where $a, b \in \omega$ are relatively prime. Since

$$\frac{a^2}{b^2} = 2$$

we have that

$$a^2 = 2b^2.$$

It follows that 2|a; say a = 2c. Hence

$$4c^2 = 2b^2$$
$$2c^2 = 2b^2$$

This means that 2|b, which contradicts the assumption that a and b are relatively prime.

Theorem 11.2. There exists $r \in \mathbb{R}$ such that $r^2 = 2$.

Proof. Consider the continuous function $f: [1,2] \to \mathbb{R}$, defined by $f(x) = x^2$. Then f(1) = 1 and f(2) = 4. By the Intermediate Value Theorem, there exists $r \in [1,2]$ such that $r^2 = 2$.

Why is the Intermediate Value Theorem true? Intuitively because $\mathbb R$ "has no holes"... More precisely...

Definition 11.3. Suppose that $A \subseteq \mathbb{R}$.

- $r \in \mathbb{R}$ is an *upper bound* of A iff $a \leq r$ for all $a \in A$.
- A is bounded above iff there exists an upper bound for A.
- $r \in \mathbb{R}$ is a *least upper bound* of A iff the following conditions hold:
 - -r is an upper bound of A.
 - If s is an upper bound of A, then $r \leq s$.

Axiom 11.4 (Completeness). If $A \subseteq \mathbb{R}$ is nonempty and bounded above, then there exists a least upper bound of A.

Deepish Fact Completeness Axiom \Rightarrow Intermediate Value Theorem.

Remark 11.5. The analogue of the Completeness Axiom fails for \mathbb{Q} . *eg* consider

$$C = \{ q \in \mathbb{Q} \mid q \le 0 \text{ or } q^2 < 2 \}.$$

Then C is a nonempty subset of \mathbb{Q} which is bounded above but has no least upper bound. The least upper bound "should be" $\sqrt{2} \in \mathbb{R} \setminus \mathbb{Q}$. Our construction of \mathbb{R} will be such that

$$\{q \in \mathbb{Q} \mid q \le 0 \text{ or } q^2 < 2\} = \sqrt{2}.$$

Target We now want to extend \mathbb{Q} to a larger set of "numbers" \mathbb{R} so that the Completeness Axiom holds.

Definition 11.6. A *Dedekind cut* is a subset $x \subseteq \mathbb{Q}$ such that:

- $\emptyset \neq x \neq \mathbb{Q}$.
- x is "downward closed"; ie if $q \in x$ and r < q, then $r \in x$.
- x has no largest element.

Example 11.7. • For each $q \in QQ$, the set

$$E(q) = \{ r \in \mathbb{Q} \mid r < q \}$$

is a Dedakind cut.

•

$$\{r \in \mathbb{Q} \mid r \le 0 \text{ or } r^2 < 2\}$$

is a Dedekink cut.

Definition 11.8. \mathbb{R} is the set of Dedekind cuts.

Definition 11.9. We define the binary relation $<_{\mathbb{R}}$ on \mathbb{R} by

$$x <_{\mathbb{R}} y$$
 iff $x \subsetneq y$.

Theorem 11.10. $<_{\mathbb{R}}$ is a linear order on \mathbb{R} .

Proof. Suppose that $x \leq_{\mathbb{R}} y$ and $y \leq_{\mathbb{R}} z$. Then $x \subsetneq y$ and $y \subsetneq z$. It follows that $x \subsetneq z$ and so $x \leq_{\mathbb{R}} z$. Thus $\leq_{\mathbb{R}}$ is transitive.

Now we shall prove that $<_{\mathbb{R}}$ satisfies trichotomy. Let $x, y \in \mathbb{R}$. Clearly at most one of the following holds:

$$x \subsetneq y, \quad x = y, \quad y \subsetneq x.$$

Suppose that the first two fail; ie $x \not\subseteq y$. We must prove that $y \subsetneq x$.

Since $x \not\subseteq y$, there exists $r \in x \setminus y$. Consider any $q \in y$. If $r \leq q$, then $r \in y$ since y is downward closed, which is a contradiction. Thus q < r. Since x is downward closed, $q \in x$. Thus $y \subsetneq x$.

Theorem 11.11. If $A \subseteq \mathbb{R}$ is nonempty and bounded above, then there exists a least upper bound for A.

Proof. We shall prove that $\bigcup A$ is the least upper bound of A.

Claim. $\bigcup A \in \mathbb{R}$.

Proof. Let $x \in A$. Then $x \subseteq \bigcup A$ and so $\bigcup A \neq \emptyset$. Now let $z \in \mathbb{R}$ be an upper bound of A. Then $x \subseteq z$ for all $x \in A$ and so $\bigcup A \subseteq z$. Since $z \neq \mathbb{Q}$, it follows that $\bigcup A \neq \mathbb{Q}$.

