
Math 361 Ordinals

20 Ordinals

Definition 20.1. A set α is an ordinal iff:

(i) α is transitive; and

(ii) α is linearly ordered by ∈.

Example 20.2.

(a) Each natural number n is an ordinal.

(b) ω is an ordinal.

(a) ω ∪ {ω} is an ordinal.

At this point we require another axiom.

Axiom 20.3. Every nonempty set A has an ∈–minimal element; ie an element x ∈ A
such that x ∩ A = ∅.

We record some easy consequences of the Regularity Axiom.

Theorem 20.4.

(a) There does not exist an infinite sequence of sets such that

x0 3 x1 3 x2 3 . . . 3 xn 3 xn+1 3 . . .

(b) For every set x, we have x /∈ x.

(c) There do not exist sets such that

x0 ∈ x1 ∈ x2 ∈ . . . ∈ xn ∈ x0.

Proof. (a) Suppose that such an infinite sequence exits

x0 3 x1 3 x2 3 . . . 3 xn 3 xn+1 3 . . .

Let A = {xn | n ∈ ω}. For each n ∈ ω, we have xn+1 ∈ xn ∩A 6= ∅. But this means that
A has no ∈–minimal element, which is a contradiction.

(b) Suppose that x ∈ x. Then A = {x} contradicts the Regularity Axiom.
(c) Exercise.

Theorem 20.5. If α is an ordinal, then α is well-ordered by ∈.

2006/12/16 1



Math 361 Ordinals

Proof. Consider the linear order 〈α;∈〉. Since there do not exist elements an ∈ α for
n ∈ ω such that

α0 3 α1 3 α2 3 . . . 3 αn 3 αn+1 3 . . .
it follows that ∈ is a well-ordering of α.

Proposition 20.6. Suppose that α is an ordinal.

(a) α+ = α ∪ {α} is also an ordinal.

(b) If β ∈ α+, then β ∈ α or β = α.

Proof. (b) is completely obvious! Thus it is enough to show that α+ is an ordinal.
Suppose that β ∈ α and γ ∈ β. Then either β ∈ α or β = α. If β ∈ α then γ ∈ α, since
α is transitive, and so γ ∈ α+ = α∪{α}. If β = α, then γ ∈ α and so γ ∈ α+ = α∪{α}.
Hence α+ is transitive.

Exercise 20.7. Show that α+ is linearly ordered by ∈.

Hence α+ is also an ordinal.

The ordinals begin as follows:

0, 1, 2, . . . , n, . . . , ω, ω + 1, ω + 2, . . . , ω + n, . . . , ω · 2,
. . . , ω · 3, . . . , ω · n, . . . , ω · ω, . . . , ω · ω · ω, . . .

. . . , ωn, . . . , ωω, . . . , ωω
ω

, . . . , etc

Question 20.8. Does there exist an uncountable ordinal?

Discussion. We could attempt to well-order R by “counting along the ordinals”. But
would we run out of ordinals before we finish?

Theorem 20.9. If 〈W ;<〉 is a well-ordering, then there exists a unique ordinal α such
that 〈W ;<〉∼=〈α;∈〉.

First we need to prove a series of lemmas concerning the basic properties of ordinals.
These are analogues of earlier results about the natural numbers.

Lemma 20.10. If α is an ordinal and β ∈ α, then β is also an ordinal and β is the set
of predecessors of β in 〈α;∈〉.

Proof. Since β ∈ α and α is transitive, it follows that β ⊆ α. Clearly ∈ also linearly
orders the subset β of α and hence β is an ordinal.

Exercise 20.11. Check that β is transitive!

Finally β = {γ ∈ α | γ ∈ β} is the set of predecessors of β in α.
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Lemma 20.12. If α and β are ordinals and α∼=β, then α = β.

Proof. Suppose that f : α→ β is an isomorphism. We claim that f(γ) = γ for all γ ∈ α.
If not, let γ be the least element of α such that f(γ) 6= γ. Then

f(γ) = the set of predecessors of f(γ) in β

= {f(ξ) | ξ ∈ γ}, since f is an isomorphism

= {ξ | ξ ∈ γ}, by the minimality of γ

= γ

which is a contradiction.

Lemma 20.13. If α and β are ordinals, then exactly one of the following holds:

α = β or α ∈ β or β ∈ α.

Proof. Since α, β are well-orders, exactly one of the following occurs:

(i) α∼=β;

(ii) α is isomorphic to an initial segment of β;

(iii) β is isomorphic to an initial segment of α;

First suppose that (i) holds. By Lemma 20.12, we obtain that α = β.
Next suppose that (ii) holds. Let S be a proper initial segment of β and let f : α→ S

be an isomorphism. There exists γ ∈ β such that

S = the set of predecessors of γ in β

= γ

Since α∼=γ, Lemma 20.12 implies that α = γ ∈ β.
Similarly, if (iii) holds, then β ∈ α.

