
Math 361 Construction of R

11 Construction of R
Theorem 11.1. There does not exist q ∈ Q such that q2 = 2.

Proof. Suppose that q ∈ Q satisfies q2 = 2. Then we can suppose that q > 0 and express
q = a/b, where a, b ∈ ω are relatively prime. Since

a2

b2
= 2

we have that
a2 = 2b2.

It follows that 2|a; say a = 2c. Hence

4c2 = 2b2

2c2 = 2b2

This means that 2|b, which contradicts the assumption that a and b are relatively prime.

Theorem 11.2. There exists r ∈ R such that r2 = 2.

Proof. Consider the continuous function f : [1, 2] → R, defined by f(x) = x2. Then
f(1) = 1 and f(2) = 4. By the Intermediate Value Theorem, there exists r ∈ [1, 2] such
that r2 = 2.

Why is the Intermediate Value Theorem true? Intuitively because R “has no holes”...
More precisely...

Definition 11.3. Suppose that A ⊆ R.

• r ∈ R is an upper bound of A iff a ≤ r for all a ∈ A.

• A is bounded above iff there exists an upper bound for A.

• r ∈ R is a least upper bound of A iff the following conditions hold:

– r is an upper bound of A.

– If s is an upper bound of A, then r ≤ s.

Axiom 11.4 (Completeness). If A ⊆ R is nonempty and bounded above, then there
exists a least upper bound of A.

Deepish Fact Completeness Axiom ⇒ Intermediate Value Theorem.
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Remark 11.5. The analogue of the Completeness Axiom fails for Q. eg consider

C = {q ∈ Q | q ≤ 0 or q2 < 2}.

Then C is a nonempty subset of Q which is bounded above but has no least upper
bound. The least upper bound “should be”

√
2 ∈ RrQ. Our construction of R will be

such that
{q ∈ Q | q ≤ 0 or q2 < 2} =

√
2.

Target We now want to extend Q to a larger set of “numbers” R so that the Complete-
ness Axiom holds.

Definition 11.6. A Dedekind cut is a subset x ⊆ Q such that:

• ∅ 6= x 6= Q.

• x is “downward closed”; ie if q ∈ x and r < q, then r ∈ x.

• x has no largest element.

Example 11.7. • For each q ∈ QQ, the set

E(q) = {r ∈ Q | r < q}

is a Dedakind cut.

•
{r ∈ Q | r ≤ 0 or r2 < 2}

is a Dedekink cut.

Definition 11.8. R is the set of Dedekind cuts.

Definition 11.9. We define the binary relation <R on R by

x <R y iff x ( y.

Theorem 11.10. <R is a linear order on R.

Proof. Suppose that x <R y and y <R z. Then x ( y and y ( z. It follows that x ( z
and so x <R z. Thus <R is transitive.

Now we shall prove that <R satisfies trichotomy. Let x, y ∈ R. Clearly at most one
of the following holds:

x ( y, x = y, y ( x.

Suppose that the first two fail; ie x 6⊆ y. We must prove that y ( x.
Since x 6⊆ y, there exists r ∈ xry. Consider any q ∈ y. If r ≤ q, then r ∈ y since y

is downward closed, which is a contradiction. Thus q < r. Since x is downward closed,
q ∈ x. Thus y ( x.
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Theorem 11.11. If A ⊆ R is nonempty and bounded above, then there exists a least
upper bound for A.

Proof. We shall prove that
⋃
A is the least upper bound of A.

Claim.
⋃
A ∈ R.

Proof. Let x ∈ A. Then x ⊆ ⋃A and so
⋃
A 6= ∅. Now let z ∈ R be an upper bound

of A. Then x ⊆ z for all x ∈ A and so
⋃
A ⊆ z. Since z 6= Q, it follows that

⋃
A 6= Q.

Now suppose that q ∈ ⋃A and r < q. Then there exists x ∈ A such that q ∈ x and
clearly r ∈ x. Thus r ∈ bigcupA. So

⋃
A is downward closed.

Finally suppose that q ∈ ⋃A is the largest element. Then there exists x ∈ A such
that q ∈ x and clearly q is the largest element of xm which is a contradiction. Hence⋃
A has no largest element.

Since x ⊆ ⋃A for all x ∈ A, it follows that
⋃
A is an upper bound for A. By the

above argument, if z ∈ R is any upper bound of A, then
⋃
A ⊆ z. Hence

⋃
A is the

least upper bound of A.

We next want to define an additive operation on R. Note that

E(1) = {r ∈ Q | r < 1}
E(2) = {s ∈ Q | s < 2}

and hence
E(3) = {t ∈ Q | t < 3} = {r + s | r ∈ E(1) and s ∈ E(2)}.

