Math 361 Construction of R

11 Construction of R

Theorem 11.1. There does not exist ¢ € Q such that ¢*> = 2.

Proof. Suppose that ¢ € Q satisfies ¢> = 2. Then we can suppose that ¢ > 0 and express
q = a/b, where a,b € w are relatively prime. Since

i
we have that
a® = 2b°.
It follows that 2|a; say a = 2c. Hence
4¢ = 2°
2¢2 = 2b?

This means that 2|b, which contradicts the assumption that a and b are relatively prime.
O

Theorem 11.2. There exists r € R such that r* = 2.

Proof. Consider the continuous function f: [1,2] — R, defined by f(z) = x?. Then
f(1) =1and f(2) = 4. By the Intermediate Value Theorem, there exists r € [1, 2] such
that r? = 2. O

Why is the Intermediate Value Theorem true? Intuitively because R “has no holes”...
More precisely...

Definition 11.3. Suppose that A C R.
e r € Ris an upper bound of A iff a < r for all a € A.
e A is bounded above iff there exists an upper bound for A.
o r € Ris a least upper bound of A iff the following conditions hold:

— r is an upper bound of A.

— If s is an upper bound of A, then r < s.

Axiom 11.4 (Completeness). If A C R is nonempty and bounded above, then there
exists a least upper bound of A.

Deepish Fact Completeness Axiom = Intermediate Value Theorem.
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Remark 11.5. The analogue of the Completeness Axiom fails for QQ. eg consider
C={qeQlg<0orq <2}

Then C' is a nonempty subset of Q which is bounded above but has no least upper
bound. The least upper bound “should be” v/2 € R\Q. Our construction of R will be
such that

{geQlg<0org® <2} =V2

Target We now want to extend Q to a larger set of “numbers” R so that the Complete-
ness Axiom holds.

Definition 11.6. A Dedekind cut is a subset x C QQ such that:
e 1 is “downward closed”; ie if ¢ € x and r < ¢, then r € .

e x has no largest element.

Example 11.7. e For each ¢ € QQ), the set

E(q) ={reQlr<gq}
is a Dedakind cut.

{reQ|r<o0orr*<?2}
is a Dedekink cut.
Definition 11.8. R is the set of Dedekind cuts.
Definition 11.9. We define the binary relation <z on R by

r<gy iff xCy.
Theorem 11.10. <g is a linear order on R.

Proof. Suppose that x <g y and y <g 2. Then x C y and y C z. It follows that = C 2
and so z < z. Thus <p is transitive.
Now we shall prove that < satisfies trichotomy. Let x,y € R. Clearly at most one
of the following holds:
rCy, v=y, y&w

Suppose that the first two fail; ie 2  y. We must prove that y C x.

Since x € y, there exists r € x~\y. Consider any q € y. If r < ¢, then r € y since y
is downward closed, which is a contradiction. Thus ¢ < r. Since x is downward closed,
g€ x. Thusy C x. O
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Theorem 11.11. If A C R is nonempty and bounded above, then there exists a least
upper bound for A.

Proof. We shall prove that | J A is the least upper bound of A.
Claim. (JA € R.

Proof. Let z € A. Then x C [JA and so |JA # (). Now let 2z € R be an upper bound
of A. Then o C z for all x € A and so |JA C 2. Since z # Q, it follows that | J A # Q.
Now suppose that ¢ € | J A and r < ¢. Then there exists 2 € A such that ¢ € x and
clearly r € z. Thus r € bigcupA. So |J A is downward closed.
Finally suppose that ¢ € |J A is the largest element. Then there exists z € A such
that ¢ € z and clearly ¢ is the largest element of xm which is a contradiction. Hence
\J A has no largest element. O]

Since x C (J A for all z € A, it follows that [ J A is an upper bound for A. By the
above argument, if z € R is any upper bound of A, then |JA C 2. Hence |J A is the
least upper bound of A. O

We next want to define an additive operation on R. Note that

E(1l) = {reQ|r<1}
E2) = {s€Q|s<?2}

and hence
EB)={tecQ|t<3}={r+s|re E(l) and s € E(2)}.

