17 Axiom of Choice

Definition 17.1. Let \mathcal{F} be a nonempty set of nonempty sets. Then a *choice function* for \mathcal{F} is a function f such that $f(S) \in S$ for all $S \in \mathcal{F}$.

Example 17.2. Let $\mathcal{F} = \mathcal{P}(\mathbb{N}) \setminus \{\emptyset\}$. Then we can define a choice function f by

f(S) = the least element of S.

Example 17.3. Let $\mathcal{F} = \mathcal{P}(\mathbb{Z}) \setminus \{\emptyset\}$. Then we can define a choice function f by

$$f(S) = \epsilon n$$

where $n = \min\{|z| \mid z \in S\}$ and, if $n \neq 0$, $\epsilon = \min\{z/|z| \mid |z| = n, z \in S\}$.

Example 17.4. Let $\mathcal{F} = \mathcal{P}(\mathbb{Q}) \setminus \{\emptyset\}$. Then we can define a choice function f as follows. Let $g: \mathbb{Q} \to \mathbb{N}$ be an injection. Then

f(S) = q

where $g(q) = \min\{g(r) \mid r \in S\}.$

Example 17.5. Let $\mathcal{F} = \mathcal{P}(\mathbb{R}) \setminus \{\emptyset\}$. Then it is *impossible* to explicitly define a choice function for \mathcal{F} .

Axiom 17.6 (Axiom of Choice (AC)). For every set \mathcal{F} of nonempty sets, there exists a function f such that $f(S) \in S$ for all $S \in \mathcal{F}$.

We say that f is a choice function for \mathcal{F} .

Theorem 17.7 (AC). If A, B are non-empty sets, then the following are equivalent:

- (a) $A \preceq B$
- (b) There exists a surjection $g: B \to A$.

Proof. $(a) \Rightarrow (b)$ Suppose that $A \preceq B$. Then there exists a injection $f: A \to B$. Fix some $a_0 \in A$. Then we can define a surjection $g: B \to A$ by

g(b) = the unique $a \in A$ such that f(a) = b, if such an a exists $= a_0$, if no such a exists.

 $(b) \Rightarrow (a)$ Suppose that $g: B \to A$ is a surjection. Then for each $a \in A$,

$$S_a = \{ b \in B \mid g(b) = a \} \neq \emptyset$$

Let $\mathcal{F} = \{S_a \mid a \in A\}$ and let h be a choice function for \mathcal{F} , ie $h(S_a) \in S_a$ for all $a \in A$. Then we can define a function $k: A \to B$ by $k(a) = h(S_a)$. We claim that k is an injection. To see this, suppose that $a \neq a' \in A$. Let k(a) = b and k(a') = b'. Then $b \in S_a, b' \in S_{a'}$ and so g(b) = a, g(b') = a'. Hence $b \neq b'$. **Theorem 17.8.** If A is any infinite set, then $\omega \leq A$.

Proof. Let f be a choice function for $\mathcal{F} = \mathcal{P}(A) \setminus \{\emptyset\}$. Then we can define a function

 $q: \omega \to A$

by recursion via

g(0) = f(A)

and

$$g(n+1) = f(A \setminus \{g(0), \dots, g(n)\})$$

Clearly g is an injection and so $\omega \leq A$.

Corollary 17.9 (AC). If κ is any infinite cardinal, then $\aleph_0 \leq \kappa$.

Proof. Let card $A = \kappa$. Then A is an infinite set and so $\omega \leq A$. Hence $\aleph_0 \leq \kappa$.

Corollary 17.10 (AC). A set A is infinite iff there exists a proper subset $B \subset A$ such that $B \approx A$.

Proof. (\Leftarrow) If there exists a proper subset $B \subset A$ such that $B \approx A$, then A is clearly not finite. Hence A is infinite.

 (\Rightarrow) Suppose that A is infinite. Then $\omega \preceq A$ and so there exists an injection $f \colon \omega \to A$. Define a function $g: A \to A$ by

$$g(f(n)) = f(n+1) \text{ for all } n \in \omega$$

$$g(x) = x \text{ for all } x \notin \operatorname{ran} f.$$

Then g is a bijection between A and $B = A \setminus \{f(0)\}.$

Corollary 17.11 (AC (Remark: doesn't really need AC)). If A is a nonempty set, then A is countable iff there exists a surjection $f: \omega \to A$.

