20 Ordinals

Definition 20.1. A set α is an *ordinal* iff:

- (i) α is transitive; and
- (ii) α is linearly ordered by \in .

Example 20.2.

- (a) Each natural number n is an ordinal.
- (b) ω is an ordinal.
- (a) $\omega \cup \{\omega\}$ is an ordinal.

At this point we require another axiom.

Axiom 20.3. Every nonempty set A has an \in -minimal element; ie an element $x \in A$ such that $x \cap A = \emptyset$.

We record some easy consequences of the Regularity Axiom.

Theorem 20.4.

(a) There does not exist an infinite sequence of sets such that

 $x_0 \ni x_1 \ni x_2 \ni \ldots \ni x_n \ni x_{n+1} \ni \ldots$

- (b) For every set x, we have $x \notin x$.
- (c) There do not exist sets such that

$$x_0 \in x_1 \in x_2 \in \ldots \in x_n \in x_0.$$

Proof. (a) Suppose that such an infinite sequence exits

$$x_0 \ni x_1 \ni x_2 \ni \ldots \ni x_n \ni x_{n+1} \ni \ldots$$

Let $A = \{x_n \mid n \in \omega\}$. For each $n \in \omega$, we have $x_{n+1} \in x_n \cap A \neq \emptyset$. But this means that A has no \in -minimal element, which is a contradiction.

- (b) Suppose that $x \in x$. Then $A = \{x\}$ contradicts the Regularity Axiom.
- (c) Exercise.

Theorem 20.5. If α is an ordinal, then α is well-ordered by \in .

$$\alpha_0 \ni \alpha_1 \ni \alpha_2 \ni \ldots \ni \alpha_n \ni \alpha_{n+1} \ni \ldots$$

it follows that \in is a well-ordering of α .

Proposition 20.6. Suppose that α is an ordinal.

- (a) $\alpha^+ = \alpha \cup \{\alpha\}$ is also an ordinal.
- (b) If $\beta \in \alpha^+$, then $\beta \in \alpha$ or $\beta = \alpha$.

Proof. (b) is completely obvious! Thus it is enough to show that α^+ is an ordinal. Suppose that $\beta \in \alpha$ and $\gamma \in \beta$. Then either $\beta \in \alpha$ or $\beta = \alpha$. If $\beta \in \alpha$ then $\gamma \in \alpha$, since α is transitive, and so $\gamma \in \alpha^+ = \alpha \cup \{\alpha\}$. If $\beta = \alpha$, then $\gamma \in \alpha$ and so $\gamma \in \alpha^+ = \alpha \cup \{\alpha\}$. Hence α^+ is transitive.

Exercise 20.7. Show that α^+ is linearly ordered by \in .

Hence α^+ is also an ordinal.

The ordinals begin as follows:

$$0, 1, 2, \dots, n, \dots, \omega, \omega + 1, \omega + 2, \dots, \omega + n, \dots, \omega \cdot 2,$$
$$\dots, \omega \cdot 3, \dots, \omega \cdot n, \dots, \omega \cdot \omega, \dots, \omega \cdot \omega \cdot \omega, \dots$$
$$\dots, \omega^{n}, \dots, \omega^{\omega}, \dots, \omega^{\omega^{\omega}}, \dots, etc$$

Question 20.8. Does there exist an uncountable ordinal?

Discussion. We could attempt to well-order \mathbb{R} by "counting along the ordinals". But would we run out of ordinals before we finish?

Theorem 20.9. If $\langle W; \langle \rangle$ is a well-ordering, then there exists a unique ordinal α such that $\langle W; \langle \rangle \cong \langle \alpha; \in \rangle$.

First we need to prove a series of lemmas concerning the basic properties of ordinals. These are analogues of earlier results about the natural numbers.

Lemma 20.10. If α is an ordinal and $\beta \in \alpha$, then β is also an ordinal and β is the set of predecessors of β in $\langle \alpha; \in \rangle$.

Proof. Since $\beta \in \alpha$ and α is transitive, it follows that $\beta \subseteq \alpha$. Clearly \in also linearly orders the subset β of α and hence β is an ordinal.