This suggests we make the following definition.

Definition 11.12. We define the binary operation 4+ on R by

r+ry={¢+r|ge€randrey}

Lemma 11.13. Ifx,y € R, then x +ry € R.

Proof. Since z,y # 0, it follows that « +g y # 0. To see that = +g y # Q, choose some
¢ € Q~x and ' € Q\y. Then we have that:

e g< ¢ forallqex

e r<r'forallrey
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It follows that if ¢ € z and r € y, then
q+r<q -+

and so ¢ +r'" ¢ x+ry. Thus x +ry # Q.
To see that x +g y is downward closed, suppose that ¢ € © +r y and p < t. Then
there exist ¢ € x and r € y such that ¢t = ¢ + r. Since

p<qg+r
it follows that p — g < r and so p — g € y. Hence
p=q+(p—q €x+ry.

Finally we check that x 4+ v has no largest element. Let t € x +r y be any element.
Then there exists ¢ € x and r € y such that t = ¢ + r. Since z has no largest element,
there exists ¢ < ¢’ € x and so

t=q+r<qd+rexr+py. O
Theorem 11.14. For all x,y,z € R, we have that
TARY =Y +rT
(x+rY) tr 2= +r (¥ +r 2).
Proof. We just check the first equality.

r+ry = {q+r|qex,rey}
= {r+q|reyqcuz}
= yﬁw:

Definition 11.15.
g ={reQ|r<0}

Theorem 11.16.
(CL) Or € R.
(b) For all x € R, we have x +g O = x.

Proof. (a) is clear! To prove (b) we must prove that

{r+s|rezands<0}=uzx.

2006,/10/25 4



Math 361 Construction of R

Claim. {r+s|r €z and s <0} C x.

Proof. Suppose that r € x and s < 0. Then r + s < r. Since x is downward closed,
r+seux. ]

Claim. z C {r+s|r €z and s < 0}.

Proof. Let p € x. Since x has no largest element, there exists p <r € x. Thusp—r <0
and

p=r+({p-—r).

Problem 11.17. How should we define —v/2? Recall that
V2={qeQlg<0orq¢ <2}

We cannot define

—V2={qeQ|-qeV2}

because this is not downward closed. How about

—V2={qeQ|—q¢V2}

First Candidate: —x ={re€ Q| —r ¢z}
Fatal flaw! Consider E(1) = {g € Q| ¢ < 1}. Then

—EQ1) = {reQ|-r£1}
= {reQ|r<—-1}¢R
since it has a greatest element.
Definition 11.18. For any x € R, we define
—z={reQ|@3s>r) —s¢uz}.

Example 11.19.
—E1)={reQ|r<-1} R

Theorem 11.20. For every x € R, we have:
(a) —z €R

(b) z+gr (—x) = Og
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Proof. To see that —z # (), choose some ¢ ¢ x and let r = —t — 1. Then —(—t) ¢ z and
r < —t. Hence r € —x.
To see that x # Q, choose any p € .

Claim. —p ¢ —x
Proof. If s > —p, then —s < p and so —s € . O

To see that —x is downward closed, suppose that r € —x and p < r. Then there
exists s > r such that —s ¢ x. But clearly s > p and so p € —z.

To see that —x has no largest element, suppose that » € —x. Then there exists s > r
such that —s¢ x. Since Q is a dense linear order, there exists p € Q such that s > p > r
and clearly p € —x.

(b) We must prove that

{¢+r|qge€xand (Is >r) —s¢z} =Og.
Claim. {¢+r|qg€zand (Is >r) —s¢ z} C Og.
Proof. Suppose g+ lies in the LHS set. Since ¢ € x and —s¢ x, we have ¢ < —s. Thus
g+r<-—-s+s=0
and so ¢ + 7 € Og. O
Claim. O C{¢+7r|g€zvand (Is>r) —s¢x}.

