Math 361 Axiom of Choice

17 Axiom of Choice

Definition 17.1. Let F be a nonempty set of nonempty sets. Then a choice function
for F is a function f such that f(S) € S for all S € F.

Example 17.2. Let F = P(N)~{0}. Then we can define a choice function f by
f(S) = the least element of S.
Example 17.3. Let F = P(Z)~{0}. Then we can define a choice function f by
f(5) = en
where n = min{|z| | z € S} and, if n # 0, e = min{z/|z| | |z| =n,z € S}.

Example 17.4. Let F = P(Q)~{0}. Then we can define a choice function f as follows.
Let g: @ — N be an injection. Then

f(9) =4
where g(¢) = min{g(r) | r € S}.

Example 17.5. Let F = P(R)~{0}. Then it is émpossible to explicitly define a choice
function for F.

Axiom 17.6 (Axiom of Choice (ACQC)). For every set F of nonempty sets, there
exists a function f such that f(S) € S for all S € F.

We say that f is a choice function for F.
Theorem 17.7 (AC). If A, B are non-empty sets, then the following are equivalent:
(a) A=< B
(b) There exists a surjection g: B — A.

Proof. (a) = (b) Suppose that A < B. Then there exists a injection f: A — B. Fix
some ag € A. Then we can define a surjection g: B — A by

g(b) = the unique a € A such that f(a) = b, if such an a exists

= ag, if nosuch a exists.
(b) = (a) Suppose that g: B — A is a surjection. Then for each a € A,
Sa={beB[gb) =a}#0

Let F = {S,|a € A} and let h be a choice function for F, ie h(S,) € S, for all a € A.
Then we can define a function k: A — B by k(a) = h(S,). We claim that k is an
injection. To see this, suppose that a # o’ € A. Let k(a) = b and k(a’) = b'. Then
be S, b €Sy and so g(b) =a, g(b') =a’. Hence b # V. O
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Theorem 17.8. If A is any infinite set, then w < A.

Proof. Let f be a choice function for F = P(A)~{0}. Then we can define a function

g:w— A
by recursion via
9(0) = f(A)
and
g(n+1) = f(AN{g(0),. .., g(n)}).
Clearly g is an injection and so w < A. O

Corollary 17.9 (AC). If k is any infinite cardinal, then Rg < k.
Proof. Let card A = k. Then A is an infinite set and so w < A. Hence ¥, < k. O

Corollary 17.10 (AC). A set A is infinite iff there exists a proper subset B C A such
that B ~ A.

Proof. (<) If there exists a proper subset B C A such that B ~ A, then A is clearly
not finite. Hence A is infinite.

(=) Suppose that A is infinite. Then w < A and so there exists an injection f: w — A.
Define a function g: A — A by

g(f(n)) = fn+1) forallnecw
g(x) = =z forall z¢ranf.

Then ¢ is a bijection between A and B = AN{f(0)}. O

Corollary 17.11 (AC (Remark: doesn’t really need AC)). If A is a nonempty
set, then A is countable iff there exists a surjection f: w — A.

Proof. This follows since A is countable iff A < w. O

Theorem 17.12 (AC). A countable union of countable sets is countable; ie if A is
countable and each A € A is countable, then | J.A is also countable.

Proof. If A = (), then |J.A = 0 is countable. Hence we can suppose that A # (. We
can also suppose that () ¢ A, since () would contribute nothing to | J A.

Claim. There exists a surjection f: wxw — (JA.
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Proof. Since A is countable, there exists a surjection g: w — A. For each n € w, let
A, = g(n). Then
A: {Ao,Al,...,An,...}.

(Of course, the sets A,, are not necessarily distinct!) Since each A, is countable, we can
choose a surjection h,: w — A,. Then we can define a surjection

f:wxw—>UA

by
f(n,m) = h,(m).
O

Finally, let k: w — wxw be a surjection. Then ¢ = fok: w|JA is a surjection.
Hence (J A is countable. O

Question 17.13. Where did we use (AC) in the above proof?

Answer. Since each A, is countable, we have that
Sp={h|h:w— A, is a surjection} # (.
We have applied (AC) to obtain a choice function for F = {5, | n € w}.

Definition 17.14. If A is a set, then a finite sequence in A is a function f: n — A,
where n € w.

Remark 17.15.
1. If n = 0 = (), then we obtain the empty sequence, f = ().

2. Suppose n > 0 and f: n — A. For each [ € n, let a; = f(I). Then we often write
f as

<CLQ, ay, ... ,an_1>.
Definition 17.16. If A is a set, then Sq(A) is the set of finite sequences in A.
Theorem 17.17. card(Sq(w)) = No.

Proof. We must show that Sq(w) ~ w. First we can define an injection g: w — Sq(w)
by g(n) = (n). Thus w =< Sq(w). Next we can define an injection h: Sq(w) — w as

follows. Let pg, p1,...,Pn, ... be the increasing enumeration of the primes. Then
h(0) =1
h({ag, . an-1) = pg PPt pt
Thus Sq(w) < w. By Schrdoder-Bernstein, Sq(w) ~ w. O
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Corollary 17.18. If A is a countable set, then card(Sq(A)) = No.