Exercise 20.11. Check that β is transitive!

Finally $\beta = \{\gamma \in \alpha \mid \gamma \in \beta\}$ is the set of predecessors of β in α .

Lemma 20.12. If α and β are ordinals and $\alpha \cong \beta$, then $\alpha = \beta$.

Proof. Suppose that $f: \alpha \to \beta$ is an isomorphism. We claim that $f(\gamma) = \gamma$ for all $\gamma \in \alpha$. If not, let γ be the least element of α such that $f(\gamma) \neq \gamma$. Then

$$f(\gamma) = \text{the set of predecessors of } f(\gamma) \text{ in } \beta$$

= { $f(\xi) | \xi \in \gamma$ }, since f is an isomorphism
= { $\xi | \xi \in \gamma$ }, by the minimality of γ
= γ

which is a contradiction.

Lemma 20.13. If α and β are ordinals, then exactly one of the following holds:

 $\alpha = \beta$ or $\alpha \in \beta$ or $\beta \in \alpha$.

Proof. Since α, β are well-orders, exactly one of the following occurs:

- (i) $\alpha \cong \beta$;
- (ii) α is isomorphic to an initial segment of β ;

(iii) β is isomorphic to an initial segment of α ;

First suppose that (i) holds. By Lemma 20.12, we obtain that $\alpha = \beta$.

Next suppose that (*ii*) holds. Let S be a proper initial segment of β and let $f : \alpha \to S$ be an isomorphism. There exists $\gamma \in \beta$ such that

 $S = \text{the set of predecessors of } \gamma \text{ in } \beta$ $= \gamma$

Since $\alpha \cong \gamma$, Lemma 20.12 implies that $\alpha = \gamma \in \beta$.

Similarly, if (*iii*) holds, then $\beta \in \alpha$.

Lemma 20.14. If α, β, γ are ordinals and $\alpha \in \beta$ and $\beta \in \gamma$, then $\alpha \in \gamma$.

Proof. This follows from the fact that γ is a transitive set.

Definition 20.15. ON is the class of all ordinals.

Theorem 20.16. ON is not a set.

Proof. Suppose that ON is a set. By Lemma 20.10, ON is transitive. By Lemmas 20.14 and 20.13, ON is linearly ordered by \in . Thus ON is an ordinal and so ON \in ON, which contradicts the Regularity Axiom.

Arguing as above, we obtain the following result.

Lemma 20.17. If A is a transitive set of ordinals, then A is an ordinal.

At this point, we require our final axiom.

Axiom 20.18 (Replacement). Suppose that P(x, y) is a property and A is a set. Suppose that for every $a \in A$, there exists a unique set b such that P(a, b) holds. Then

$$B = \{b \mid (\exists a \in A) \ P(a, b)\}$$

is a set.

Theorem 20.19. If $\langle W; \langle \rangle$ is a well-ordering, then there exists a unique ordinal α such that $W \cong \alpha$.

Proof. By Lemma 20.12, there exists at most one such ordinal. Hence it is enough to prove the existance of at least one such ordinal. Define

 $A = \{a \in W \mid \text{There exists an ordinal } \beta \text{ such that } W[a] \cong \beta \}$

By Lemma 20.12, for each $a \in A$, there exists a unique ordinal β such that $W[a] \cong \beta$. Since A is a set, the Replacement Axiom implies that

 $B = \{\beta \mid \text{There exists } a \in W \text{ such that } W[a] \cong \beta \}$

is also a set. Let $f: A \to B$ be the function defined by

f(a) = the unique ordinal β such that $W[a] \cong \beta$.

Claim 20.20.

- (i) A is an initial segment of W.
- (i) B is an ordinal.
- (i) $f: A \to B$ is an isomorphism.

Proof. Suppose that $a \in A$ and that b < a. Let $f(a) = \alpha$ and let $h: W[h] \to \alpha$ be an isomorphism. Then h|W[b] is an isomorphism between W[b] and the set of predecessors of h(b) in α ; ie between W[b] and $h(b) \in \alpha$. Thus $b \in A$ and $f(b) \in h(b) \in f(a)$.