Proof. Suppose that p € Og. Then p < 0 and so —p > 0. It follows that —p/2 > 0.
This implies that there exists ¢ € x such that ¢+ (—p/2) ¢ x. [Why? If not, choose any
t € x. Then we see inductively that t +n(—p/2) € z for all n € w. But this means that
x contains arbitrarily large rational numbers and so z = Q, which is a contradiction.]
Let s = (p/2) — ¢, so that s ¢ x. Since —p > —p/2 > 0, we have that

p—a<(p/2)—q=s
and so p —q € —x. Also, ¢ € x and

p=q+(—q).
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Now we want to define a multiplication operation on R. Note that
E2)={reQ|r<2}
EB)={seQ|s<3}

and

E@)={tcQ|t<6)

First guess
E(6) < {rs|r <2and s <3} 310 = (-2)(-5)

Wrong!
E6){rs|0<r<2and0<s<3}U0g

Also note that
and

E(-2) g E(3) = E(2) g E(-3)
Definition 11.21. For each x € R, we define

lz| = max{z, -z}
= zU(—x)

Exercise 11.22. For all z € R, |z| > Og.
Definition 11.23. We define the binary operation -g on R as follows.
(a) If z,y > 0, then

rry={rs|0<rexand 0<sey}UOlg.

(b) If z,y < Og, then
zry=|z| &yl

(c) If exactly one of z,y is negative, then
zry = —(z| &yl
It can be shown (with some difficulty!) that -g has the usual properties.
Definition 11.24. We define the function £: Q — R by
E(q) ={reQlr <q}.

Then it can be shown that {E(q) | ¢ € Q} is an “isomorphic copy” of Q in R.
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12 Decimal expansions

We now define the connection between real numbers and infinite decimal expansions.

(¥)n.ajag...a;. .. n € 7

which do not end in infinitely many nines. (This is to avoid “duplicate expansions”
such as
0.5000...=0.49999....)

First, to each decimal expansion of the form (x) we associate the Dedekind cut
{q € Q| There exists t > 1 such that ¢ < n.ajas...a;}

Now let x € R be any Dedekind cut. We describe how to compute the corresponding
decimal expansion.

Case 1 Suppose that there exists ¢ = n.ay...a; € Q such that © = E(q). Then the

decimal expansion of z is
n.ai...a;000...

Case 2 We compute the decimal expansion of x inductively.

Step 0 Let n € Z be the greatest integer such that n € z.

Step 1 Let 0 < a; <9 be the greatest number such that n.a; € x.
Step 2 Let 0 < as <9 be the greatest number such that n.ajas € x.

Step t 4+ 1 Suppose inductively that n.ajas . ..a; have been defined. Let 0 < a;q <9
be the greatest number such that n.aqas...aa;411 € x.

13 Construction of C

Finally we want to expand R to a larger set of numbers C in which the equation z2+1 = 0
has a solution.
[Basic idea: let i be a solution of 2% +1 = 0. Thus > = —1. Then each z € C should
have the form
z=x+1y

for some unique z,y € R.]
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Definition 13.1. The set of complex numbers is defined to be
C =RxR.

First we want to define an addition operation on C. [Note that (a + ib) + (¢ +id) =
(a+c)+i(b+d).]

Definition 13.2. We define the binary operation +¢ on C by
(a,b) +¢ (¢,d) = (a+ ¢, b+ d).
Definition 13.3. 0¢c = (0, 0).
Now we want to define a multiplication operation on C. [Note that

(a+ib)(c+1id) = ac+iad+ ibc + i*bd
= (ac—bd) +i(ad + bc).]

Definition 13.4. We define the binary operation -¢ on C by
(a,b) -c {¢,d) = (ac — bd, ad + bc).

Definition 13.5. 1¢ = (1,0).

Theorem 13.6. (0,1) -¢ (0,1) = —1¢.

Proof.

<07 1> C <Oa 1> = <_170>
- _<170>
= _1(C

O

Definition 13.7. Define the function £: R — C by E(r) = (r,0). Then {E(r)|r € R}
is an “isomorphic copy” of R in C.
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