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17 Axiom of Choice

Definition 17.1. Let F be a nonempty set of nonempty sets. Then a choice function
for F is a function f such that f(S) ∈ S for all S ∈ F .

Example 17.2. Let F = P(N)r{∅}. Then we can define a choice function f by

f(S) = the least element of S.

Example 17.3. Let F = P(Z)r{∅}. Then we can define a choice function f by

f(S) = εn

where n = min{|z| | z ∈ S} and, if n 6= 0, ε = min{z/|z| | |z| = n, z ∈ S}.
Example 17.4. Let F = P(Q)r{∅}. Then we can define a choice function f as follows.
Let g : Q→ N be an injection. Then

f(S) = q

where g(q) = min{g(r) | r ∈ S}.
Example 17.5. Let F = P(R)r{∅}. Then it is impossible to explicitly define a choice
function for F .

Axiom 17.6 (Axiom of Choice (AC)). For every set F of nonempty sets, there
exists a function f such that f(S) ∈ S for all S ∈ F .

We say that f is a choice function for F .

Theorem 17.7 (AC). If A,B are non-empty sets, then the following are equivalent:

(a) A ¹ B

(b) There exists a surjection g : B → A.

Proof. (a) ⇒ (b) Suppose that A ¹ B. Then there exists a injection f : A → B. Fix
some a0 ∈ A. Then we can define a surjection g : B → A by

g(b) = the unique a ∈ A such that f(a) = b, if such an a exists

= a0, if no such a exists.

(b)⇒ (a) Suppose that g : B → A is a surjection. Then for each a ∈ A,

Sa = {b ∈ B | g(b) = a} 6= ∅

Let F = {Sa | a ∈ A} and let h be a choice function for F , ie h(Sa) ∈ Sa for all a ∈ A.
Then we can define a function k : A → B by k(a) = h(Sa). We claim that k is an
injection. To see this, suppose that a 6= a′ ∈ A. Let k(a) = b and k(a′) = b′. Then
b ∈ Sa, b′ ∈ Sa′ and so g(b) = a, g(b′) = a′. Hence b 6= b′.
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Theorem 17.8. If A is any infinite set, then ω ¹ A.

Proof. Let f be a choice function for F = P(A)r{∅}. Then we can define a function

g : ω → A

by recursion via
g(0) = f(A)

and
g(n+ 1) = f(Ar{g(0), . . . , g(n)}).

Clearly g is an injection and so ω ¹ A.

Corollary 17.9 (AC). If κ is any infinite cardinal, then ℵ0 ≤ κ.

Proof. Let cardA = κ. Then A is an infinite set and so ω ¹ A. Hence ℵ0 ≤ κ.

Corollary 17.10 (AC). A set A is infinite iff there exists a proper subset B ⊂ A such
that B ≈ A.

Proof. (⇐) If there exists a proper subset B ⊂ A such that B ≈ A, then A is clearly
not finite. Hence A is infinite.
(⇒) Suppose that A is infinite. Then ω ¹ A and so there exists an injection f : ω → A.
Define a function g : A→ A by

g(f(n)) = f(n+ 1) for all n ∈ ω
g(x) = x for all x /∈ ran f .

Then g is a bijection between A and B = Ar{f(0)}.

Corollary 17.11 (AC (Remark: doesn’t really need AC)). If A is a nonempty
set, then A is countable iff there exists a surjection f : ω → A.

Proof. This follows since A is countable iff A ¹ ω.

Theorem 17.12 (AC). A countable union of countable sets is countable; ie if A is
countable and each A ∈ A is countable, then

⋃A is also countable.

Proof. If A = ∅, then
⋃A = ∅ is countable. Hence we can suppose that A 6= ∅. We

can also suppose that ∅ /∈ A, since ∅ would contribute nothing to
⋃A.

Claim. There exists a surjection f : ω×ω → ⋃A.
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Proof. Since A is countable, there exists a surjection g : ω → A. For each n ∈ ω, let
An = g(n). Then

A = {A0, A1, . . . , An, . . .}.
(Of course, the sets An are not necessarily distinct!) Since each An is countable, we can
choose a surjection hn : ω → An. Then we can define a surjection

f : ω×ω →
⋃
A

by
f(n,m) = hn(m).

