15 Proof of Schröder-Bernstein

Next we turn to the proof of the Schröder-Bernstein Theorem.

Exercise 15.1. If $h: A \to B$ is an injection and $C \subset A$, then $h[A \setminus C] = h[A] \setminus h[C]$.

Theorem 15.2 (Schröder-Bernstein). If $A \leq B$ and $B \leq A$, then $A \approx B$.

Proof. Since $A \leq B$ and $B \leq A$, there exist injections $f: A \to B$ and $g: B \to A$. Let C = g[B]. Then clearly $B \approx C$ and so it is enough to show that $A \approx C$. Let $h = g \circ f$. Then $h: A \to A$ is an injection.

Define inductively

$$\begin{array}{rcl} A_0 &=& A\\ A_{n+1} &=& h[A_n] \end{array}$$

and

$$C_0 = C$$
$$C_{n+1} = h[C_n].$$

Define a function $k \colon A \to C$ by

$$k(x) = h(x)$$
 if $x \in A_n \setminus C_n$ for some $n \in \omega$
= x otherwise.

Claim. $k: A \to C$ is an injection.

Proof. Suppose that $a \neq a' \in A$. There are three cases to consider.

Case 1. Suppose that there exist $n, m \in \omega$ such that $a \in A_n \setminus C_n$ and $a' \in A_m \setminus C_m$. Then $k(a) = h(a) \neq h(a') = k(a')$, since h is an injection.

Case 2. Suppose that $a, a' \notin A_n \setminus C_n$ for all $n \in \omega$. Then $k(a) = a \neq a' = k(a')$.

Case 3. Suppose that $a \in A_n \setminus C_n$ for some $n \in \omega$ and $a' \notin A_m \setminus C_m$ for all $m \in \omega$. Then $k(a) = h(a) \in h[A_n \setminus C_n] = h[A_n] \setminus h[C_n] = A_{n+1} \setminus C_{n+1}$. Since $k(a') = a' \notin A_{n+1} \setminus C_{n+1}$ we have that $k(a) \neq k(a')$.

Claim. $k: A \to C$ is a surjection.

Proof. Let $c \in C$. There are two cases to consider.

Case 1. Suppose that $c \notin A_n \setminus C_n$ for all $n \in \omega$. Then k(c) = c.

2006/11/29

Case 2. Suppose that $c \in A_n \setminus C_n$ for some $n \in \omega$. Since $c \notin A_0 \setminus C_0$, we have that n = m + 1 for some $m \in \omega$. Thus

$$c \in A_{m+1} \smallsetminus C_{m+1} = h[A_m] \smallsetminus h[C_m]$$
$$= h[A_m \smallsetminus C_m].$$

Hence there exists $a \in A_m \setminus C_m$ such that k(a) = h(a) = c.

Thus $k: A \to C$ is a bijection and so $A \approx C$. This completes the proof of Schröder-Bernstein.

16 Cardinal Numbers

Promise/Preliminary Definition. For every set A, we will define a corresponding *cardinal number* card A so that the following conditions are satisfied:

(a) For any sets A and B,

$$\operatorname{card} A = \operatorname{card} B \quad \text{iff} \quad A \approx B.$$

(b) If A is a finite set, then card A is the unique natural number n so that $A \approx n$.

Notation. card $\omega = \aleph_0$.

Remark 16.1. The first "few" cardinal numbers are

 $0, 1, 2, \ldots, n, \ldots, \aleph_0, \aleph_1, \ldots, \aleph_n, \ldots, \aleph_\omega, \aleph_{\omega+1}, \ldots$

Hence CH is the statement that card $\mathbb{R} = \aleph_1$.

Notation. If card $A = \kappa$, then we say that A has cardinality κ .

Definition 16.2. If κ, λ are cardinals, then we define

$$\kappa + \lambda = \operatorname{card}(K \cup L)$$

where K, L are disjoint sets such that card $K = \kappa$ and card $L = \lambda$.

Of course, we must check that cardinal addition is well defined. This is accomplished by the following lemma.

Lemma 16.3. Suppose that:

2006/11/29

- (a) $K_1 \approx K_2$ and $L_1 \approx L_2$ and
- (b) $K_1 \cap K_2 = \emptyset = L_1 \cap L_2$.

