14 Cardinalities

Question 14.1. When do two (possibly infinite) sets A, B have the same size?

Definition 14.2 (Cantor). The set A is equinumerous to the set B, written $A \approx B$, iff there exists a bijection $f: A \to B$.

Example 14.3. Let $\mathbb{E} = \{0, 2, 4, \ldots\}$ be the set of even natural numbers. Then $\omega \approx \mathbb{E}$.

Proof. We can define a bijection $f: \omega \to \mathbb{E}$ by f(n) = 2n.

Important remark It is often difficult to explicitly define a bijection $f: \omega \to A$. But another technique is usually easier. Suppose that $f: \omega \to A$ is a bijection. For each $n \in \omega$, let $a_n = f(n)$. Then

$$a_0, a_1, a_2, \ldots, a_n, \ldots$$

is a list which contains each element of A exactly once. Conversely, if such a list exists, then we can define a bijection $f: \omega \to A$ by $f(n) = a_n$. Thus $\omega \approx A$ iff we can enumerate the elements of A in such a list.

Example 14.4. $\omega \approx \mathbb{Z}$.

Proof. We can list the elements of \mathbb{Z} as follows:

$$0, 1, -1, 2, -2, \dots, n, -n, \dots$$

Example 14.5. $\omega \approx \mathbb{Q}$

Proof. We proceed in two steps.

Step 1 We will first show that $\omega \approx \mathbb{Q}^+ = \{q \in \mathbb{Q} \mid q > 0\}$. Consider an array where the ij^{th} entry is the ratio j/i. Work through the array by travelling along lines of slope 1, adding each rational encountered to the list if it has not already occured earlier. The resulting list shows that $\omega \approx \mathbb{Q}^+$.

Step 2 We have just shown that there exists a bijection $f: \omega \to \mathbb{Q}^+$. Hence we can list the elements of \mathbb{Q} as follows:

$$0, f(0), -f(0), f(1), -f(1), \dots, f(n), -f(n), \dots$$

Hence $\omega \approx \mathbb{Q}$.

Theorem 14.6 (Cantor, 1873). $\omega \not\approx \mathbb{R}$.

Proof. For the sake of contradiction, assume that $\omega \approx \mathbb{R}$. Then we can list the elements of \mathbb{R} ; say

$$r_0, r_1, \ldots, r_n, \ldots$$

For each $n \in \omega$, let

$$r_n = z_n . a_{0,n} a_{1,n} a_{2,n} a_{3,n} \dots a_{t,n} \dots$$

be the decimal expansion of r_n . Thus $z_n \in \mathbb{Z}$ and $0 \le a_{t,n} \le 9$ for each $t \ge 0$. Consider the array where the ij^{th} entry is $a_{i,j}$ and look at the diagonal entries $a_{t,t}$.

Define $s = 0.b_0 b_1 b_2 \dots b_t \dots \in \mathbb{R}$ by

$$b_t = 7 \quad \text{if } a_{t,t} \neq 7$$
$$= 5 \quad \text{if } a_{t,t} = 7.$$

Then for each $n \in \omega$, $s \neq r_n$ since s and r_n differ on their n^{th} decimal place. But this contradicts our assumption that every element of \mathbb{R} occurs on the list. Hence $\omega \not\approx \mathbb{R}$. \Box

Definition 14.7. The set A is *dominated* by the set B, written $A \leq B$, iff there exists an injection $f: A \rightarrow B$.

Definition 14.8. $A \prec B$ iff $A \preceq B$ and $A \not\approx B$.

Theorem 14.9. $\omega \prec \mathbb{R}$

Proof. We can define an injection $f: \omega \to \mathbb{R}$ by f(n) = n. Thus $\omega \preceq \mathbb{R}$. Since $\omega \not\approx \mathbb{R}$, $\omega \prec \mathbb{R}$.

Theorem 14.10 (Cantor 1973). If A is any set, then $A \prec \mathcal{P}(A)$.

Proof. We can define an injection $f: A \to \mathcal{P}(A)$ by $f(a) = \{a\}$. Hence $A \preceq \mathcal{P}(A)$. To see that $A \not\approx \mathcal{P}(A)$, we must prove that there does *not* exist a bijection $g: A \to \mathcal{P}(A)$. Let $g: A \to \mathcal{P}(A)$ be any function. Define $B \subseteq A$ by

$$a \in B$$
 iff $a \notin g(a)$.

Then $B \in \mathcal{P}(A)$; and for each $a \in A$, $B \neq g(a)$ since B and g(a) differ on whether they contain the element a. Hence g is not a surjection.

Corollary 14.11. $\omega \prec \mathcal{P}(\omega) \prec \mathcal{P}(\mathcal{P}(\omega)) \prec \mathcal{P}(\mathcal{P}(\omega))) \prec \dots$

We now develop some general theory.