Now suppose that $q \in \bigcup A$ and r < q. Then there exists $x \in A$ such that $q \in x$ and clearly $r \in x$. Thus $r \in bigcup A$. So $\bigcup A$ is downward closed.

Finally suppose that $q \in \bigcup A$ is the largest element. Then there exists $x \in A$ such that $q \in x$ and clearly q is the largest element of xm which is a contradiction. Hence $\bigcup A$ has no largest element.

Since $x \subseteq \bigcup A$ for all $x \in A$, it follows that $\bigcup A$ is an upper bound for A. By the above argument, if $z \in \mathbb{R}$ is any upper bound of A, then $\bigcup A \subseteq z$. Hence $\bigcup A$ is the least upper bound of A.

We next want to define an additive operation on \mathbb{R} . Note that

$$E(1) = \{r \in \mathbb{Q} \mid r < 1\} \\ E(2) = \{s \in \mathbb{Q} \mid s < 2\}$$

and hence

$$E(3) = \{t \in \mathbb{Q} \mid t < 3\} = \{r + s \mid r \in E(1) \text{ and } s \in E(2)\}.$$

This suggests we make the following definition.

Definition 11.12. We define the binary operation $+_{\mathbb{R}}$ on \mathbb{R} by

$$x +_{\mathbb{R}} y = \{ q + r \mid q \in x \text{ and } r \in y \}$$

Lemma 11.13. If $x, y \in \mathbb{R}$, then $x +_{\mathbb{R}} y \in \mathbb{R}$.

Proof. Since $x, y \neq \emptyset$, it follows that $x +_{\mathbb{R}} y \neq \emptyset$. To see that $x +_{\mathbb{R}} y \neq \mathbb{Q}$, choose some $q' \in \mathbb{Q} \setminus x$ and $r' \in \mathbb{Q} \setminus y$. Then we have that:

- q < q' for all $q \in x$
- r < r' for all $r \in y$

It follows that if $q \in x$ and $r \in y$, then

$$q + r < q' + r'$$

and so $q' + r' \notin x +_{\mathbb{R}} y$. Thus $x +_{\mathbb{R}} y \neq \mathbb{Q}$.

To see that $x +_{\mathbb{R}} y$ is downward closed, suppose that $t \in x +_{\mathbb{R}} y$ and p < t. Then there exist $q \in x$ and $r \in y$ such that t = q + r. Since

$$p < q + r$$

it follows that p - q < r and so $p - q \in y$. Hence

$$p = q + (p - q) \in x +_{\mathbb{R}} y$$

Finally we check that $x +_{\mathbb{R}} y$ has no largest element. Let $t \in x +_{\mathbb{R}} y$ be any element. Then there exists $q \in x$ and $r \in y$ such that t = q + r. Since x has no largest element, there exists $q < q' \in x$ and so

$$t = q + r < q' + r \in x +_{\mathbb{R}} y.$$

Theorem 11.14. For all $x, y, z \in \mathbb{R}$, we have that

 $x +_{\mathbb{R}} y = y +_{\mathbb{R}} x$ $(x +_{\mathbb{R}} y) +_{\mathbb{R}} z = x +_{\mathbb{R}} (y +_{\mathbb{R}} z).$

Proof. We just check the first equality.

$$x +_{\mathbb{R}} y = \{q + r \mid q \in x, r \in y\}$$
$$= \{r + q \mid r \in y, q \in x\}$$
$$= y +_{\mathbb{R}} x$$

Definition 11.15.

 $0_{\mathbb{R}} = \{ r \in \mathbb{Q} \mid r < 0 \}$

Theorem 11.16.

- (a) $0_{\mathbb{R}} \in \mathbb{R}$.
- (b) For all $x \in \mathbb{R}$, we have $x +_{\mathbb{R}} 0_{\mathbb{R}} = x$.

Proof. (a) is clear! To prove (b) we must prove that

$$\{r+s \mid r \in x \text{ and } s < 0\} = x.$$

Claim. $\{r + s \mid r \in x \text{ and } s < 0\} \subseteq x.$

Proof. Suppose that $r \in x$ and s < 0. Then r + s < r. Since x is downward closed, $r + s \in x$.