Then $K_1 \cup L_1 \approx K_2 \cup L_2$.

Proof. Since $K_1 \approx K_2$ and $L_1 \approx L_2$, there exist bijections $f: K_1 \to K_2$ and $g: L_1 \to L_2$. Hence we can define a bijection $h: K_1 \cup L_1 \to K_2 \cup L_2$ by

$$h(x) = f(x) \quad \text{if } x \in K_1$$
$$= g(x) \quad \text{if } x \in L_1$$

Thus $K_1 \cup L_1 \approx K_2 \cup L_2$.

Theorem 16.4. $\aleph_0 + \aleph_0 = \aleph_0$.

Proof. Let $\mathbb{E} = \{2n \mid n \in \omega\}$ and $\mathbb{O} = \{2n+1 \mid n \in \omega\}$. Then clearly $\mathbb{E} \cap \mathbb{O} = \emptyset$ and $\mathbb{E} \approx \omega \approx \mathbb{O}$. Thus

$$\begin{aligned} \aleph_0 + \aleph_0 &= \operatorname{card}(\mathbb{E} \cup \mathbb{O}) \\ &= \operatorname{card} \omega \\ &= \aleph_0. \quad \Box \end{aligned}$$

Theorem 16.5. $\aleph_0 + \operatorname{card} \mathbb{R} = \operatorname{card} \mathbb{R}$.

Proof. Let $K = \omega$ and L = (-2, -1). Then $K \cap L = \emptyset$ and $L \approx \mathbb{R}$. Hence

$$\aleph_0 + \operatorname{card} \mathbb{R} = \operatorname{card}(K \cup L).$$

Since $K \cup L \subset \mathbb{R}$, we have that $K \cup L \preceq \mathbb{R}$. Since $\mathbb{R} \approx L$, there exists an injection $f: \mathbb{R} \to K \cup L$ and so $\mathbb{R} \preceq K \cup L$. By Schröder-Bernstein, $K \cup L \approx \mathbb{R}$. Thus

$$\aleph_0 + \operatorname{card} \mathbb{R} = \operatorname{card}(K \cup L) = \operatorname{card} \mathbb{R}.$$

Exercise 16.6.

- (a) $\aleph_0 + 5 = \aleph_0$.
- (b) $\operatorname{card} \mathbb{R} + \operatorname{card} \mathbb{R} = \operatorname{card} \mathbb{R}$.

Remark 16.7. Eventually we shall prove that if κ, λ are cardinals and at least one is infinite, then

$$\kappa + \lambda = \max\{\kappa, \lambda\}.$$

Definition 16.8. If κ, λ are cardinals, then we define

$$\kappa \cdot \lambda = \operatorname{card}(K \times L)$$

where K, L are any sets such that card $K = \kappa$ and card $L = \lambda$.

An earlier exercise implies that cardinal multiplication is well-defined.

Theorem 16.9. $\aleph_0 \cdot \aleph_0 = \aleph_0$.

Proof. By an earlier exercise, $\omega \times \omega \approx \omega$. Hence

$$\begin{split} \aleph_0 \cdot \aleph_0 &= \operatorname{card}(\omega \times \omega) \\ &= \operatorname{card}(\omega) \\ &= \aleph_0. \end{split}$$

Theorem 16.10. card $\mathbb{R} \cdot \operatorname{card} \mathbb{R} = \operatorname{card} \mathbb{R}$.

Proof. As above, using the fact that $\mathbb{R} \times \mathbb{R} \approx \mathbb{R}$.

Theorem 16.11. $\aleph_0 \cdot \operatorname{card} \mathbb{R} = \operatorname{card} \mathbb{R}$.

Proof. It is enough to show that $\omega \times \mathbb{R} \approx \mathbb{R}$. Since $\omega \times \mathbb{R} \subseteq \mathbb{R} \times \mathbb{R}$ and $\mathbb{R} \times \mathbb{R} \approx \mathbb{R}$, it follows that there exists an injection $f: \omega \times \mathbb{R} \to \mathbb{R}$ and so $\omega \times \mathbb{R} \preceq \mathbb{R}$. By By Schröder-Bernstein, $\omega \times \mathbb{R} \approx \mathbb{R}$.