This suggests we make the following definition.

Definition 11.12. We define the binary operation +R on R by

x+R y = {q + r | q ∈ x and r ∈ y}

.

Lemma 11.13. If x, y ∈ R, then x+R y ∈ R.

Proof. Since x, y 6= ∅, it follows that x+R y 6= ∅. To see that x +R y 6= Q, choose some
q′ ∈ Qrx and r′ ∈ Qry. Then we have that:

• q < q′ for all q ∈ x

• r < r′ for all r ∈ y
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It follows that if q ∈ x and r ∈ y, then

q + r < q′ + r′

and so q′ + r′ /∈ x+R y. Thus x+R y 6= Q.
To see that x +R y is downward closed, suppose that t ∈ x +R y and p < t. Then

there exist q ∈ x and r ∈ y such that t = q + r. Since

p < q + r

it follows that p− q < r and so p− q ∈ y. Hence

p = q + (p− q) ∈ x+R y.

Finally we check that x+R y has no largest element. Let t ∈ x+R y be any element.
Then there exists q ∈ x and r ∈ y such that t = q + r. Since x has no largest element,
there exists q < q′ ∈ x and so

t = q + r < q′ + r ∈ x+R y.

Theorem 11.14. For all x, y, z ∈ R, we have that

x+R y = y +R x

(x+R y) +R z = x+R (y +R z).

Proof. We just check the first equality.

x+R y = {q + r | q ∈ x, r ∈ y}
= {r + q | r ∈ y, q ∈ x}
= y +R x

Definition 11.15.
0R = {r ∈ Q | r < 0}

Theorem 11.16.

(a) 0R ∈ R.

(b) For all x ∈ R, we have x+R 0R = x.

Proof. (a) is clear! To prove (b) we must prove that

{r + s | r ∈ x and s < 0} = x.
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Claim. {r + s | r ∈ x and s < 0} ⊆ x.

Proof. Suppose that r ∈ x and s < 0. Then r + s < r. Since x is downward closed,
r + s ∈ x.

Claim. x ⊆ {r + s | r ∈ x and s < 0}.
Proof. Let p ∈ x. Since x has no largest element, there exists p < r ∈ x. Thus p− r < 0
and

p = r + (p− r).

Problem 11.17. How should we define −
√

2? Recall that
√

2 = {q ∈ Q | q < 0 or q2 < 2}.

We cannot define
−
√

2 = {q ∈ Q | −q ∈
√

2}
because this is not downward closed. How about

−
√

2 = {q ∈ Q | −q /∈
√

2}

First Candidate: −x = {r ∈ Q | −r /∈ x}

Fatal flaw! Consider E(1) = {q ∈ Q | q < 1}. Then

−E(1) = {r ∈ Q | −r 6< 1}
= {r ∈ Q | r ≤ −1} /∈ R

since it has a greatest element.

Definition 11.18. For any x ∈ R, we define

−x = {r ∈ Q | (∃s > r) − s /∈ x}.

Example 11.19.
−E(1) = {r ∈ Q | r < −1} ∈ R.

Theorem 11.20. For every x ∈ R, we have:

(a) −x ∈ R

(b) x+R (−x) = 0R
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Proof. To see that −x 6= ∅, choose some t /∈ x and let r = −t− 1. Then −(−t) /∈ x and
r < −t. Hence r ∈ −x.

To see that x 6= Q, choose any p ∈ x.

Claim. −p /∈ −x

Proof. If s > −p, then −s < p and so −s ∈ x.

To see that −x is downward closed, suppose that r ∈ −x and p < r. Then there
exists s > r such that −s /∈ x. But clearly s > p and so p ∈ −x.

To see that −x has no largest element, suppose that r ∈ −x. Then there exists s > r
such that −s /∈x. Since Q is a dense linear order, there exists p ∈ Q such that s > p > r
and clearly p ∈ −x.

(b) We must prove that

{q + r | q ∈ x and (∃s > r) − s /∈ x} = 0R.

Claim. {q + r | q ∈ x and (∃s > r) − s /∈ x} ⊆ 0R.

Proof. Suppose q+ r lies in the LHS set. Since q ∈ x and −s /∈x, we have q < −s. Thus

q + r < −s+ s = 0

and so q + r ∈ 0R.

Claim. 0R ⊆ {q + r | q ∈ x and (∃s > r) − s /∈ x}.