Lemma 20.14. If α, β, γ are ordinals and α ∈ β and β ∈ γ, then α ∈ γ.

Proof. This follows from the fact that γ is a transitive set.

Definition 20.15. ON is the class of all ordinals.

Theorem 20.16. ON is not a set.

Proof. Suppose that ON is a set. By Lemma 20.10, ON is transitive. By Lemmas 20.14
and 20.13, ON is linearly ordered by ∈. Thus ON is an ordinal and so ON ∈ ON, which
contradicts the Regularity Axiom.

Arguing as above, we obtain the following result.
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Lemma 20.17. If A is a transitive set of ordinals, then A is an ordinal.

At this point, we require our final axiom.

Axiom 20.18 (Replacement). Suppose that P (x, y) is a property and A is a set.
Suppose that for every a ∈ A, there exists a unique set b such that P (a, b) holds. Then

B = {b | (∃a ∈ A) P (a, b)}

is a set.

Theorem 20.19. If 〈W ;<〉 is a well-ordering, then there exists a unique ordinal α such
that W∼=α.

Proof. By Lemma 20.12, there exists at most one such ordinal. Hence it is enough to
prove the existance of at least one such ordinal. Define

A = {a ∈ W | There exists an ordinal β such that W [a]∼=β}

By Lemma 20.12, for each a ∈ A, there exists a unique ordinal β such that W [a]∼=β.
Since A is a set, the Replacement Axiom implies that

B = {β | There exists a ∈W such that W [a]∼=β}

is also a set. Let f : A→ B be the function defined by

f(a) = the unique ordinal β such that W [a]∼=β.

Claim 20.20.

(i) A is an initial segment of W .

(i) B is an ordinal.

(i) f : A→ B is an isomorphism.

Proof. Suppose that a ∈ A and that b < a. Let f(a) = α and let h : W [h] → α be an
isomorphism. Then h|W [b] is an isomorphism between W [b] and the set of predecessors
of h(b) in α; ie between W [b] and h(b) ∈ α. Thus b ∈ A and f(b) ∈ h(b) ∈ f(a).

A similar argument shows that if α ∈ B and β ∈ α, then β ∈ B. Thus B is a
transitive set of ordinals. By Lemma 20.17, B is an ordinal.

Finally, then first paragraph shows that f is order-preserving. Clearly f is a bijection
and hence f is an isomorphism.

Hence it is enough to prove that A = W . If not, A is a proper initial segment of W
and so there exists a ∈ WrA such that A = W [a]. But since W [a] = A∼=B and B is
an ordinal, this means that a ∈ A, which is a contradiction.
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Question 20.21. Does there exist an uncountable ordinal?

Answer. Yes! In fact, the following much stronger statement holds.

Theorem 20.22 (Hartogs). For each set A, there exists an ordinal α such that α 6¹ A;
ie such that there does not exist an injection f : α→ A.

Proof. Suppose that β ∈ ON and that f : β → A is an injection. Let B = ran f . Then
we can well-order B via

b1 <β b2 iff f−1(b1) ∈ f−1(b2).

Hence f : β → 〈B;<β〉 is an isomorphism. Note

〈B;<β〉 ∈ P(A)×P(A×A).

In fact, 〈B;<β〉 is an element of the set

C = {〈S;<〉 ∈ P(A)×P(A×A) |< is a well-ordering of S}.

Futhermore, for each 〈S;<〉 ∈ C, there exists a unique ordinal γ such that 〈S,<〉∼=γ.
By the Replacement Axiom,

D = {γ | There exists 〈S,<〉 ∈ C such that 〈S,<〉∼=γ}

is a set. Since ON is not a set, there exists an ordinal α such that α /∈D. By the above
argument, α 6¹ A.

Remark 20.23. Note that an ordinal α is countable iff α ¹ ω. Hence there exists
an uncountable ordinal. In fact, there exists a least such ordinal. Let ω1 be the least
uncountable ordinal.

Question 20.24. What exactly is ω1?

Recall that the first finite ordinal is

ω = {α | α is a finite ordinal}.

Claim 20.25.
ω1 = {α | α is a countable ordinal}.

Proof. By the minimality of ω1, if α ∈ ω1, then α is a countable ordinal. Conversely,
suppose that α is a countable ordinal. Clearly α 6= ω1. Hence either ω1 ∈ α or α ∈ ω1.
Suppose that ω1 ∈ α. Since α is transitive, this implies that ω1 ⊆ α, which is a
contradiction, since ω1 is uncountable and α is countable!
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Remark 20.26. Zermelo’s Theorem ⇒ (WA).

Proof. Let A be any set, Then there exists an ordinal α such that α 6¹ A. By Zermelo’s
Theorem, there exists an injection

f : A→ α.