Theorem 14.12. For any sets A, B, C, we have:

- $A \approx A$
- If $A \approx B$, then $B \approx A$.

2006/11/15

• If $A \approx B$ and $B \approx C$, then $A \approx C$.

Theorem 14.13 (Schröder-Bernstein). If $A \leq B$ and $B \leq A$, then $A \approx B$.

Proof delayed

Theorem 14.14 (Zermelo's Theorem). For any sets A and B, either $A \leq B$ or $B \leq A$.

Proof delayed

In fact we shall need to introduce another axiom before we can prove Zermelo's Theorem.

Definition 14.15.

- The set A is *finite* iff there exists $n \in \omega$ such that $A \approx n$.
- The set A is countably infinite iff $A \approx \omega$.
- The set A is *countable* iff A is finite or countably infinite.
- The set A is *uncountable* iff A is not countable.

Example 14.16.

- \mathbb{Q} is countable.
- \mathbb{R} is uncountable.
- $\mathcal{P}(\omega)$ is uncountable.

Before proving the Schröder-Bernstein Theorem, we shall give a number of applications.

Theorem 14.17. $\omega \approx \mathbb{Q}$.

Proof. First we define an injection $f: \omega \to \mathbb{Q}$ by f(n) = n. Thus $\omega \prec \mathbb{Q}$.

Next we define an injection $g: \mathbb{Q} \to \omega$ as follows. Note that each $0 \neq q \in \mathbb{Q}$ can be expressed uniquely in the form $q = \epsilon \frac{a}{b}$, where

- $a, b \in \omega$ are relatively prime
- $\epsilon = \pm 1.$

Hence we can define an injection $g \colon \mathbb{Q} \to \omega$ be

$$\begin{array}{lcl} g(\epsilon \frac{a}{b}) & = & 2^{\epsilon+1} 3^a 5^b \\ g(0) & = & 1 \end{array}$$

Thus $\mathbb{Q} \preceq \omega$. By Schröder-Bernstein, $\omega \approx \mathbb{Q}$.

Next we shall prove that $\mathbb{R} \approx \mathcal{P}(\omega)$. We shall make use of the following result.

Lemma 14.18. $(0,1) \approx \mathbb{R}$.

Proof. Let $f: (0,1) \to \mathbb{R}$ be the function defined by

$$f(x) = \tan(\pi x - (\pi/2)).$$

By Calc I, f is a bijection.

Exercise 14.19. If a < b are real numbers, then

- $(a,b) \approx (0,1)$
- $[a,b] \approx (0,1).$

Theorem 14.20. $\mathbb{R} \approx \mathcal{P}(\omega)$.

Proof. Since $\mathbb{R} \approx (0,1)$, it is enough to show that $(0,1) \approx \mathcal{P}(\omega)$. We will make use of the fact that each $r \in (0,1)$ has a unique decimal expansion

 $(*) \quad r = 0, a_0 a_1 a_2 \dots a_n \dots$

which does not end in an infinite sequence of nines.

Step 1 First we prove that $(0,1) \preceq \mathcal{P}(\omega)$. Let

$$p_0 = 2, p_1 = 3, p_2 = 5, \dots, p_n, \dots$$

be the increasing enumeration of the primes. Then we can define a function $f: (0,1) \to \mathcal{P}(\omega)$ as follows: If

$$r = 0, a_0 a_1 a_2 \dots a_n \dots \in (0, 1)$$

then

$$f(r) = \{p_0^{a_0+1}, p_1^{a_1+1}, \dots, p_n^{a_n+1}, \dots\}$$

Clearly f is an injection and so $(0,1) \preceq \mathcal{P}(\omega)$.

Step 2 Now we show that $\mathcal{P}(\omega) \preceq (0,1)$. We define a function $g: \mathcal{P}(\omega) \rightarrow (0,1)$ as follows. If $\emptyset \neq S \in \mathcal{P}(\omega)$, then

$$g(S) = 0.s_0 s_1 \dots s_n \dots$$

where $s_n = 1$ if $n \in S$ and $s_n = 0$ if $n \notin S$. We define $g(\emptyset) = 0.5$. Clearly g is an injection and so $\mathcal{P}(\omega) \preceq (0, 1)$.

By Schröder-Bernstein, $(0, 1) \approx \mathcal{P}(\omega)$.

4

Definition 14.21. Fin(\mathbb{N}) is the set of finite subsets of \mathbb{N} .

Remark 14.22. Clearly we have that $\mathbb{N} \preceq \operatorname{Fin}(\mathbb{N}) \preceq \mathcal{P}(\mathbb{N})$.

Theorem 14.23. $\mathbb{N} \approx \operatorname{Fin}(\mathbb{N})$.

Proof. Define the function $f \colon \mathbb{N} \to \operatorname{Fin}(\mathbb{N})$ by $f(n) = \{n\}$. Clearly f is an injection and so $\mathbb{N} \preceq \operatorname{Fin}(\mathbb{N})$.