Proof. This follows since A is countable iff $A \preceq \omega$.

Theorem 17.12 (AC). A countable union of countable sets is countable; if \mathcal{A} is countable and each $A \in \mathcal{A}$ is countable, then $\bigcup \mathcal{A}$ is also countable.

Proof. If $\mathcal{A} = \emptyset$, then $\bigcup \mathcal{A} = \emptyset$ is countable. Hence we can suppose that $\mathcal{A} \neq \emptyset$. We can also suppose that $\emptyset \notin \mathcal{A}$, since \emptyset would contribute nothing to $\bigcup \mathcal{A}$.

Claim. There exists a surjection $f: \omega \times \omega \to \bigcup \mathcal{A}$.

Proof. Since \mathcal{A} is countable, there exists a surjection $g: \omega \to \mathcal{A}$. For each $n \in \omega$, let $A_n = g(n)$. Then

$$\mathcal{A} = \{A_0, A_1, \dots, A_n, \dots\}.$$

(Of course, the sets A_n are not necessarily distinct!) Since each A_n is countable, we can choose a surjection $h_n: \omega \to A_n$. Then we can define a surjection

$$f\colon \omega \times \omega \to \bigcup \mathcal{A}$$

by

$$f(n,m) = h_n(m)$$

Finally, let $k: \omega \to \omega \times \omega$ be a surjection. Then $\varphi = f \circ k: \omega \bigcup \mathcal{A}$ is a surjection. Hence $\bigcup \mathcal{A}$ is countable.

Question 17.13. Where did we use (AC) in the above proof?

Answer. Since each A_n is countable, we have that

 $S_n = \{h \mid h \colon \omega \to A_n \text{ is a surjection}\} \neq \emptyset.$

We have applied (AC) to obtain a choice function for $\mathcal{F} = \{S_n \mid n \in \omega\}$.

Definition 17.14. If A is a set, then a *finite sequence* in A is a function $f: n \to A$, where $n \in \omega$.

Remark 17.15.

- 1. If $n = 0 = \emptyset$, then we obtain the *empty sequence*, $f = \emptyset$.
- 2. Suppose n > 0 and $f: n \to A$. For each $l \in n$, let $a_l = f(l)$. Then we often write f as

$$\langle a_0, a_1, \ldots, a_{n-1} \rangle.$$

Definition 17.16. If A is a set, then Sq(A) is the set of finite sequences in A.

Theorem 17.17. $\operatorname{card}(\operatorname{Sq}(\omega)) = \aleph_0$.

Proof. We must show that $\operatorname{Sq}(\omega) \approx \omega$. First we can define an injection $g: \omega \to \operatorname{Sq}(\omega)$ by $g(n) = \langle n \rangle$. Thus $\omega \preceq \operatorname{Sq}(\omega)$. Next we can define an injection $h: \operatorname{Sq}(\omega) \to \omega$ as follows. Let $p_0, p_1, \ldots, p_n, \ldots$ be the increasing enumeration of the primes. Then

$$h(\emptyset) = 1$$

$$h(\langle a_0, \dots, a_{n-1} \rangle) = p_0^{a_0+1} p_1^{a_1+1} \dots p_{n-1}^{a_{n-1}+1}.$$

Thus $\operatorname{Sq}(\omega) \preceq \omega$. By Schröder-Bernstein, $\operatorname{Sq}(\omega) \approx \omega$.

2006/12/06

Corollary 17.18. If A is a countable set, then $card(Sq(A)) = \aleph_0$.

Proof. Once again, we must show that $Sq(A) \approx \omega$. Fix some $a \in A$. Then we define an injection $f: \omega \to Sq(A)$ by

$$f(n) = \langle \overbrace{a, \dots, a}^{n \text{ times}} \rangle, \quad n \ge 1$$
$$= \emptyset, \quad n = 0$$

Thus $\omega \leq \operatorname{Sq}(A)$. Next we can define an injection $h: \operatorname{Sq}(A) \to \operatorname{Sq}(\omega)$ as follows. Let $k: A \to \omega$ be an injection. Then

$$h(\emptyset) = \emptyset$$

$$h(\langle a_0, a_1, \dots, a_{n-1} \rangle) = \langle k(a_0), k(a_1), \dots, k(a_{n-1}) \rangle$$

Thus $\operatorname{Sq}(A) \preceq \operatorname{Sq}(\omega)$. Since $\operatorname{Sq}(\omega) \approx \omega$, it follows that $\operatorname{Sq}(A) \approx \omega$. By Schröder-Bernstein, $\operatorname{Sq}(A) \approx \omega$.