Hence we can well-order A by

a1 < a2 iff f(a1) < f(a2).

Summary.
(AC)⇐ (WA)⇔ (Z)

Theorem 20.27 (Transfinite induction on ON). If C is a nonempty subclass of
ON, then C contains an ∈–least element.

Proof. Suppose not. Then we can inductively construct a sequence of elements αn ∈ C
for n ∈ ω such that

α0 3 α1 3 . . . 3 αn 3 αn+1 3 . . .
But this contradicts the Axiom of Regularity.

Notation. From now in, if α, β are ordinals, then we shall often write α < β instead
of α ∈ β.

Definition 20.28. Let 0 6= α ∈ ON.

• α is a successor ordinal iff there exists β ∈ ON such that α = β+. We shall usually
write β + 1 instead of β+.

• Otherwise, α is a limit ordinal.

Example 20.29.

• 5, ω+ are successor ordinals.

• ω is a limit ordinal.

• ω1 is a limit ordinal.

Definition 20.30. If X is a set of ordinals, then sup(X) is the least ordinal α such that
β ≤ α for all β ∈ X.
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eg,
sup{2, 5, 7} = 7 = ∪{2, 5, 7}

sup{0, 1, 2, . . . , n, . . .} = ω = ∪{0, 1, 2, . . . , n, . . .}.

Exercise 20.31. If X is a set of ordinals, then sup(X) = ∪X.

Proof. First we show that ∪X is an ordinal. Clearly ∪X is a set of ordinals. So it is
enough to show that ∪X is transitive. Suppose that α ∈ β and β ∈ ∪X. Then there
exist γ ∈ X such that β ∈ γ. Then α ∈ γ and so α ∈ ∪X.

Next suppose that β ∈ X. Then β ⊆ ∪X and so β ≤ ∪X. Thus ∪X is an upper
bound for X.

Finally suppose that δ is an ordinal which is an upper bound for X. Then for all
β ∈ X, we have β ≤ δ and so β ⊆ δ. Thus ∪X ⊆ δ and so ∪X ≤ δ.

Theorem 20.32 (Transfinite Induction on ON). Let D be a subclass of ON. Suppose
that

(a) 0 ∈ D;

(b) If α ∈ D, then α + 1 ∈ D.

(c) If α is a limit ordinal and β ∈ D for all β < α,

Then D = ON.

Proof. Suppose not. Then C = ONrD is a nonempty class of ordinals. Hence C
contains a least element α. But then (a), (b), (c) imply that α 6= 0, α isn’t a successor
ordinall and α isn’t a limit ordinal, which is a contradiction!

Next we shall consider transfinite recursion on ON.

Example 20.33. We define the operation of ordinal addition α + β by recursion on β
as follows:

α + 0 = α

α + (β + 1) = (α + β) + 1

α + β = sup{α + γ | γ < β}, when β is a limit ordinal.

Remark 20.34.
1 + ω = sup{1 + n | n ∈ ω} = ω.

Hence
ω = 1 + ω 6= ω + 1 = ω ∪ {ω}.

Thus ordinal addition is not commutative.
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Example 20.35. We define the operation of ordinal multiplication α · β by recursion
on β as follows:

α · 0 = 0

α · (β + 1) = (α · β) + α

α · β = sup{α · γ | γ < β}, when β is a limit ordinal.

Remark 20.36. Thus
2 · ω = sup{2 · n | n ∈ ω} = ω.

Also

ω · 2 = ω · (1 + 1)

= ω · 1 + ω

= ω + ω

Thus 2 · ω 6= ω · 2. Hence ordinal multiplication is not commutative.

Theorem 20.37 (Transfinite Recursion). If G : V → V is any operation, then there
exists a unique operation F : ON→ V such that

F (α) = G(F |α)

for all α ∈ ON

Proof. Omitted.

Here V is the class of all sets.

Theorem 20.38 ((AC)). Every set A is well-orderable.

Proof. Let A be any set and let f be a choice function on P(A)r{∅}. Fix some x /∈ A.
Then we can define an operation

H : ON→ A ∪ {x}

by recursion as follows.

H(α) = f(Ar{H(β) | β < α}) if Ar{H(β) | β < α} 6= ∅
= x otherwise.

By Hartogs’ Theorem, there exists an ordinal α such that α 6¹ A; and clearly H(α) =
x. Let β be the least ordinal such that H(β) = x and let h = H|β. Then h : β → A is
a bijection and so we can define a well-ordering ≺ of A by

a1 ≺ a2 iff h−1(a1) < h−1(a2).
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Finally we have shown
(WA)⇔ (AC)⇔ (Z)

At this point, we can pay off another of our debts!

Definition 20.39. For any set A, the cardinal number of A is

cardA = the least ordinal α such that A ≈ α.