A similar argument shows that if $\alpha \in B$ and $\beta \in \alpha$, then $\beta \in B$. Thus B is a transitive set of ordinals. By Lemma 20.17, B is an ordinal.

Finally, then first paragraph shows that f is order-preserving. Clearly f is a bijection and hence f is an isomorphism.

Hence it is enough to prove that A = W. If not, A is a proper initial segment of W and so there exists $a \in W \setminus A$ such that A = W[a]. But since $W[a] = A \cong B$ and B is an ordinal, this means that $a \in A$, which is a contradiction.

Question 20.21. Does there exist an uncountable ordinal?

Answer. Yes! In fact, the following much stronger statement holds.

Theorem 20.22 (Hartogs). For each set A, there exists an ordinal α such that $\alpha \not\preceq A$; ie such that there does not exist an injection $f : \alpha \to A$.

Proof. Suppose that $\beta \in ON$ and that $f: \beta \to A$ is an injection. Let $B = \operatorname{ran} f$. Then we can well-order B via

$$b_1 <_{\beta} b_2$$
 iff $f^{-1}(b_1) \in f^{-1}(b_2)$.

Hence $f: \beta \to \langle B; <_{\beta} \rangle$ is an isomorphism. Note

$$\langle B; <_{\beta} \rangle \in \mathcal{P}(A) \times \mathcal{P}(A \times A).$$

In fact, $\langle B; <_{\beta} \rangle$ is an element of the *set*

$$C = \{ \langle S; \langle \rangle \in \mathcal{P}(A) \times \mathcal{P}(A \times A) \mid \langle \text{ is a well-ordering of } S \}.$$

Futhermore, for each $\langle S; \langle \rangle \in C$, there exists a unique ordinal γ such that $\langle S, \langle \rangle \cong \gamma$. By the Replacement Axiom,

$$D = \{ \gamma \mid \text{There exists } \langle S, < \rangle \in C \text{ such that } \langle S, < \rangle \cong \gamma \}$$

is a set. Since ON is not a set, there exists an ordinal α such that $\alpha \notin D$. By the above argument, $\alpha \not\preceq A$.

Remark 20.23. Note that an ordinal α is countable iff $\alpha \leq \omega$. Hence there exists an uncountable ordinal. In fact, there exists a least such ordinal. Let ω_1 be the least uncountable ordinal.

Question 20.24. What exactly is ω_1 ?

Recall that the first finite ordinal is

 $\omega = \{ \alpha \mid \alpha \text{ is a finite ordinal} \}.$

Claim 20.25.

 $\omega_1 = \{ \alpha \mid \alpha \text{ is a countable ordinal} \}.$

Proof. By the minimality of ω_1 , if $\alpha \in \omega_1$, then α is a countable ordinal. Conversely, suppose that α is a countable ordinal. Clearly $\alpha \neq \omega_1$. Hence either $\omega_1 \in \alpha$ or $\alpha \in \omega_1$. Suppose that $\omega_1 \in \alpha$. Since α is transitive, this implies that $\omega_1 \subseteq \alpha$, which is a contradiction, since ω_1 is uncountable and α is countable!

Remark 20.26. Zermelo's Theorem \Rightarrow (WA).

Proof. Let A be any set, Then there exists an ordinal α such that $\alpha \not\preceq A$. By Zermelo's Theorem, there exists an injection

$$f: A \to \alpha.$$

Hence we can well-order A by

$$a_1 < a_2$$
 iff $f(a_1) < f(a_2)$.

Summary.

$$(AC) \Leftarrow (WA) \Leftrightarrow (Z)$$

Theorem 20.27 (Transfinite induction on ON). If C is a nonempty subclass of ON, then C contains an \in -least element.

Proof. Suppose not. Then we can inductively construct a sequence of elements $\alpha_n \in C$ for $n \in \omega$ such that

 $\alpha_0 \ni \alpha_1 \ni \ldots \ni \alpha_n \ni \alpha_{n+1} \ni \ldots$

But this contradicts the Axiom of Regularity.

Notation. From now in, if α, β are ordinals, then we shall often write $\alpha < \beta$ instead of $\alpha \in \beta$.