Next we define a function $g: \operatorname{Fin}(\mathbb{N}) \to \mathbb{N}$ as follows. Let $p_0, p_1, p_2, \ldots, p_n, \ldots$ be the increasing enumeration of the primes. Suppose that $\emptyset \neq S \in \operatorname{Fin}(\mathbb{N})$ and let $S = \{s_0, s_1, \ldots, s_n\}$, where $s_0 < s_1 < \ldots < s_n$. Then

$$g(S) = p_0^{s_0+1} p_1^{s_1+1} \dots p_n^{s_n+1}$$

Finally we define $g(\emptyset) = 0$. Clearly g is an injection and so $\operatorname{Fin}(\mathbb{N}) \preceq \mathbb{N}$.

By Schröder-Bernstein, $\mathbb{N} \approx \operatorname{Fin}(\mathbb{N})$.

Recall that is A, B are sets, then

$$B^A = \{ f \mid f \colon A \to B \}.$$

Theorem 14.24. $\mathbb{N}^{\mathbb{N}} \approx \mathcal{P}(\omega)$.

Proof. First we define a function $f: \mathcal{P}(\omega) \to \mathbb{N}^{\mathbb{N}}$ as follows. For each $S \subseteq \mathbb{N}$, the *characteristic function* of S is the function

$$\chi_S \colon \mathbb{N} \to \{0,1\}$$

defined by $\chi_S(n) = 1$ if $n \in S$ and $\chi_S(n) = 0$ if $n \notin S$. If $S \in \mathcal{P}(\mathbb{N})$, then we define $f(S) = \chi_S$. Clearly f is an injection and so $\mathcal{P}(\mathbb{N}) \preceq \mathbb{N}^{\mathbb{N}}$.

Next we define a function $g: \mathbb{N}^{\mathbb{N}} \to \mathcal{P}(\omega)$ as follows. Let $p_0, p_1, \ldots, p_n, \ldots$ be the increasing enumeration of the primes. If $\phi \in \mathbb{N}^{\mathbb{N}}$, then we define

$$g(\phi) = \{p_0^{\phi(0)+1}, p_1^{\phi(1)+1}, \dots, p_n^{\phi(n)+1}, \dots\}.$$

Clearly g is an injection and so $\mathbb{N}^{\mathbb{N}} \preceq \mathcal{P}(\mathbb{N})$.

By Schröder-Bernstein, $\mathbb{N}^{\mathbb{N}} \approx \mathcal{P}(\mathbb{N})$.

Heuristic Principle Let A be a "naturally occurring" set.

- If each $a \in A$ is determined by a finite amount of data, then $A \approx \mathbb{N}$.
- If each a ∈ A is determined by infinitely many "independent" pieces of data, then A ≈ P(N).

Exercise 14.25. Let $\operatorname{Inj}(\mathbb{N})$ be the set of injective functions $\phi \colon \mathbb{N} \to \mathbb{N}$. Prove that $\operatorname{Inj}(\mathbb{N}) \approx \mathcal{P}(\mathbb{N})$.

Exercise 14.26. Prove that $\mathbb{N} \times \mathbb{N} \approx \mathbb{N}$.

Continuum Hypothesis (CH) If $A \subset \mathbb{R}$ is *any* infinite subset, then either $A \approx \mathbb{N}$ or $A \approx \mathbb{R}$.

Important Remark It is known that the axioms of set theory can neither prove nor disprove CH.

Exercise 14.27. If $A \approx B$ and $C \approx D$, then $A \times C \approx B \times D$.

Theorem 14.28. $\mathbb{R} \times \mathbb{R} \approx \mathbb{R}$.

Proof. We have already proven that $\mathbb{R} \approx (0,1)$. By the exercise, $\mathbb{R} \times \mathbb{R} \approx (0,1) \times (0,1)$. Hence it it enough to prove that $(0,1) \times (0,1) \approx (0,1)$.

First we define a function $f: (0,1) \to (0,1) \times (0,1)$ by $f(r) = \langle r, 1/2 \rangle$. Clearly f is an injection and so $(0,1) \preceq (0,1) \times (0,1)$.

Next we define a function $g: (0,1) \times (0,1) \to (0,1)$ as follows. Suppose that $\langle r, s \rangle \in (0,1) \times (0,1)$ and let

 $r = 0.a_0 a_1 a_2 \dots a_n \dots$ $s = 0.b_0 b_1 b_2 \dots b_n \dots$

be the decimal expansions. Then

 $g(r,s) = 0.a_0b_0a_1b_1\dots a_nb_n\dots$

Clearly g is an injection and so $(0, 1) \times (0, 1) \preceq (0, 1)$.

By Schröder-Bernstein, $(0, 1) \times (0, 1) \preceq (0, 1)$.

2006/11/15