Finally, let k : ω → ω×ω be a surjection. Then ϕ = f ◦ k : ω
⋃A is a surjection.

Hence
⋃A is countable.

Question 17.13. Where did we use (AC) in the above proof?

Answer. Since each An is countable, we have that

Sn = {h | h : ω → An is a surjection} 6= ∅.

We have applied (AC) to obtain a choice function for F = {Sn | n ∈ ω}.
Definition 17.14. If A is a set, then a finite sequence in A is a function f : n → A,
where n ∈ ω.

Remark 17.15.

1. If n = 0 = ∅, then we obtain the empty sequence, f = ∅.

2. Suppose n > 0 and f : n→ A. For each l ∈ n, let al = f(l). Then we often write
f as

〈a0, a1, . . . , an−1〉.

Definition 17.16. If A is a set, then Sq(A) is the set of finite sequences in A.

Theorem 17.17. card(Sq(ω)) = ℵ0.

Proof. We must show that Sq(ω) ≈ ω. First we can define an injection g : ω → Sq(ω)
by g(n) = 〈n〉. Thus ω ¹ Sq(ω). Next we can define an injection h : Sq(ω) → ω as
follows. Let p0, p1, . . . , pn, . . . be the increasing enumeration of the primes. Then

h(∅) = 1

h(〈a0, . . . , an−1〉) = pa0+1
0 pa1+1

1 . . . p
an−1+1
n−1 .

Thus Sq(ω) ¹ ω. By Schröder-Bernstein, Sq(ω) ≈ ω.
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Corollary 17.18. If A is a countable set, then card(Sq(A)) = ℵ0.

Proof. Once again, we must show that Sq(A) ≈ ω. Fix some a ∈ A. Then we define an
injection f : ω → Sq(A) by

f(n) = 〈
n times︷ ︸︸ ︷
a, . . . , a〉, n ≥ 1

= ∅, n = 0

Thus ω ¹ Sq(A). Next we can define an injection h : Sq(A) → Sq(ω) as follows. Let
k : A→ ω be an injection. Then

h(∅) = ∅
h(〈a0, a1, . . . , an−1〉) = 〈k(a0), k(a1), . . . , k(an−1)〉

Thus Sq(A) ¹ Sq(ω). Since Sq(ω) ≈ ω, it follows that Sq(A) ≈ ω. By Schröder-
Bernstein, Sq(A) ≈ ω.

18 Transcendental Numbers

Definition 18.1. Let r ∈ R be a real number.

(a) r is algebraic iff there exists a polynomial

p(x) = a0 + a1x+ . . .+ anx
n, an 6= 0

with integer coefficients such that p(r) = 0.

(b) Otherwise, r is transcendental.

Example 18.2.

(a) By considering p(x) = 2x − 1, we see that 1/2 is algebraic. More generally, each
q ∈ Q is algebraic.

(b) By considering p(x) = x2 − 2, we see that
√

2 is algebraic.

(c) It is known (but hard to prove) that e and π are transcendental.

Theorem 18.3. There exist uncountably many transcendental numbers.

This is an easy corollary of the following result.

Theorem 18.4. There exist only countably many algebraic numbers.
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Proof. Let P be the set of polynomials with integer coefficients. Then we can define an
injection

f : P → Sq(Z)

by
f(a0 + a1x+ . . .+ anx

n) = 〈a0, a1, . . . , an〉.
Thus P ¹ Sq(Z) and so P is countable. Note that each p(x) ∈ P has finitely many
roots. Thus the set of algebraic numbers is the union of countably many finite sets and
hence is countable.

Puzzle. Determine whether there exists:

(a) an uncountable set A of circular discs in R2, no two of which intersect.

(b) an uncountable set B of circles in R2, no two of which intersect.

(c) an uncountable set C of figure eights in R2, no two of which intersect.

19 Well-orderings

Definition 19.1. The set W is said to be well-ordered by ≺ iff:

(a) ≺ is a linear ordering of W ; and

(b) every nonempty subset of W has a ≺–least element.

Example 19.2.

(a) The usual ordering < on N is a well-ordering.

(b) The usual ordering < on Z is not a well-ordering.

Theorem 19.3. Let ≺ be a linear order on the set A. Then the following are equivalent:

(a) ≺ is a well-ordering.