Definition 20.28. Let $0 \neq \alpha \in ON$.

- α is a successor ordinal iff there exists $\beta \in ON$ such that $\alpha = \beta^+$. We shall usually write $\beta + 1$ instead of β^+ .
- Otherwise, α is a *limit ordinal*.

Example 20.29.

- $5, \omega^+$ are successor ordinals.
- ω is a limit ordinal.
- ω_1 is a limit ordinal.

Definition 20.30. If X is a set of ordinals, then $\sup(X)$ is the least ordinal α such that $\beta \leq \alpha$ for all $\beta \in X$.

2006/12/16

eg,

$$\sup\{2, 5, 7\} = 7 = \cup\{2, 5, 7\}$$
$$\sup\{0, 1, 2, \dots, n, \dots\} = \omega = \cup\{0, 1, 2, \dots, n, \dots\}.$$

Exercise 20.31. If X is a set of ordinals, then $\sup(X) = \bigcup X$.

Proof. First we show that $\cup X$ is an ordinal. Clearly $\cup X$ is a set of ordinals. So it is enough to show that $\cup X$ is transitive. Suppose that $\alpha \in \beta$ and $\beta \in \cup X$. Then there exist $\gamma \in X$ such that $\beta \in \gamma$. Then $\alpha \in \gamma$ and so $\alpha \in \cup X$.

Next suppose that $\beta \in X$. Then $\beta \subseteq \bigcup X$ and so $\beta \leq \bigcup X$. Thus $\bigcup X$ is an upper bound for X.

Finally suppose that δ is an ordinal which is an upper bound for X. Then for all $\beta \in X$, we have $\beta \leq \delta$ and so $\beta \subseteq \delta$. Thus $\cup X \subseteq \delta$ and so $\cup X \leq \delta$.

Theorem 20.32 (Transfinite Induction on ON). Let D be a subclass of ON. Suppose that

- (a) $0 \in D$;
- (b) If $\alpha \in D$, then $\alpha + 1 \in D$.
- (c) If α is a limit ordinal and $\beta \in D$ for all $\beta < \alpha$,

Then D = ON.

Proof. Suppose not. Then $C = ON \setminus D$ is a nonempty class of ordinals. Hence C contains a least element α . But then (a), (b), (c) imply that $\alpha \neq 0, \alpha$ isn't a successor ordinall and α isn't a limit ordinal, which is a contradiction!

Next we shall consider transfinite recursion on ON.

Example 20.33. We define the operation of *ordinal addition* $\alpha + \beta$ by recursion on β as follows:

$$\begin{aligned} \alpha + 0 &= \alpha \\ \alpha + (\beta + 1) &= (\alpha + \beta) + 1 \\ \alpha + \beta &= \sup\{\alpha + \gamma \mid \gamma < \beta\}, \text{ when } \beta \text{ is a limit ordinal} \end{aligned}$$

Remark 20.34.

 $1 + \omega = \sup\{1 + n \mid n \in \omega\} = \omega.$

Hence

$$\omega = 1 + \omega \neq \omega + 1 = \omega \cup \{\omega\}.$$

Thus ordinal addition is *not* commutative.

2006/12/16

Example 20.35. We define the operation of *ordinal multiplication* $\alpha \cdot \beta$ by recursion on β as follows:

$$\begin{aligned} \alpha \cdot 0 &= 0 \\ \alpha \cdot (\beta + 1) &= (\alpha \cdot \beta) + \alpha \\ \alpha \cdot \beta &= \sup\{\alpha \cdot \gamma \mid \gamma < \beta\}, \text{ when } \beta \text{ is a limit ordinal.} \end{aligned}$$

Remark 20.36. Thus

$$2 \cdot \omega = \sup\{2 \cdot n \mid n \in \omega\} = \omega.$$

Also

$$\omega \cdot 2 = \omega \cdot (1+1)$$
$$= \omega \cdot 1 + \omega$$
$$= \omega + \omega$$

Thus $2 \cdot \omega \neq \omega \cdot 2$. Hence ordinal multiplication is *not* commutative.

