Math 361 Cardinalities

14 Cardinalities

Question 14.1. When do two (possibly infinite) sets A, B have the same size?

Definition 14.2 (Cantor). The set A is equinumerous to the set B, written A ~ B,
iff there exists a bijection f: A — B.

Example 14.3. Let E = {0,2,4,...} be the set of even natural numbers. Then w =~ E.

Proof. We can define a bijection f: w — E by f(n) = 2n. O

Important remark It is often difficult to explicitly define a bijection f: w — A. But
another technique is usually easier. Suppose that f: w — A is a bijection. For each
n € w, let a, = f(n). Then

ap, 1,09, ... ,0p, ...

is a list which contains each element of A exactly once. Conversely, if such a list exists,
then we can define a bijection f: w — A by f(n) = a,. Thus w ~ A iff we can enumerate
the elements of A in such a list.

Example 14.4. w =~ 7Z.
Proof. We can list the elements of Z as follows:

0,1,-1,2,-2,....,n,—n, ... [
Example 14.5. w ~ Q

Proof. We proceed in two steps.

Step 1 We will first show that w = Q" = {¢ € Q| ¢ > 0}. Consider an array where the
ij*™ entry is the ratio j/i. Work through the array by travelling along lines of slope 1,
adding each rational encountered to the list if it has not already occured earlier. The
resulting list shows that w ~ Q.

Step 2 We have just shown that there exists a bijection f: w — Q7. Hence we can list
the elements of Q as follows:

0, f(0)7 _f(0)7f(1)7 _f(1)7 s >f(n)> _f(n)7 T
Hence w ~ Q. O

Theorem 14.6 (Cantor, 1873). w % R.
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Proof. For the sake of contradiction, assume that w &~ R. Then we can list the elements
of R; say
TosT1y ooy Thy.n.

For each n € w, let

'n = Z2n-Q0nA1nA2nA3n - .- At p - - -

be the decimal expansion of r,,. Thus z,, € Z and 0 < a;,, <9 for each ¢t > 0. Consider
the array where the ij™ entry is a; ; and look at the diagonal entries ay ;.
Define s = 0.bgb1bs ... b; ... € R by

bt = 7 if Qg t 7£ 7
= 5 if At = 7.

Then for each n € w, s # r, since s and 7, differ on their n'® decimal place. But this
contradicts our assumption that every element of R occurs on the list. Hence w ¢ R. [

Definition 14.7. The set A is dominated by the set B, written A < B, iff there exists
an injection f: A — B.

Definition 14.8. A< Biff A< B and A # B.
Theorem 14.9. w < R

Proof. We can define an injection f: w — R by f(n) = n. Thus w < R. Since w % R,
w =< R. O

Theorem 14.10 (Cantor 1973). If A is any set, then A < P(A).

Proof. We can define an injection f: A — P(A) by f(a) = {a}. Hence A < P(A).
To see that A % P(A), we must prove that there does not exist a bijection g: A —
P(A). Let g: A — P(A) be any function. Define B C A by

a€B iff ad¢g(a).

Then B € P(A); and for each a € A, B # g(a) since B and g(a) differ on whether they
contain the element a. Hence g is not a surjection. OJ

Corollary 14.11. w < P(w) < P(P(w)) < P(P(P(w))) < ... O
We now develop some general theory.

Theorem 14.12. For any sets A, B,C, we have:
e Ax A
o [fA~ B, then B~ A.

2006/11/15 2



Math 361 Cardinalities

o [fA~ B and B~ C, then A= C. [

Theorem 14.13 (Schroder-Bernstein). If A < B and B < A, then A~ B.

Proof delayed

Theorem 14.14 (Zermelo’s Theorem). For any sets A and B, either A < B or
B =< A.

Proof delayed
In fact we shall need to introduce another axiom before we can prove Zermelo’s
Theorem.

Definition 14.15.

The set A is finite iff there exists n € w such that A ~ n.

The set A is countably infinite iff A ~ w.

The set A is countable iff A is finite or countably infinite.

The set A is uncountable iff A is not countable.

Example 14.16.
e (Q is countable.
e R is uncountable.
e P(w) is uncountable.

Before proving the Schroder-Bernstein Theorem, we shall give a number of applica-
tions.

Theorem 14.17. w =~ Q.