Claim. $x \subseteq \{r+s \mid r \in x \text{ and } s < 0\}.$

Proof. Let $p \in x$. Since x has no largest element, there exists $p < r \in x$. Thus p - r < 0 and

$$p = r + (p - r).$$

г		
н		
н		

Problem 11.17. How should we define $-\sqrt{2}$? Recall that

$$\sqrt{2} = \{q \in \mathbb{Q} \mid q < 0 \text{ or } q^2 < 2\}$$

We cannot define

$$-\sqrt{2} = \{q \in \mathbb{Q} \mid -q \in \sqrt{2}\}$$

because this is not downward closed. How about

$$-\sqrt{2} = \{q \in \mathbb{Q} \mid -q \notin \sqrt{2}\}$$

First Candidate: $-x = \{r \in \mathbb{Q} \mid -r \notin x\}$

Fatal flaw! Consider $E(1) = \{q \in \mathbb{Q} \mid q < 1\}$. Then

$$-E(1) = \{r \in \mathbb{Q} \mid -r \not< 1\}$$
$$= \{r \in \mathbb{Q} \mid r \le -1\} \notin \mathbb{R}$$

since it has a greatest element.

Definition 11.18. For any $x \in \mathbb{R}$, we define

$$-x = \{ r \in \mathbb{Q} \mid (\exists s > r) \ -s \notin x \}.$$

Example 11.19.

 $-E(1) = \{r \in \mathbb{Q} \mid r < -1\} \in \mathbb{R}.$

Theorem 11.20. For every $x \in \mathbb{R}$, we have:

(a) $-x \in \mathbb{R}$ (b) $x +_{\mathbb{R}} (-x) = 0_{\mathbb{R}}$

2006/10/25

Proof. To see that $-x \neq \emptyset$, choose some $t \notin x$ and let r = -t - 1. Then $-(-t) \notin x$ and r < -t. Hence $r \in -x$.

To see that $x \neq \mathbb{Q}$, choose any $p \in x$.

Claim. $-p \notin -x$

Proof. If s > -p, then -s < p and so $-s \in x$.

To see that -x is downward closed, suppose that $r \in -x$ and p < r. Then there exists s > r such that $-s \notin x$. But clearly s > p and so $p \in -x$.

To see that -x has no largest element, suppose that $r \in -x$. Then there exists s > rsuch that $-s \notin x$. Since \mathbb{Q} is a dense linear order, there exists $p \in \mathbb{Q}$ such that s > p > rand clearly $p \in -x$.

(b) We must prove that

$$\{q+r \mid q \in x \text{ and } (\exists s > r) - s \notin x\} = 0_{\mathbb{R}}.$$

Claim. $\{q + r \mid q \in x \text{ and } (\exists s > r) - s \notin x\} \subseteq 0_{\mathbb{R}}.$

Proof. Suppose q + r lies in the LHS set. Since $q \in x$ and $-s \notin x$, we have q < -s. Thus

$$q+r < -s+s = 0$$

and so $q + r \in 0_{\mathbb{R}}$.

Claim. $0_{\mathbb{R}} \subseteq \{q + r \mid q \in x \text{ and } (\exists s > r) - s \notin x\}.$

Proof. Suppose that $p \in 0_{\mathbb{R}}$. Then p < 0 and so -p > 0. It follows that -p/2 > 0. This implies that there exists $q \in x$ such that $q + (-p/2) \notin x$. [Why? If not, choose any $t \in x$. Then we see inductively that $t + n(-p/2) \in x$ for all $n \in \omega$. But this means that x contains arbitrarily large rational numbers and so $x = \mathbb{Q}$, which is a contradiction.] Let s = (p/2) - q, so that $s \notin x$. Since -p > -p/2 > 0, we have that

$$p - q < (p/2) - q = s$$

and so $p - q \in -x$. Also, $q \in x$ and

$$p = q + (p - q).$$

Now we want to define a multiplication operation on \mathbb{R} . Note that

$$E(2) = \{r \in \mathbb{Q} \mid r < 2\}$$
$$E(3) = \{s \in \mathbb{Q} \mid s < 3\}$$

and

$$E(6) = \{t \in \mathbb{Q} \mid t < 6\}$$

First guess

$$E(6) \stackrel{!}{=} \{ rs \mid r < 2 \text{ and } s < 3 \} \ni 10 = (-2)(-5)$$

Wrong!

$$E(6)\{rs \mid 0 \le r < 2 \text{ and } 0 \le s < 3\} \cup 0_{\mathbb{R}}$$

Also note that

 $E(-2) \cdot_{\mathbb{R}} E(-3) = E(2) \cdot_{\mathbb{R}} E(3)$

and

$$E(-2) \cdot_{\mathbb{R}} E(3) = E(2) \cdot_{\mathbb{R}} E(-3)$$

Definition 11.21. For each $x \in \mathbb{R}$, we define

$$|x| = \max\{x, -x\}$$
$$= x \cup (-x)$$

Exercise 11.22. For all $x \in \mathbb{R}$, $|x| \ge 0_{\mathbb{R}}$.

Definition 11.23. We define the binary operation $\cdot_{\mathbb{R}}$ on \mathbb{R} as follows.

