
Math 361 Cardinalities

14 Cardinalities

Question 14.1. When do two (possibly infinite) sets A,B have the same size?

Definition 14.2 (Cantor). The set A is equinumerous to the set B, written A ≈ B,
iff there exists a bijection f : A→ B.

Example 14.3. Let E = {0, 2, 4, . . .} be the set of even natural numbers. Then ω ≈ E.

Proof. We can define a bijection f : ω → E by f(n) = 2n.

Important remark It is often difficult to explicitly define a bijection f : ω → A. But
another technique is usually easier. Suppose that f : ω → A is a bijection. For each
n ∈ ω, let an = f(n). Then

a0, a1, a2, . . . , an, . . .

is a list which contains each element of A exactly once. Conversely, if such a list exists,
then we can define a bijection f : ω → A by f(n) = an. Thus ω ≈ A iff we can enumerate
the elements of A in such a list.

Example 14.4. ω ≈ Z.

Proof. We can list the elements of Z as follows:

0, 1,−1, 2,−2, . . . , n,−n, . . .

Example 14.5. ω ≈ Q

Proof. We proceed in two steps.

Step 1 We will first show that ω ≈ Q+ = {q ∈ Q | q > 0}. Consider an array where the
ijth entry is the ratio j/i. Work through the array by travelling along lines of slope 1,
adding each rational encountered to the list if it has not already occured earlier. The
resulting list shows that ω ≈ Q+.

Step 2 We have just shown that there exists a bijection f : ω → Q+. Hence we can list
the elements of Q as follows:

0, f(0),−f(0), f(1),−f(1), . . . , f(n),−f(n), . . .

Hence ω ≈ Q.

Theorem 14.6 (Cantor, 1873). ω 6≈ R.
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Proof. For the sake of contradiction, assume that ω ≈ R. Then we can list the elements
of R; say

r0, r1, . . . , rn, . . .

For each n ∈ ω, let
rn = zn.a0,na1,na2,na3,n . . . at,n . . .

be the decimal expansion of rn. Thus zn ∈ Z and 0 ≤ at,n ≤ 9 for each t ≥ 0. Consider
the array where the ijth entry is ai,j and look at the diagonal entries at,t.

Define s = 0.b0b1b2 . . . bt . . . ∈ R by

bt = 7 if at,t 6= 7

= 5 if at,t = 7.

Then for each n ∈ ω, s 6= rn since s and rn differ on their nth decimal place. But this
contradicts our assumption that every element of R occurs on the list. Hence ω 6≈ R.

Definition 14.7. The set A is dominated by the set B, written A ¹ B, iff there exists
an injection f : A→ B.

Definition 14.8. A ≺ B iff A ¹ B and A 6≈ B.

Theorem 14.9. ω ≺ R

Proof. We can define an injection f : ω → R by f(n) = n. Thus ω ¹ R. Since ω 6≈ R,
ω ≺ R.

Theorem 14.10 (Cantor 1973). If A is any set, then A ≺ P(A).

Proof. We can define an injection f : A→ P(A) by f(a) = {a}. Hence A ¹ P(A).
To see that A 6≈ P(A), we must prove that there does not exist a bijection g : A →

P(A). Let g : A→ P(A) be any function. Define B ⊆ A by

a ∈ B iff a /∈ g(a).

Then B ∈ P(A); and for each a ∈ A, B 6= g(a) since B and g(a) differ on whether they
contain the element a. Hence g is not a surjection.

Corollary 14.11. ω ≺ P(ω) ≺ P(P(ω)) ≺ P(P(P(ω))) ≺ . . .

We now develop some general theory.

Theorem 14.12. For any sets A,B,C, we have:

• A ≈ A

• If A ≈ B, then B ≈ A.
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• If A ≈ B and B ≈ C, then A ≈ C.

Theorem 14.13 (Schröder-Bernstein). If A ¹ B and B ¹ A, then A ≈ B.

Proof delayed

Theorem 14.14 (Zermelo’s Theorem). For any sets A and B, either A ¹ B or
B ¹ A.

Proof delayed
In fact we shall need to introduce another axiom before we can prove Zermelo’s

Theorem.

Definition 14.15.

• The set A is finite iff there exists n ∈ ω such that A ≈ n.

• The set A is countably infinite iff A ≈ ω.

• The set A is countable iff A is finite or countably infinite.

• The set A is uncountable iff A is not countable.

Example 14.16.

• Q is countable.

• R is uncountable.

• P(ω) is uncountable.

Before proving the Schröder-Bernstein Theorem, we shall give a number of applica-
tions.

Theorem 14.17. ω ≈ Q.

Proof. First we define an injection f : ω → Q by f(n) = n. Thus ω ≺ Q.
Next we define an injection g : Q → ω as follows. Note that each 0 6= q ∈ Q can be

expressed uniquely in the form q = εa
b
, where

• a, b ∈ ω are relatively prime

• ε = ±1.
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Hence we can define an injection g : Q→ ω be

g(ε
a

b
) = 2ε+13a5b

g(0) = 1

Thus Q ¹ ω. By Schröder-Bernstein, ω ≈ Q.

Next we shall prove that R ≈ P(ω). We shall make use of the following result.