(b) There do not exist elements an ∈ A for n ∈ ω such that

a0 Â a1 Â a2 Â . . . Â an Â an+1 Â . . .

Proof. (a) =⇒ (b) We shall prove that not(b) =⇒ not(a). So suppose that there
exists elements an ∈ A for n ∈ ω such that

a0 Â a1 Â . . . Â an Â an+1 Â . . .
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Let ∅ 6= B = {an | n ∈ ω} ⊆ A. Then clearly B has no ≺–least element. Thus ≺ is not
a well-ordering.

(b) =⇒ (a) We shall prove that not(a) =⇒ not(b). So suppose that ≺ is not a
well-ordering. Then there exists ∅ 6= B ⊆ A such that B has no ≺–least element. Let
a0 ∈ B be any element. Since a0 is not the ≺–least element of B, there exists a1 ∈ B
such that a1 ≺ a0. Since a1 is not the ≺–least element of B, there exists a2 ∈ B such
that a2 ≺ a1. Continuing in this fashion, we can recursively define elements an ∈ B for
n ∈ ω such that

a0 Â a1 Â a2 Â . . . Â an Â an+1 Â . . .

Thus (b) fails.

Definition 19.4. Let 〈L;<〉 be a linearly ordered set.

(a) For each a ∈ L, the set of predecessors of a is defined to be

L[a] = {b ∈ L | b < a}.

(b) The subset S of L is an initial segment of L iff whenever a ∈ S and b < a, then
b < a.

(c) An initial segment S of L is proper iff S 6= L.

Remark 19.5. Thus S is an initial segment of L iff for all a ∈ S, we have L[a] ⊆ S.

Remark 19.6. If 〈W ;<〉 is a well-ordering and a ∈W , then so is W [a].

Example 19.7. (−∞, 0] is an initial segment of R. (−∞, 0) is an initial segment of R.

Lemma 19.8. If 〈W ;<〉 is a well-ordering and S is a proper initial segment of W , then
there exists a ∈W such that S = W [a].

Proof. Since S is proper, WrS 6= ∅. Let a be the ≺–least element of WrS. Then if
b ≺ a, then b ∈ S and so W [a] ⊆ S. Suppose that there exists c ∈ WrS. Then c º a.
Since c ∈ S and S is an initial segment of W , we must have that a ∈ S, which is a
contradiction. Hence W [a] = S.

Definition 19.9. Let 〈L;<〉 and 〈M ;≺〉 be (not necessarily distinct) linear orders.

(a) A function f : L→M is order-preserving iff for all a, b ∈ L

(∗) if a < b, then f(a) ≺ f(b).

(b) The function f : L → M is an isomorphism iff f is an order-preserving bijection.
In this case, we say that L,M are isomorphic and write L∼=M .

Example 19.10. Define f : Z→ Z by f(x) = x− 1. Then f is an isomorphism.
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Lemma 19.11. If 〈W ;≺〉 is a well-ordering and f : W → W is order-presering, then
f(x) º x for all x ∈ W .

Proof. Suppose not. Then C = {x ∈ W | f(x) ¹ x} 6= ∅. Let a be the ≺–least element
of C. Then f(a) ≺ a and so f(f(a)) ≺ f(a). But then f(a) ∈ C, which contradicts the
fact that a is the ≺–least element of C.

Remark 19.12. Define f : (−∞, π/2)→ R by

f(x) = x, if x < 0

= tan(x), if x ≥ 0

Then f is an isomorphism. Hence R is isomorphic to its proper initial segment (−∞, π/2).

Lemma 19.13. If 〈W ;≺〉 is a well-ordering, then W is not isomorphic to any of its
proper initial segments.

Proof. Suppose that S is a proper initial segment of W and that f : W → S is an
isomorphism. By Lemma 19.8, there exists a ∈ W such that S = W [a]. Since f(a) ∈
W [a] we have that f(a) ≺ a. Since f is order-preserving, this contradicts Lemma 19.11.

Theorem 19.14. Suppose that 〈W1;<〉 and 〈W2;≺〉 are well-orderings. Then exactly
one of the following holds:

(a) W1 and W2 are isomorphic.