(a) If $x, y \ge 0$, then

 $x \cdot_{\mathbb{R}} y = \{ rs \mid 0 \le r \in x \text{ and } 0 \le s \in y \} \cup 0_{\mathbb{R}}.$

(b) If $x, y < 0_{\mathbb{R}}$, then

$$x \cdot_{\mathbb{R}} y = |x| \cdot_{\mathbb{R}} |y|.$$

(c) If exactly one of x, y is negative, then

$$x \cdot_{\mathbb{R}} y = -(|x| \cdot_{\mathbb{R}} |y|).$$

It can be shown (with some difficulty!) that $\cdot_{\mathbb{R}}$ has the usual properties.

Definition 11.24. We define the function $E: \mathbb{Q} \to \mathbb{R}$ by

$$E(q) = \{ r \in \mathbb{Q} \mid r < q \}.$$

Then it can be shown that $\{E(q) \mid q \in \mathbb{Q}\}$ is an "isomorphic copy" of \mathbb{Q} in \mathbb{R} .

2006/10/25

12 Decimal expansions

We now define the connection between real numbers and infinite decimal expansions.

 $(*)n.a_1a_2\ldots a_t\ldots n\in\mathbb{Z}$

which do not end in infinitely many nines. (This is to avoid "duplicate expansions" such as

$$0.5000\ldots = 0.49999\ldots$$

First, to each decimal expansion of the form (*) we associate the Dedekind cut

 $\{q \in \mathbb{Q} \mid \text{There exists } t \ge 1 \text{ such that } q < n.a_1a_2...a_t\}$

Now let $x \in \mathbb{R}$ be any Dedekind cut. We describe how to compute the corresponding decimal expansion.

Case 1 Suppose that there exists $q = n.a_1 ... a_t \in \mathbb{Q}$ such that x = E(q). Then the decimal expansion of x is

```
n.a_1\ldots a_t 000\ldots
```

Case 2 We compute the decimal expansion of x inductively.

Step 0 Let $n \in \mathbb{Z}$ be the greatest integer such that $n \in x$.

Step 1 Let $0 \le a_1 \le 9$ be the greatest number such that $n.a_1 \in x$.

Step 2 Let $0 \le a_2 \le 9$ be the greatest number such that $n.a_1a_2 \in x$.

Step t + 1 Suppose inductively that $n.a_1a_2...a_t$ have been defined. Let $0 \le a_{t+1} \le 9$ be the greatest number such that $n.a_1a_2...a_ta_{t+1} \in x$.

13 Construction of \mathbb{C}

Finally we want to expand \mathbb{R} to a larger set of numbers \mathbb{C} in which the equation $x^2+1=0$ has a solution.

[Basic idea: let i be a solution of $x^2 + 1 = 0$. Thus $i^2 = -1$. Then each $z \in \mathbb{C}$ should have the form

$$z = x + iy$$

for some unique $x, y \in \mathbb{R}$.]

2006/10/25

Definition 13.1. The set of complex numbers is defined to be

$$\mathbb{C} = \mathbb{R} \times \mathbb{R}.$$

First we want to define an addition operation on \mathbb{C} . [Note that (a + ib) + (c + id) = (a + c) + i(b + d).]

Definition 13.2. We define the binary operation $+_{\mathbb{C}}$ on \mathbb{C} by

$$\langle a, b \rangle +_{\mathbb{C}} \langle c, d \rangle = \langle a + c, b + d \rangle.$$

Definition 13.3. $0_{\mathbb{C}} = \langle 0, 0 \rangle$.

Now we want to define a multiplication operation on \mathbb{C} . [Note that

$$(a+ib)(c+id) = ac+iad+ibc+i^{2}bd$$
$$= (ac-bd)+i(ad+bc).$$

Definition 13.4. We define the binary operation $\cdot_{\mathbb{C}}$ on \mathbb{C} by

$$\langle a, b \rangle \cdot_{\mathbb{C}} \langle c, d \rangle = \langle ac - bd, ad + bc \rangle.$$

Definition 13.5. $1_{\mathbb{C}} = \langle 1, 0 \rangle$.

Theorem 13.6. $\langle 0,1 \rangle \cdot_{\mathbb{C}} \langle 0,1 \rangle = -1_{\mathbb{C}}.$

Proof.

$$\begin{array}{rcl} \langle 0,1\rangle \cdot_{\mathbb{C}} \langle 0,1\rangle & = & \langle -1,0\rangle \\ \\ & = & -\langle 1,0\rangle \\ \\ & = & -1_{\mathbb{C}} \end{array}$$

Definition 13.7. Define the function $E \colon \mathbb{R} \to \mathbb{C}$ by $E(r) = \langle r, 0 \rangle$. Then $\{E(r) \mid r \in \mathbb{R}\}$ is an "isomorphic copy" of \mathbb{R} in \mathbb{C} .