18 Transcendental Numbers

Definition 18.1. Let $r \in \mathbb{R}$ be a real number.

(a) r is *algebraic* iff there exists a polynomial

$$p(x) = a_0 + a_1 x + \ldots + a_n x^n, \quad a_n \neq 0$$

with integer coefficients such that p(r) = 0.

(b) Otherwise, r is transcendental.

Example 18.2.

- (a) By considering p(x) = 2x 1, we see that 1/2 is algebraic. More generally, each $q \in \mathbb{Q}$ is algebraic.
- (b) By considering $p(x) = x^2 2$, we see that $\sqrt{2}$ is algebraic.
- (c) It is known (but hard to prove) that e and π are transcendental.

Theorem 18.3. There exist uncountably many transcendental numbers.

This is an easy corollary of the following result.

Theorem 18.4. There exist only countably many algebraic numbers.

Proof. Let P be the set of polynomials with integer coefficients. Then we can define an injection

$$f\colon P\to \operatorname{Sq}(\mathbb{Z})$$

by

$$f(a_0 + a_1x + \ldots + a_nx^n) = \langle a_0, a_1, \ldots, a_n \rangle$$

Thus $P \preceq \operatorname{Sq}(\mathbb{Z})$ and so P is countable. Note that each $p(x) \in P$ has finitely many roots. Thus the set of algebraic numbers is the union of countably many finite sets and hence is countable.

Puzzle. Determine whether there exists:

- (a) an uncountable set \mathcal{A} of circular discs in \mathbb{R}^2 , no two of which intersect.
- (b) an uncountable set \mathcal{B} of circles in \mathbb{R}^2 , no two of which intersect.
- (c) an uncountable set \mathcal{C} of figure eights in \mathbb{R}^2 , no two of which intersect.

19 Well-orderings

Definition 19.1. The set W is said to be *well-ordered* by \prec iff:

- (a) \prec is a linear ordering of W; and
- (b) every nonempty subset of W has a \prec -least element.

Example 19.2.

- (a) The usual ordering < on \mathbb{N} is a well-ordering.
- (b) The usual ordering < on \mathbb{Z} is *not* a well-ordering.

Theorem 19.3. Let \prec be a linear order on the set A. Then the following are equivalent:

- (a) \prec is a well-ordering.
- (b) There do not exist elements $a_n \in A$ for $n \in \omega$ such that

$$a_0 \succ a_1 \succ a_2 \succ \ldots \succ a_n \succ a_{n+1} \succ \ldots$$

Proof. (a) \implies (b) We shall prove that $not(b) \implies not(a)$. So suppose that there exists elements $a_n \in A$ for $n \in \omega$ such that

$$a_0 \succ a_1 \succ \ldots \succ a_n \succ a_{n+1} \succ \ldots$$

Let $\emptyset \neq B = \{a_n \mid n \in \omega\} \subseteq A$. Then clearly B has no \prec -least element. Thus \prec is not a well-ordering.

 $(b) \implies (a)$ We shall prove that $\operatorname{not}(a) \implies \operatorname{not}(b)$. So suppose that \prec is not a well-ordering. Then there exists $\emptyset \neq B \subseteq A$ such that B has $no \prec$ -least element. Let $a_0 \in B$ be any element. Since a_0 is not the \prec -least element of B, there exists $a_1 \in B$ such that $a_1 \prec a_0$. Since a_1 is not the \prec -least element of B, there exists $a_2 \in B$ such that $a_2 \prec a_1$. Continuing in this fashion, we can recursively define elements $a_n \in B$ for $n \in \omega$ such that

$$a_0 \succ a_1 \succ a_2 \succ \ldots \succ a_n \succ a_{n+1} \succ \ldots$$

Thus (b) fails.