Lemma 14.18. (0, 1) ≈ R.

Proof. Let f : (0, 1)→ R be the function defined by

f(x) = tan(πx− (π/2)).

By Calc I, f is a bijection.

Exercise 14.19. If a < b are real numbers, then

• (a, b) ≈ (0, 1)

• [a, b] ≈ (0, 1).

Theorem 14.20. R ≈ P(ω).

Proof. Since R ≈ (0, 1), it is enough to show that (0, 1) ≈ P(ω). We will make use of
the fact that each r ∈ (0, 1) has a unique decimal expansion

(∗) r = 0, a0a1a2 . . . an . . .

which does not end in an infinite sequence of nines.

Step 1 First we prove that (0, 1) ¹ P(ω). Let

p0 = 2, p1 = 3, p2 = 5, . . . , pn, . . .

be the increasing enumeration of the primes. Then we can define a function f : (0, 1)→
P(ω) as follows: If

r = 0, a0a1a2 . . . an . . . ∈ (0, 1)

then
f(r) = {pa0+1

0 , pa1+1
1 , . . . , pan+1

n , . . .}
Clearly f is an injection and so (0, 1) ¹ P(ω).

Step 2 Now we show that P(ω) ¹ (0, 1). We define a function g : P(ω) → (0, 1) as
follows. If ∅ 6= S ∈ P(ω), then

g(S) = 0.s0s1 . . . sn . . .

where sn = 1 if n ∈ S and sn = 0 if n /∈ S. We define g(∅) = 0.5. Clearly g is an
injection and so P(ω) ¹ (0, 1).

By Schröder-Bernstein, (0, 1) ≈ P(ω).
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Definition 14.21. Fin(N) is the set of finite subsets of N.

Remark 14.22. Clearly we have that N ¹ Fin(N) ¹ P(N).

Theorem 14.23. N ≈ Fin(N).

Proof. Define the function f : N→ Fin(N) by f(n) = {n}. Clearly f is an injection and
so N ¹ Fin(N).

Next we define a function g : Fin(N) → N as follows. Let p0, p1, p2, . . . , pn, . . . be
the increasing enumeration of the primes. Suppose that ∅ 6= S ∈ Fin(N) and let S =
{s0, s1, . . . , sn}, where s0 < s1 < . . . < sn. Then

g(S) = ps0+1
0 ps1+1

1 . . . psn+1
n .

Finally we define g(∅) = 0. Clearly g is an injection and so Fin(N) ¹ N.
By Schröder-Bernstein, N ≈ Fin(N).

Recall that is A,B are sets, then

BA = {f | f : A→ B}.

Theorem 14.24. NN ≈ P(ω).

Proof. First we define a function f : P(ω) → NN as follows. For each S ⊆ N, the
characteristic function of S is the function

χS : N→ {0, 1}

defined by χS(n) = 1 if n ∈ S and χS(n) = 0 if n /∈ S. If S ∈ P(N), then we define
f(S) = χS. Clearly f is an injection and so P(N) ¹ NN.

Next we define a function g : NN → P(ω) as follows. Let p0, p1, . . . , pn, . . . be the
increasing enumeration of the primes. If φ ∈ NN, then we define

g(φ) = {pφ(0)+1
0 , p

φ(1)+1
1 , . . . , pφ(n)+1

n , . . .}.

Clearly g is an injection and so NN ¹ P(N).
By Schröder-Bernstein, NN ≈ P(N).

Heuristic Principle Let A be a “naturally occurring” set.

• If each a ∈ A is determined by a finite amount of data, then A ≈ N.

• If each a ∈ A is determined by infinitely many “independent” pieces of data, then
A ≈ P(N).
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Exercise 14.25. Let Inj(N) be the set of injective functions φ : N → N. Prove that
Inj(N) ≈ P(N).

Exercise 14.26. Prove that N×N ≈ N.

Continuum Hypothesis (CH) If A ⊂ R is any infinite subset, then either A ≈ N or
A ≈ R.

Important Remark It is known that the axioms of set theory can neither prove nor
disprove CH.

Exercise 14.27. If A ≈ B and C ≈ D, then A×C ≈ B×D.

Theorem 14.28. R×R ≈ R.

Proof. We have already proven that R ≈ (0, 1). By the exercise, R×R ≈ (0, 1)×(0, 1).
Hence it it enough to prove that (0, 1)×(0, 1) ≈ (0, 1).

First we define a function f : (0, 1) → (0, 1)×(0, 1) by f(r) = 〈r, 1/2〉. Clearly f is
an injection and so (0, 1) ¹ (0, 1)×(0, 1).

Next we define a function g : (0, 1)×(0, 1) → (0, 1) as follows. Suppose that 〈r, s〉 ∈
(0, 1)×(0, 1) and let

r = 0.a0a1a2 . . . an . . .

s = 0.b0b1b2 . . . bn . . .

be the decimal expansions. Then

g(r, s) = 0.a0b0a1b1 . . . anbn . . .

Clearly g is an injection and so (0, 1)×(0, 1) ¹ (0, 1).
By Schröder-Bernstein, (0, 1)×(0, 1) ¹ (0, 1).
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