Proof. Suppose that p ∈ 0R. Then p < 0 and so −p > 0. It follows that −p/2 > 0.
This implies that there exists q ∈ x such that q+ (−p/2) /∈ x. [Why? If not, choose any
t ∈ x. Then we see inductively that t+ n(−p/2) ∈ x for all n ∈ ω. But this means that
x contains arbitrarily large rational numbers and so x = Q, which is a contradiction.]
Let s = (p/2)− q, so that s /∈ x. Since −p > −p/2 > 0, we have that

p− q < (p/2)− q = s

and so p− q ∈ −x. Also, q ∈ x and

p = q + (p− q).
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Now we want to define a multiplication operation on R. Note that

E(2) = {r ∈ Q | r < 2}

E(3) = {s ∈ Q | s < 3}
and

E(6) = {t ∈ Q | t < 6}

First guess

E(6)
?
= {rs | r < 2 and s < 3} 3 10 = (−2)(−5)

Wrong!
E(6){rs | 0 ≤ r < 2 and 0 ≤ s < 3} ∪ 0R

Also note that
E(−2) ·R E(−3) = E(2) ·R E(3)

and
E(−2) ·R E(3) = E(2) ·R E(−3)

Definition 11.21. For each x ∈ R, we define

|x| = max{x,−x}
= x ∪ (−x)

Exercise 11.22. For all x ∈ R, |x| ≥ 0R.

Definition 11.23. We define the binary operation ·R on R as follows.

(a) If x, y ≥ 0, then

x ·R y = {rs | 0 ≤ r ∈ x and 0 ≤ s ∈ y} ∪ 0R.

(b) If x, y < 0R, then
x ·R y = |x| ·R |y|.

(c) If exactly one of x, y is negative, then

x ·R y = −(|x| ·R |y|).

It can be shown (with some difficulty!) that ·R has the usual properties.

Definition 11.24. We define the function E : Q→ R by

E(q) = {r ∈ Q | r < q}.

Then it can be shown that {E(q) | q ∈ Q} is an “isomorphic copy” of Q in R.
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12 Decimal expansions

We now define the connection between real numbers and infinite decimal expansions.

(∗)n.a1a2 . . . at . . . n ∈ Z
which do not end in infinitely many nines. (This is to avoid “duplicate expansions”

such as
0.5000 . . . = 0.49999 . . . .)

First, to each decimal expansion of the form (∗) we associate the Dedekind cut

{q ∈ Q | There exists t ≥ 1 such that q < n.a1a2 . . . at}

Now let x ∈ R be any Dedekind cut. We describe how to compute the corresponding
decimal expansion.

Case 1 Suppose that there exists q = n.a1 . . . at ∈ Q such that x = E(q). Then the
decimal expansion of x is

n.a1 . . . at000 . . .

Case 2 We compute the decimal expansion of x inductively.

Step 0 Let n ∈ Z be the greatest integer such that n ∈ x.

Step 1 Let 0 ≤ a1 ≤ 9 be the greatest number such that n.a1 ∈ x.

Step 2 Let 0 ≤ a2 ≤ 9 be the greatest number such that n.a1a2 ∈ x.
. . .

Step t + 1 Suppose inductively that n.a1a2 . . . at have been defined. Let 0 ≤ at+1 ≤ 9
be the greatest number such that n.a1a2 . . . atat+1 ∈ x.

13 Construction of C
Finally we want to expand R to a larger set of numbers C in which the equation x2+1 = 0
has a solution.

[Basic idea: let i be a solution of x2 + 1 = 0. Thus i2 = −1. Then each z ∈ C should
have the form

z = x+ iy

for some unique x, y ∈ R.]
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Definition 13.1. The set of complex numbers is defined to be

C = R×R.

First we want to define an addition operation on C. [Note that (a+ ib) + (c+ id) =
(a+ c) + i(b+ d).]

Definition 13.2. We define the binary operation +C on C by

〈a, b〉+C 〈c, d〉 = 〈a+ c, b+ d〉.

Definition 13.3. 0C = 〈0, 0〉.

Now we want to define a multiplication operation on C. [Note that

(a+ ib)(c+ id) = ac+ iad+ ibc+ i2bd

= (ac− bd) + i(ad+ bc).]

Definition 13.4. We define the binary operation ·C on C by

〈a, b〉 ·C 〈c, d〉 = 〈ac− bd, ad+ bc〉.

Definition 13.5. 1C = 〈1, 0〉.

Theorem 13.6. 〈0, 1〉 ·C 〈0, 1〉 = −1C.

Proof.

〈0, 1〉 ·C 〈0, 1〉 = 〈−1, 0〉
= −〈1, 0〉
= −1C

Definition 13.7. Define the function E : R→ C by E(r) = 〈r, 0〉. Then {E(r) | r ∈ R}
is an “isomorphic copy” of R in C.
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