Definition 19.4. Let $\langle L; \rangle$ be a linearly ordered set.

(a) For each $a \in L$, the set of predecessors of a is defined to be

$$L[a] = \{ b \in L \mid b < a \}.$$

- (b) The subset S of L is an *initial segment* of L iff whenever $a \in S$ and b < a, then b < a.
- (c) An initial segment S of L is proper iff $S \neq L$.

Remark 19.5. Thus S is an initial segment of L iff for all $a \in S$, we have $L[a] \subseteq S$.

Remark 19.6. If $\langle W; \langle \rangle$ is a well-ordering and $a \in W$, then so is W[a].

Example 19.7. $(-\infty, 0]$ is an initial segment of \mathbb{R} . $(-\infty, 0)$ is an initial segment of \mathbb{R} .

Lemma 19.8. If $\langle W; \langle \rangle$ is a well-ordering and S is a proper initial segment of W, then there exists $a \in W$ such that S = W[a].

Proof. Since S is proper, $W \setminus S \neq \emptyset$. Let a be the \prec -least element of $W \setminus S$. Then if $b \prec a$, then $b \in S$ and so $W[a] \subseteq S$. Suppose that there exists $c \in W \setminus S$. Then $c \succeq a$. Since $c \in S$ and S is an initial segment of W, we must have that $a \in S$, which is a contradiction. Hence W[a] = S.

Definition 19.9. Let $\langle L; \langle \rangle$ and $\langle M; \langle \rangle$ be (not necessarily distinct) linear orders.

(a) A function $f: L \to M$ is order-preserving iff for all $a, b \in L$

(*) if
$$a < b$$
, then $f(a) \prec f(b)$.

(b) The function $f: L \to M$ is an *isomorphism* iff f is an order-preserving bijection. In this case, we say that L, M are *isomorphic* and write $L \cong M$.

Example 19.10. Define $f: \mathbb{Z} \to \mathbb{Z}$ by f(x) = x - 1. Then f is an isomorphism.

Lemma 19.11. If $\langle W; \prec \rangle$ is a well-ordering and $f: W \to W$ is order-presering, then $f(x) \succeq x$ for all $x \in W$.

Proof. Suppose not. Then $C = \{x \in W \mid f(x) \leq x\} \neq \emptyset$. Let *a* be the \prec -least element of *C*. Then $f(a) \prec a$ and so $f(f(a)) \prec f(a)$. But then $f(a) \in C$, which contradicts the fact that *a* is the \prec -least element of *C*.

Remark 19.12. Define $f: (-\infty, \pi/2) \to \mathbb{R}$ by

$$f(x) = x, \quad \text{if } x < 0$$

= tan(x), \quad \text{if } x \ge 0

Then f is an isomorphism. Hence \mathbb{R} is isomorphic to its proper initial segment $(-\infty, \pi/2)$.

Lemma 19.13. If $\langle W; \prec \rangle$ is a well-ordering, then W is not isomorphic to any of its proper initial segments.

Proof. Suppose that S is a proper initial segment of W and that $f: W \to S$ is an isomorphism. By Lemma 19.8, there exists $a \in W$ such that S = W[a]. Since $f(a) \in W[a]$ we have that $f(a) \prec a$. Since f is order-preserving, this contradicts Lemma 19.11.

Theorem 19.14. Suppose that $\langle W_1; \langle \rangle$ and $\langle W_2; \langle \rangle$ are well-orderings. Then exactly one of the following holds:

- (a) W_1 and W_2 are isomorphic.
- (b) W_1 is isomorphic to a proper initial segment of W_2 .
- (c) W_2 is isomorphic to a proper initial segment of W_1 .

Before proving Theorem 19.14, we point out the connection with Zermelo's Theorem.

Definition 19.15. A set A is well-orderable iff there exists a well-ordering \prec on A.

Example 19.16. Of course, $\langle \mathbb{Q}; \langle \rangle$ is *not* a well-ordering. However, \mathbb{Q} is well-orderable.

Proof. Since $\mathbb{Q} \approx \omega$, there exists a bijection $f : \mathbb{Q} \to \omega$. Define a binary relation \prec on \mathbb{Q} by

$$a \prec b$$
 iff $f(a) < f(b)$.

Then \prec is a well-ordering of \mathbb{Q} .