Theorem 20.37 (Transfinite Recursion). If $G: V \to V$ is any operation, then there exists a unique operation $F: ON \to V$ such that

$$F(\alpha) = G(F|\alpha)$$

for all $\alpha \in ON$

Proof. Omitted.

Here V is the class of all sets.

Theorem 20.38 ((AC)). Every set A is well-orderable.

Proof. Let A be any set and let f be a choice function on $\mathcal{P}(A) \setminus \{\emptyset\}$. Fix some $x \notin A$. Then we can define an operation

$$H\colon \mathrm{ON}\to A\cup\{x\}$$

by recursion as follows.

$$\begin{aligned} H(\alpha) &= f(A \setminus \{H(\beta) \mid \beta < \alpha\}) & \text{if } A \setminus \{H(\beta) \mid \beta < \alpha\} \neq \emptyset \\ &= x & \text{otherwise.} \end{aligned}$$

By Hartogs' Theorem, there exists an ordinal α such that $\alpha \not\preceq A$; and clearly $H(\alpha) = x$. Let β be the least ordinal such that $H(\beta) = x$ and let $h = H|\beta$. Then $h: \beta \to A$ is a bijection and so we can define a well-ordering \prec of A by

$$a_1 \prec a_2$$
 iff $h^{-1}(a_1) < h^{-1}(a_2)$.

8

Finally we have shown

 $(WA) \Leftrightarrow (AC) \Leftrightarrow (Z)$

At this point, we can pay off another of our debts!

Definition 20.39. For any set A, the cardinal number of A is

card A = the *least* ordinal α such that $A \approx \alpha$.

Remark 20.40. Thus an ordinal γ is a cardinal number iff for all $\beta < \gamma$, $\beta \not\approx \gamma$.

Example 20.41. The following ordinals are cardinal numbers

$$0, 1, 2, \ldots, n, \ldots, \omega, \omega_1, \ldots$$

In particular, $\aleph_0 = \omega$.

Definition 20.42. We define \aleph_{α} by recursion as follows:

$$\begin{split} \aleph_0 &= \omega \\ \aleph_{\alpha+1} &= \text{ the least ordinal number } \kappa \text{ such that } \kappa \succ \aleph_{\alpha}. \\ \aleph_{\delta} &= \sup \{\aleph_{\beta} \mid \beta < \delta\}, \quad \text{if } \delta \text{ is a limit ordinal} \end{split}$$

Then \aleph_{α} , $\alpha \in ON$, enumerates the infinite cardinal numbers in increasing order. **NB** This must be proved!

The Continuum Problem. We know that there exists an ordinal $\alpha \geq 1$ such that $2^{\aleph_0} = \aleph_{\alpha}$. But what is the exact value of α ?

Theorem 20.43.

- (a) Each \aleph_{α} is an infinite cardinal.
- (b) If κ is an infinite cardinal, then $\kappa = \aleph_{\alpha}$ for some $\alpha \in ON$.

Proof. (a) Suppose not. Let α be the least ordinal such that \aleph_{α} is not a cardinal. Clearly α is a limit ordinal and so

$$\aleph_{\alpha} = \sup\{\aleph_{\beta} \mid \beta < \alpha\}.$$

Hence there exists $\beta < \alpha$ such that $\aleph_{\beta} \approx \aleph_{\alpha}$. But then we have that

$$\aleph_{\beta+1} \subseteq \aleph_{\alpha} \approx \aleph_{\beta}$$

and so $\aleph_{\beta+1} \preceq \aleph_{\beta}$, which contradicts the fact that $\aleph_{\beta+1}$ is a cardinal number.

(b) Suppose not and let κ be the least counterexample. Clearly $\kappa > \aleph_0$. Let

$$S = \{\aleph_{\beta} \mid \aleph_{\beta} < \kappa\}$$

Case 1. Suppose that S contains a maximum element; say
$$\aleph_{\alpha}$$
. Then

 $\kappa = \text{ the least cardinal greater than } \aleph_{\gamma}$ $= \aleph_{\gamma+1}$

which is a contradiction!

Case 2. Suppose that S doesn't contain a maximum element. Then

$$\kappa = \sup \{\aleph_{\beta} \mid \aleph_{\beta} \in S\}$$

= \aleph_{α} , where $\alpha = \sup \{\beta \mid \aleph_{\beta} \in S\}$

which is a contradiction!