Proof. Once again, we must show that Sq(A) ~ w. Fix some a € A. Then we define an
injection f: w — Sq(A) by

n times
——

fn) = (@, ...;a), n>1
=0, n=0

Thus w =< Sq(A). Next we can define an injection h: Sq(A) — Sq(w) as follows. Let
k: A — w be an injection. Then

ho) = 0
h({ag,a1,...,an—1)) = (k(ag),k(ar),...,k(a,_1))

Thus Sq(A) < Sq(w). Since Sq(w) ~ w, it follows that Sq(A) ~ w. By Schroder-
Bernstein, Sq(A4) ~ w. O

18 Transcendental Numbers

Definition 18.1. Let r € R be a real number.
(a) r is algebraic iff there exists a polynomial
p(z) =ao+ax+ ...+ a2”, a, #0
with integer coefficients such that p(r) = 0.
(b) Otherwise, r is transcendental.
Example 18.2.

(a) By considering p(x) = 2z — 1, we see that 1/2 is algebraic. More generally, each
q € Q is algebraic.

(b) By considering p(x) = 22 — 2, we see that v/2 is algebraic.
(c) It is known (but hard to prove) that e and 7 are transcendental.
Theorem 18.3. There exist uncountably many transcendental numbers.
This is an easy corollary of the following result.

Theorem 18.4. There exist only countably many algebraic numbers.
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Proof. Let P be the set of polynomials with integer coefficients. Then we can define an
injection
f: P —Sq(Z)

by
flag + arx + ...+ ax™) = (ag, a1, ..., a,).

Thus P = Sq(Z) and so P is countable. Note that each p(z) € P has finitely many
roots. Thus the set of algebraic numbers is the union of countably many finite sets and
hence is countable. O

Puzzle. Determine whether there exists:
(a) an uncountable set A of circular discs in R?, no two of which intersect.
(b) an uncountable set B of circles in R?, no two of which intersect.

(c) an uncountable set C of figure eights in R?, no two of which intersect.

19 Well-orderings

Definition 19.1. The set W is said to be well-ordered by < iff:
(a) < is a linear ordering of W; and
(b) every nonempty subset of W has a <—least element.
Example 19.2.
(a) The usual ordering < on N is a well-ordering.
(b) The usual ordering < on Z is not a well-ordering.
Theorem 19.3. Let < be a linear order on the set A. Then the following are equivalent:
(a) < is a well-ordering.
(b) There do not exist elements a,, € A for n € w such that

ag > Q1 > Qg > ... > Qp > QApy1 > ..

Proof. (a) = (b) We shall prove that not(b) = mnot(a). So suppose that there
exists elements a, € A for n € w such that

ag > Q1 > ... > Ay > Ayl > ...
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Let ) # B ={a, |n € w} C A. Then clearly B has no <-least element. Thus < is not
a well-ordering.

(b) = (a) We shall prove that not(a) = not(b). So suppose that < is not a
well-ordering. Then there exists () # B C A such that B has no <-least element. Let
ag € B be any element. Since ag is not the <-least element of B, there exists a; € B
such that a; < ag. Since a; is not the <-least element of B, there exists ay € B such
that ay < ay. Continuing in this fashion, we can recursively define elements a,, € B for
n € w such that

ag > Q1 > G2 > ... > Qp > Apy1 > ..

Thus (b) fails. O
Definition 19.4. Let (L; <) be a linearly ordered set.

(a) For each a € L, the set of predecessors of a is defined to be
Lia]={be L|b<a}.
(b) The subset S of L is an initial segment of L iff whenever a € S and b < a, then
b<a.

(¢) An initial segment S of L is properiff S # L.
Remark 19.5. Thus S is an initial segment of L iff for all @ € S, we have L[a] C S.
Remark 19.6. If (IW; <) is a well-ordering and a € W, then so is W{a].
Example 19.7. (—o0,0] is an initial segment of R. (—o0,0) is an initial segment of R.

Lemma 19.8. If (W; <) is a well-ordering and S is a proper initial segment of W, then
there exists a € W such that S = Wa].

Proof. Since S is proper, W~.S # (). Let a be the <—least element of W~.S. Then if
b < a, then b € S and so Wa] C S. Suppose that there exists ¢ € W~\.S. Then ¢ = a.
Since ¢ € S and S is an initial segment of W, we must have that a € S, which is a
contradiction. Hence Wa] = S. O

Definition 19.9. Let (L; <) and (M; <) be (not necessarily distinct) linear orders.

(a) A function f: L — M is order-preserving iff for all a,b € L

(%) if a < b, then f(a) < f(b).

(b) The function f: L — M is an isomorphism iff f is an order-preserving bijection.
In this case, we say that L, M are isomorphic and write L=M.

Example 19.10. Define f: Z — Z by f(x) = 2 — 1. Then f is an isomorphism.
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Lemma 19.11. If (W; <) is a well-ordering and f: W — W is order-presering, then
flz) = forallz e W.