Remark 20.40. Thus an ordinal γ is a cardinal number iff for all β < γ, β 6≈ γ.

Example 20.41. The following ordinals are cardinal numbers

0, 1, 2, . . . , n, . . . , ω, ω1, . . .

In particular, ℵ0 = ω.

Definition 20.42. We define ℵα by recursion as follows:

ℵ0 = ω

ℵα+1 = the least ordinal number κ such that κ Â ℵα.

ℵδ = sup{ℵβ | β < δ}, if δ is a limit ordinal

Then ℵα, α ∈ ON, enumerates the infinite cardinal numbers in increasing order. NB
This must be proved!

The Continuum Problem. We know that there exists an ordinal α ≥ 1 such that
2ℵ0 = ℵα. But what is the exact value of α?

Theorem 20.43.

(a) Each ℵα is an infinite cardinal.

(b) If κ is an infinite cardinal, then κ = ℵα for some α ∈ ON.

Proof. (a) Suppose not. Let α be the least ordinal such that ℵα is not a cardinal. Clearly
α is a limit ordinal and so

ℵα = sup{ℵβ | β < α}.
Hence there exists β < α such that ℵβ ≈ ℵα. But then we have that

ℵβ+1 ⊆ ℵα ≈ ℵβ

and so ℵβ+1 ¹ ℵβ, which contradicts the fact that ℵβ+1 is a cardinal number.
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(b) Suppose not and let κ be the least counterexample. Clearly κ > ℵ0. Let

S = {ℵβ | ℵβ < κ}.

Case 1. Suppose that S contains a maximum element; say ℵα. Then

κ = the least cardinal greater than ℵγ
= ℵγ+1

which is a contradiction!

Case 2. Suppose that S doesn’t contain a maximum element. Then

κ = sup{ℵβ | ℵβ ∈ S}
= ℵα, where α = sup{β | ℵβ ∈ S}

which is a contradiction!

Definition 20.44. V is the class of all sets.

Theorem 20.45. V is not a set.

Proof. If V is a set, then V ∈ V , which contradicts the Regularity Axiom.

Definition 20.46 (The cumulative hierarchy). We define Vα by recursion as follows:

V0 = ∅
Vα+1 = P(Vα)

Vδ =
⋃
{Vβ | β < δ}, if δ is a limit ordinal

Lemma 20.47.

(a) Vα is a transitive set for each α ∈ ON.

(b) If β < α, then Vα ⊆ Vβ.

Proof. We argue by transfinite induction on α that (a) and (b) hold.

Case 1. α = 0. Then (a) and (b) hold trivially.

Case 2. α = γ + 1 is a successor ordinal. Suppose inductively that (a) and (b)
hold for γ. Since Vγ is inductive, it follows that Vγ+1 = P(Vγ) is transitive and that
Vγ ⊆ P(Vγ) = Vγ+1. Hence (a) holds. Now suppose that β < γ + 1. Then either β = γ
or β < γ. If β = γ, then we have that Vβ = Vγ ⊆ Vγ+1. So suppose that β < γ. By
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induction hypothesis, Vβ ⊆ Vγ . Since Vγ ⊆ Vγ+1, we have that Vβ ⊆ Vγ+1. Thus (b)
holds.

Case 3. α is a limit ordinal. Suppose inductively that (a) and (b) hold for all γ < α.
Since

Vα =
⋃

γ<α

Vγ

it follows that (b) holds. Next suppose that x ∈ y and y ∈ Vα. Then there exists γ < α
such that y ∈ Vγ. Since Vγ is transitive, x ∈ Vγ. Since Vγ ⊆ Vα, x ∈ Vα. Thus (a)
holds.

Theorem 20.48. If x is any set, then there exists α ∈ ON such that x ∈ Vα; ie

V =
⋃

α∈ON

Vα.

Proof. Suppose that x ∈ V and that for each y ∈ x, there exists αy ∈ ON such that
y ∈ Vαy . Let

β = sup{αy | y ∈ x}.
Then x ⊆ Vβ and so x ∈ P(Vβ) = Vβ+1.

For the sake of contradiction, suppose that there exists x0 ∈ V such that x0 /∈⋃
α∈ON Vα. Then there exists x1 ∈ x0 such that x1 /∈

⋃
α∈ON Vα. Similarly, there exists

x2 ∈ x1 such that x2 /∈
⋃
α∈ON Vα. Continuing in this fashion, we can inductively define

sets xn such that
x0 3 x1 3 x2 3 . . . 3 xn 3 xn+1 3 . . .

which contradicts the Regularity Axiom.

Remark 20.49.

(a) A class M ⊆ V is a set iff there exists α ∈ ON such that M ⊆ Vα.

(b) For each ordinal α ∈ ON, we have that α ∈ Vα+1rVα.
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