Definition 20.44. V is the class of all sets.

Theorem 20.45. V is not a set.

Proof. If V is a set, then $V \in V$, which contradicts the Regularity Axiom.

Definition 20.46 (The cumulative hierarchy). We define V_{α} by recursion as follows:

$$V_0 = \emptyset$$

$$V_{\alpha+1} = \mathcal{P}(V_{\alpha})$$

$$V_{\delta} = \bigcup \{V_{\beta} \mid \beta < \delta\}, \text{ if } \delta \text{ is a limit ordinal}$$

Lemma 20.47.

- (a) V_{α} is a transitive set for each $\alpha \in ON$.
- (b) If $\beta < \alpha$, then $V_{\alpha} \subseteq V_{\beta}$.

Proof. We argue by transfinite induction on α that (a) and (b) hold.

Case 1. $\alpha = 0$. Then (a) and (b) hold trivially.

Case 2. $\alpha = \gamma + 1$ is a successor ordinal. Suppose inductively that (a) and (b) hold for γ . Since V_{γ} is inductive, it follows that $V_{\gamma+1} = \mathcal{P}(V_{\gamma})$ is transitive and that $V_{\gamma} \subseteq \mathcal{P}(V_{\gamma}) = V_{\gamma+1}$. Hence (a) holds. Now suppose that $\beta < \gamma + 1$. Then either $\beta = \gamma$ or $\beta < \gamma$. If $\beta = \gamma$, then we have that $V_{\beta} = V_{\gamma} \subseteq V_{\gamma+1}$. So suppose that $\beta < \gamma$. By

2006/12/16

induction hypothesis, $V_{\beta} \subseteq V_{\gamma}$. Since $V_{\gamma} \subseteq V_{\gamma+1}$, we have that $V_{\beta} \subseteq V_{\gamma+1}$. Thus (b) holds.

Case 3. α is a limit ordinal. Suppose inductively that (a) and (b) hold for all $\gamma < \alpha$. Since

$$V_{\alpha} = \bigcup_{\gamma < \alpha} V_{\gamma}$$

it follows that (b) holds. Next suppose that $x \in y$ and $y \in V_{\alpha}$. Then there exists $\gamma < \alpha$ such that $y \in V_{\gamma}$. Since V_{γ} is transitive, $x \in V_{\gamma}$. Since $V_{\gamma} \subseteq V_{\alpha}$, $x \in V_{\alpha}$. Thus (a) holds.

Theorem 20.48. If x is any set, then there exists $\alpha \in ON$ such that $x \in V_{\alpha}$; ie

$$V = \bigcup_{\alpha \in \mathrm{ON}} V_{\alpha}.$$

Proof. Suppose that $x \in V$ and that for each $y \in x$, there exists $\alpha_y \in ON$ such that $y \in V_{\alpha_y}$. Let

$$\beta = \sup\{\alpha_y \mid y \in x\}.$$

Then $x \subseteq V_{\beta}$ and so $x \in \mathcal{P}(V_{\beta}) = V_{\beta+1}$.

For the sake of contradiction, suppose that there exists $x_0 \in V$ such that $x_0 \notin \bigcup_{\alpha \in ON} V_{\alpha}$. Then there exists $x_1 \in x_0$ such that $x_1 \notin \bigcup_{\alpha \in ON} V_{\alpha}$. Similarly, there exists $x_2 \in x_1$ such that $x_2 \notin \bigcup_{\alpha \in ON} V_{\alpha}$. Continuing in this fashion, we can inductively define sets x_n such that

$$x_0 \ni x_1 \ni x_2 \ni \ldots \ni x_n \ni x_{n+1} \ni \ldots$$

which contradicts the Regularity Axiom.

Remark 20.49.

- (a) A class $M \subseteq V$ is a set iff there exists $\alpha \in ON$ such that $M \subseteq V_{\alpha}$.
- (b) For each ordinal $\alpha \in ON$, we have that $\alpha \in V_{\alpha+1} \setminus V_{\alpha}$.