Proof. Suppose not. Then C'={x € W | f(z) <z} # (). Let a be the <—least element
of C. Then f(a) < a and so f(f(a)) < f(a). But then f(a) € C, which contradicts the
fact that a is the <-least element of C. O

Remark 19.12. Define f: (—oo,7/2) — R by

flz) = =z, fz<0
= tan(x), ifx>0

Then f is an isomorphism. Hence R is isomorphic to its proper initial segment (—oo, 7/2).

Lemma 19.13. If (W; <) is a well-ordering, then W is not isomorphic to any of its
proper initial segments.

Proof. Suppose that S is a proper initial segment of W and that f: W — S is an
isomorphism. By Lemma 19.8, there exists a € W such that S = W{a]. Since f(a) €
Wla] we have that f(a) < a. Since f is order-preserving, this contradicts Lemma 19.11.

[

Theorem 19.14. Suppose that (Wy; <) and (Wa; <) are well-orderings. Then exactly
one of the following holds:

(a) Wy and Wy are isomorphic.
(b) Wy is isomorphic to a proper initial segment of Ws.
(c) Wy is isomorphic to a proper initial segment of W7.
Before proving Theorem 19.14, we point out the connection with Zermelo’s Theorem.
Definition 19.15. A set A is well-orderable iff there exists a well-ordering < on A.
Example 19.16. Of course, (Q; <) is not a well-ordering. However, Q is well-orderable.

Proof. Since Q ~ w, there exists a bijection f: Q — w. Define a binary relation < on

Q by
a<0b iff f(a) < f(b).

Then < is a well-ordering of Q. O
Problem 19.17. Is R well-orderable?

Corollary 19.18. Suppose that A, B are well-orderable sets. Then either A < B or
B < A.
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Proof. Let < be a well-ordering of A and let < be a well-ordering of B. Applying
Theorem 19.14 to (A4; <) and (B; <), one of the following must hold.

(a) A and B are isomorphic
(b) A is isomorpic to a proper initial segment of B.
(¢) B is isomorpic to a proper initial segment of A.

First suppose that (a) holds and let f: A — B be an isomorphism. Then f is a
bijection and so A ~ B. Hence A < B.

Now suppose (b) holds. Then there exists a proper initial segment S C B and an
isomorphism f: A — S. Then f is an injection from A into B and so A < B.

Similarly, if (¢) holds, then B < A. O

Later we shall use the Axiom of Choice to prove that every set is well-orderable.

Proof of Theorem 19.14. We break the proof down into a series of claims. Let (W;; <)
and (Ws; <) be well-orderings.

Claim 19.19. At most one of (a), (b), (¢) holds.

Proof. Suppose, for example, that (a) and (b) hold. Thus there exists an isomorphism
f: Wiy — W5 and also an isomorphism ¢g: W7 — S, where S is a proper initial segment
of Ws. But then go f~! is an isomorphism, which contradicts Lemma 19.13. The other
cases are similar. OJ

So it is enough to show that at least one of (a), (b), (¢) holds. Define
f={{a,y) € WixWsy [ Wy [z]=Waly]}.
Claim 19.20. f is a function.

Proof. Suppose not. Then there exists € W; and y # z € W such that (x,y), (x, z) €
f. Hence there exist isomorphisms g: Wi[z] — Wiy| and h: Wi[z] — Ws[z]. We can
suppose that y < z, so that Ws[y] is a proper initial segment of W5[z]. But then goh™!
is an isomorphism, which contradicts Lemma 19.13. O

Claim 19.21.
(i) dom f is an initial segment of Wj.
(ii) f is order-preserving.

(iii) ran f is an initial segment of Ws.
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Proof. Suppose that a € dom f and b < a. Let h: Wi[a] — Ws[f(a)] be an isomorphism.
Then h|W;[b] is an isomorphism betweem W;[b] and Wslh(b)]. Thus b € dom f and
f(b) = h(b) < f(a). Thus (i) and (i) hold.

Finally suppose that ¢ € ran f and d < c¢. Then there exists a € W; such that
(a,c) € f. Let h: Wila] — Ws[c] be an isomorphism. Then there exists b € Wj|a] such
that h(b) = d. Since h|W;[b] is an isomorphism between W;[b] and W[d], it follows that
(b,d) € f. Thus (¢i7) holds. O

Thus f is an order-preserving bijection between the initial segment dom f of W, and
the initial segment ran f of W5. There are four cases to consider.

Case 1. Suppose that dom f = W and ran f = Ws. Then (a) holds.
Case 2. Suppose that dom f = W; and ran f # W,. Then (b) holds.
Case 3. Suppose that dom f # W; and ran f = W,. Then (c¢) holds.
Case 4. Suppose that dom f # W; and ran f # W,. By Lemma 19.8, there exist a €

Wi~ dom f and b € Wy~ ran f such that dom f = Wila] and ran f = W5[b]. But then
f: Wila] — Wy[b] is an isomorphism, which means that (a,b) € f, a contradiction! [
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