Problem 19.17. Is \mathbb{R} well-orderable?

Corollary 19.18. Suppose that A, B are well-orderable sets. Then either $A \preceq B$ or $B \preceq A$.

2006/12/06

7

Proof. Let < be a well-ordering of A and let \prec be a well-ordering of B. Applying Theorem 19.14 to $\langle A; < \rangle$ and $\langle B; \prec \rangle$, one of the following must hold.

- (a) A and B are isomorphic
- (b) A is isomorpic to a proper initial segment of B.
- (c) B is isomorpic to a proper initial segment of A.

First suppose that (a) holds and let $f: A \to B$ be an isomorphism. Then f is a bijection and so $A \approx B$. Hence $A \preceq B$.

Now suppose (b) holds. Then there exists a proper initial segment $S \subset B$ and an isomorphism $f: A \to S$. Then f is an injection from A into B and so $A \preceq B$.

Similarly, if (c) holds, then $B \leq A$.

Later we shall use the Axiom of Choice to prove that every set is well-orderable.

Proof of Theorem 19.14. We break the proof down into a series of claims. Let $\langle W_1; < \rangle$ and $\langle W_2; < \rangle$ be well-orderings.

Claim 19.19. At most one of (a), (b), (c) holds.

Proof. Suppose, for example, that (a) and (b) hold. Thus there exists an isomorphism $f: W_1 \to W_2$ and also an isomorphism $g: W_1 \to S$, where S is a proper initial segment of W_2 . But then $g \circ f^{-1}$ is an isomorphism, which contradicts Lemma 19.13. The other cases are similar.

So it is enough to show that at least one of (a), (b), (c) holds. Define

$$f = \{ \langle x, y \rangle \in W_1 \times W_2 \mid W_1[x] \cong W_2[y] \}.$$

Claim 19.20. f is a function.

Proof. Suppose not. Then there exists $x \in W_1$ and $y \neq z \in W_2$ such that $\langle x, y \rangle, \langle x, z \rangle \in f$. Hence there exist isomorphisms $g: W_1[x] \to W_2[y]$ and $h: W_1[x] \to W_2[z]$. We can suppose that y < z, so that $W_2[y]$ is a proper initial segment of $W_2[z]$. But then $g \circ h^{-1}$ is an isomorphism, which contradicts Lemma 19.13.

Claim 19.21.

- (i) dom f is an initial segment of W_1 .
- (ii) f is order-preserving.
- (iii) ran f is an initial segment of W_2 .

Proof. Suppose that $a \in \text{dom } f$ and b < a. Let $h: W_1[a] \to W_2[f(a)]$ be an isomorphism. Then $h|W_1[b]$ is an isomorphism between $W_1[b]$ and $W_2[h(b)]$. Thus $b \in \text{dom } f$ and f(b) = h(b) < f(a). Thus (i) and (ii) hold.

Finally suppose that $c \in \operatorname{ran} f$ and d < c. Then there exists $a \in W_1$ such that $\langle a, c \rangle \in f$. Let $h: W_1[a] \to W_2[c]$ be an isomorphism. Then there exists $b \in W_1[a]$ such that h(b) = d. Since $h|W_1[b]$ is an isomorphism between $W_1[b]$ and $W_2[d]$, it follows that $\langle b, d \rangle \in f$. Thus (*iii*) holds.

Thus f is an order-preserving bijection between the initial segment dom f of W_1 and the initial segment ran f of W_2 . There are four cases to consider.

Case 1. Suppose that dom $f = W_1$ and ran $f = W_2$. Then (a) holds.

Case 2. Suppose that dom $f = W_1$ and ran $f \neq W_2$. Then (b) holds.

Case 3. Suppose that dom $f \neq W_1$ and ran $f = W_2$. Then (c) holds.

Case 4. Suppose that dom $f \neq W_1$ and ran $f \neq W_2$. By Lemma 19.8, there exist $a \in W_1 \setminus \text{dom } f$ and $b \in W_2 \setminus \text{ran } f$ such that dom $f = W_1[a]$ and ran $f = W_2[b]$. But then $f: W_1[a] \to W_2[b]$ is an isomorphism, which means that $\langle a, b \rangle \in f$, a contradiction! \Box