Remark 16.12. Eventually we shall prove that if κ, λ are nonzero cardinals and at least one is infinite, then

$$\kappa \cdot \lambda = \max\{\kappa, \lambda\}.$$

Definition 16.13. If κ, λ are cardinals, then we define

 $\kappa^{\lambda} = \operatorname{card}(K^L)$

where K, L are any sets such that card $K = \kappa$ and card $L = \lambda$.

The following lemma shows that cardinal exponentiation is well-defined.

Lemma 16.14. If $A \approx B$ and $C \approx D$, then $C^A \approx D^B$.

Proof. Since $A \approx B$ and $C \approx D$, there exists bijections $f: A \to B$ and $g: C \to D$. Hence we can define a function

$$\pi\colon C^A\to D^B$$

by

$$\pi(\phi) = g \circ \phi \circ f^{-1}.$$

It is "easily checked" that π is a bijection.

2006/11/29

4

Theorem 16.15. For any set A, $\operatorname{card}(\mathcal{P}(A)) = 2^{\operatorname{card} A}$.

Proof. Note that $2^{\operatorname{card} A} = \operatorname{card}(\{0,1\}^A)$. Hence we must show that $\mathcal{P}(A) \approx \{0,1\}^A$. To see this, note that we can define a bijection

$$f: \mathcal{P}(A) \to \{0,1\}^A$$

by

 $f(S) = \chi_S$

where $\chi_S \colon A \to \{0, 1\}$ is the characteristic function defined by

$$\chi_S(a) = 1 \quad \text{if } a \in S \\ = 0 \quad \text{if } a \notin S$$

-		

Corollary 16.16. If κ is any cardinal, then $2^{\kappa} \neq \kappa$.

Proof. Let card $A = \kappa$. Then card $(\mathcal{P}(A)) = 2^{\kappa}$. By Cantor's Theorem, $A \not\approx \mathcal{P}(A)$ and so $\kappa \neq 2^{\kappa}$.

Corollary 16.17. card $\mathbb{R} = 2^{\aleph_0}$

Proof. We have already proved that $\mathbb{R} \approx \mathcal{P}(\omega)$. Thus

$$\operatorname{card} \mathbb{R} = \operatorname{card}(\mathcal{P}(\omega)) = 2^{\operatorname{card} \omega} = 2^{\aleph_0}.$$

- 6		_	
. 6		-	

Remark 16.18. Thus CH is the statement that $2^{\aleph_0} = \aleph_1$.

Exercise 16.19. $\aleph_0^{\aleph_0} = 2^{\aleph_0}$.

Definition 16.20. If κ , λ are cardinals, then we define

$$\kappa \leq \lambda$$
 iff $K \leq L$

where K, L are any sets such that card $K = \kappa$ and card $L = \lambda$.

The next lemma shows that this notion is well-defined.

Lemma 16.21. Suppose that $A \approx B$ and $C \approx D$. Then $A \preceq C$ iff $B \preceq D$.

Proof. Since $A \approx B$ and $C \approx D$, there exists bijections $f: A \to B$ and $g: C \to D$. Suppose that $A \preceq C$. Then there exists an injection $h: A \to C$. Hence we can define an injection $k: B \to D$ by $k = g \circ h \circ f^{-1}$. Thus $B \preceq D$. Similarly, if $B \preceq D$, then $A \preceq B$.

2006/11/29

Remark 16.22.

- The Schröder-Bernstein Theorem implies that if κ, λ are cardinals such that $\kappa \leq \lambda$ and $\lambda \leq \kappa$, then $\kappa = \lambda$.
- Zermelo's Theorem implies that if κ, λ are cardinals, then either $\kappa \leq \lambda$ or $\lambda \leq \kappa$.

Definition 16.23. If κ, λ are cardinals, then we define

$$\kappa < \lambda$$
 iff $\kappa \leq \lambda$ and $\kappa \neq \lambda$.

Remark 16.24. In other words, card $K < \operatorname{card} L$ iff $K \prec L$.

Theorem 16.25. For every cardinal κ , we have $\kappa < 2^{\kappa}$.

Proof. Let card $A = \kappa$. Then $A \prec \mathcal{P}(A)$. Hence

$$\kappa = \operatorname{card} A < \operatorname{card} \mathcal{P}(A) = 2^{\kappa}.$$