Proof. First we define an injection f: w — Q by f(n) =n. Thus w < Q.
Next we define an injection g: Q — w as follows. Note that each 0 # ¢ € Q can be
expressed uniquely in the form ¢ = €7, where

e a,b € w are relatively prime

o ¢ — +1.
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Hence we can define an injection g: Q — w be

g(eg) — 26+13a5b
9(0) =1
Thus Q = w. By Schroder-Bernstein, w =~ Q. O

Next we shall prove that R ~ P(w). We shall make use of the following result.
Lemma 14.18. (0,1) ~ R.
Proof. Let f: (0,1) — R be the function defined by

f(z) = tan(rz — (7/2)).

By Calc I, f is a bijection. O
Exercise 14.19. If a < b are real numbers, then

e (a,b) =~ (0,1)

e [a,b] = (0,1).
Theorem 14.20. R =~ P(w).

Proof. Since R = (0, 1), it is enough to show that (0,1) ~ P(w). We will make use of
the fact that each r € (0, 1) has a unique decimal expansion

(*) r:O,CLQCLlaQ...CLn...

which does not end in an infinite sequence of nines.

Step 1 First we prove that (0,1) < P(w). Let

p0:27p1:37p2:57"'7pna"'

be the increasing enumeration of the primes. Then we can define a function f: (0,1) —
P(w) as follows: If
r=0,apa1az...a,... € (0,1)
then
Fr)={pe" o)
Clearly f is an injection and so (0,1) < P(w).

Step 2 Now we show that P(w) < (0,1). We define a function ¢g: P(w) — (0,1) as
follows. If ) # S € P(w), then
g(S) =0.5081...Sp ...

where s, = 1if n € S and s, = 0if n ¢ S. We define g()) = 0.5. Clearly ¢ is an
injection and so P(w) < (0, 1).
By Schroder-Bernstein, (0,1) ~ P(w). O
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Definition 14.21. Fin(N) is the set of finite subsets of N.
Remark 14.22. Clearly we have that N < Fin(N) < P(N).
Theorem 14.23. N =~ Fin(N).

Proof. Define the function f: N — Fin(N) by f(n) = {n}. Clearly f is an injection and
so N < Fin(N).

Next we define a function g: Fin(N) — N as follows. Let pg, p1,p2,-..,Pn,-.. be
the increasing enumeration of the primes. Suppose that ) # S € Fin(N) and let S =

{50,581, -,Sn}, where sp < s1 < ... < s,. Then
15141 bl
9(S)=p i

Finally we define g(f) = 0. Clearly ¢ is an injection and so Fin(N) < N.
By Schréder-Bernstein, N ~ Fin(N). O

Recall that is A, B are sets, then
BA={f|f: A— B}.
Theorem 14.24. NN =~ P(w).

Proof. First we define a function f: P(w) — NN as follows. For each S C N, the
characteristic function of S is the function

xs: N—{0,1}

defined by xs(n) = 1ifn € S and xg(n) =0ifn¢ S. If S € P(N), then we define
f(S) = xs. Clearly f is an injection and so P(N) < NV,

Next we define a function g: NN — P(w) as follows. Let pg,pi1,...,Pn, ... be the
increasing enumeration of the primes. If » € N, then we define

g(6) = {pg " py O L ppet Ly
Clearly g is an injection and so N¥ < P(N).
By Schroder-Bernstein, NN ~ P(N). O
Heuristic Principle Let A be a “naturally occurring” set.
e If each a € A is determined by a finite amount of data, then A ~ N.

e If ecach a € A is determined by infinitely many “independent” pieces of data, then
A~ P(N).
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Exercise 14.25. Let Inj(N) be the set of injective functions ¢: N — N. Prove that
Inj(N) =~ P(N).

Exercise 14.26. Prove that NxN ~ N.

Continuum Hypothesis (CH) If A C R is any infinite subset, then either A ~ N or
A=~R.

Important Remark It is known that the axioms of set theory can neither prove nor
disprove CH.

Exercise 14.27. If A~ B and C' =~ D, then AxC ~ BxD.
Theorem 14.28. RxR ~ R.

Proof. We have already proven that R ~ (0,1). By the exercise, RxR = (0,1)x(0, 1).
Hence it it enough to prove that (0,1)x(0,1) = (0,1).
First we define a function f: (0,1) — (0,1)x(0,1) by f(r) = (r,1/2). Clearly f is
an injection and so (0,1) < (0,1)x(0,1).
Next we define a function g: (0,1)x(0,1) — (0,1) as follows. Suppose that (r,s) €
(0,1)x(0,1) and let
r = 0.apa1a2...a, ...

SZOboblebn

be the decimal expansions. Then
g(r,s) = 0.apbgarby . . .ayb, ...

Clearly g is an injection and so (0,1)x(0,1) =< (0,1).
By Schroder-Bernstein, (0,1)x(0,1) < (0,1). O
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