(b) W1 is isomorphic to a proper initial segment of W2.

(c) W2 is isomorphic to a proper initial segment of W1.

Before proving Theorem 19.14, we point out the connection with Zermelo’s Theorem.

Definition 19.15. A set A is well-orderable iff there exists a well-ordering ≺ on A.

Example 19.16. Of course, 〈Q;<〉 is not a well-ordering. However, Q is well-orderable.

Proof. Since Q ≈ ω, there exists a bijection f : Q → ω. Define a binary relation ≺ on
Q by

a ≺ b iff f(a) < f(b).

Then ≺ is a well-ordering of Q.

Problem 19.17. Is R well-orderable?

Corollary 19.18. Suppose that A,B are well-orderable sets. Then either A ¹ B or
B ¹ A.
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Proof. Let < be a well-ordering of A and let ≺ be a well-ordering of B. Applying
Theorem 19.14 to 〈A;<〉 and 〈B;≺〉, one of the following must hold.

(a) A and B are isomorphic

(b) A is isomorpic to a proper initial segment of B.

(c) B is isomorpic to a proper initial segment of A.

First suppose that (a) holds and let f : A → B be an isomorphism. Then f is a
bijection and so A ≈ B. Hence A ¹ B.

Now suppose (b) holds. Then there exists a proper initial segment S ⊂ B and an
isomorphism f : A→ S. Then f is an injection from A into B and so A ¹ B.

Similarly, if (c) holds, then B ¹ A.

Later we shall use the Axiom of Choice to prove that every set is well-orderable.

Proof of Theorem 19.14. We break the proof down into a series of claims. Let 〈W1;<〉
and 〈W2;<〉 be well-orderings.

Claim 19.19. At most one of (a), (b), (c) holds.

Proof. Suppose, for example, that (a) and (b) hold. Thus there exists an isomorphism
f : W1 → W2 and also an isomorphism g : W1 → S, where S is a proper initial segment
of W2. But then g ◦ f−1 is an isomorphism, which contradicts Lemma 19.13. The other
cases are similar.

So it is enough to show that at least one of (a), (b), (c) holds. Define

f = {〈x, y〉 ∈W1×W2 |W1[x]∼=W2[y]}.
Claim 19.20. f is a function.

Proof. Suppose not. Then there exists x ∈W1 and y 6= z ∈W2 such that 〈x, y〉, 〈x, z〉 ∈
f . Hence there exist isomorphisms g : W1[x] → W2[y] and h : W1[x] → W2[z]. We can
suppose that y < z, so that W2[y] is a proper initial segment of W2[z]. But then g ◦ h−1

is an isomorphism, which contradicts Lemma 19.13.

Claim 19.21.

(i) dom f is an initial segment of W1.

(ii) f is order-preserving.

(iii) ran f is an initial segment of W2.
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Proof. Suppose that a ∈ dom f and b < a. Let h : W1[a]→ W2[f(a)] be an isomorphism.
Then h|W1[b] is an isomorphism betweem W1[b] and W2[h(b)]. Thus b ∈ dom f and
f(b) = h(b) < f(a). Thus (i) and (ii) hold.

Finally suppose that c ∈ ran f and d < c. Then there exists a ∈ W1 such that
〈a, c〉 ∈ f . Let h : W1[a]→ W2[c] be an isomorphism. Then there exists b ∈ W1[a] such
that h(b) = d. Since h|W1[b] is an isomorphism between W1[b] and W2[d], it follows that
〈b, d〉 ∈ f . Thus (iii) holds.

Thus f is an order-preserving bijection between the initial segment dom f of W1 and
the initial segment ran f of W2. There are four cases to consider.

Case 1. Suppose that dom f = W1 and ran f = W2. Then (a) holds.

Case 2. Suppose that dom f = W1 and ran f 6= W2. Then (b) holds.

Case 3. Suppose that dom f 6= W1 and ran f = W2. Then (c) holds.

Case 4. Suppose that dom f 6= W1 and ran f 6= W2. By Lemma 19.8, there exist a ∈
W1r dom f and b ∈ W2r ran f such that dom f = W1[a] and ran f = W2[b]. But then
f : W1[a]→ W2[b] is an isomorphism, which means that 〈a, b〉 ∈ f , a contradiction!
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